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Resting-state functional connectivity (rsFC) provides novel insights into variabilities in neural networks associated with the use of
addictive drugs or with addictive behavioral repertoire. However, given the broad mix of inconsistent findings across studies,
identifying specific consistent patterns of network abnormalities is warranted. Here we aimed at integrating rsFC abnormalities and
systematically searching for large-scale functional brain networks in substance use disorder (SUD) and behavioral addictions (BA),
through a coordinate-based meta-analysis of seed-based rsFC studies. A total of fifty-two studies are eligible in the meta-analysis,
including 1911 SUD and BA patients and 1580 healthy controls. In addition, we performed multilevel kernel density analysis (MKDA)
for the brain regions reliably involved in hyperconnectivity and hypoconnectivity in SUD and BA. Data from fifty-two studies
showed that SUD was associated with putamen, caudate and middle frontal gyrus hyperconnectivity relative to healthy controls.
Eight BA studies showed hyperconnectivity clusters within the putamen and medio-temporal lobe relative to healthy controls.
Altered connectivity in salience or emotion-processing areas may be related to dysregulated affective and cognitive control-related
networks, such as deficits in regulating elevated sensitivity to drug-related stimuli. These findings confirm that SUD and BA might
be characterized by dysfunctions in specific brain networks, particularly those implicated in the core cognitive and affective
functions. These findings might provide insight into the development of neural mechanistic biomarkers for SUD and BA.
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INTRODUCTION
Substance use disorder is characterized by excessive drug-seeking
and taking [1]. Its core clinical symptoms comprise a chronically
relapsing cycle of binging, intoxication, withdrawal and craving,
despite the enormous adverse consequences. Behavioral addic-
tions (BA) or non-substance addictions, such as gambling
addiction, are defined as a set of behavior that the individual
becomes dependent on. Both disorders are characterized by a
persistent compulsion to seek and take a drug or perform a
behavior, loss of control in limiting the intake, and they are often
accompanied by negative emotions when the availability of the
drug or behavior is prevented [2].
Both SUD and BA are complex multifaceted and multistage

diseases. A previous rsfMRI systematic review reported that
addictions would engage a range of brain networks, including
the reward network, executive network and the habit and memory
networks [3], and are broadly linked with changes in many cortical
and subcortical brain regions. Among these addiction-related
networks, it is crucial to identify key brain regions/networks that
specifically contribute to addiction, in order to shed light on
prevention and treatment. To assess the neural correlates of
addictions, a number of functional neuroimaging studies have
examined abnormalities in local brain regions and in communica-
tion between functionally distinct brain regions, as reported in two
recent meta-analyses [4, 5]. These studies primarily used task-based

functional magnetic resonance imaging (fMRI) to assess aberrant
recruitment of brain regions in the context of different experi-
mental paradigms and stages of addiction [6–9].
As an alternative approach to task-based fMRI, resting-state

(rs) fMRI has been widely applied in both healthy participants
and patients with neurological and psychiatric disorders [10–12].
Rs-fMRI is based on fluctuations of the blood-oxygenation-level-
dependent (BOLD) signal, which characterize the intrinsic
neuronal activity of the brain while subjects are in the awake
state [13]. The literature evaluating rs-fMRI in substance and no-
substance addiction is quite broad and includes seed-based
functional connectivity (FC), regional homogeneity (ReHo),
independent component analysis (ICA), amplitude of low-
frequency oscillations (ALFF) and graph analysis under different
types of addictions (for review see: Fedota and Stein, 2015;
Ieong and Yuan, 2017, Pariyadath et al., 2016; Sutherland et al.,
2012) [14–17].
Previously, Tahmasian and colleagues concluded that seed-

based FC and effective connectivity are the standard methods to
detect disruption of specific brain areas, whereas graph- and
network-based analyses are valuable methods for assessing
alterations across the whole brain networks [12]. These different
methodological approaches have provided quite an ambiguous
overview of the pathophysiological mechanisms underlying SUD
and BA. For this reason, reviewing the literature, together with a
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quantitative meta-analysis, is needed to explain the inconsisten-
cies between previously published works.
SUD and BA might have common disease aetiologies [18, 19]. It

is important to highlight the similarities and differences between
these two types of addictions. For example, similar to drug
addiction [20, 21] a number of studies concluded that pathological
gambling is characterized by white matter abnormalities [22–24]
and reductions of cortical thickness [25]. However, one study
reported increased corticolimbic connectivity in cocaine depen-
dence, and a decrease in pathological gambling [19], suggesting
that SUD and BA may also be associated with distinct brain
abnormalities.
To the best of our knowledge, no previous rsFC studies have

directly compared SUD and BA to probe for neural specificity.
Individuals in general show unique patterns of addiction.
Although a small proportion of addicts show addiction co-
occurrence, many addicts struggle with one or more addictive
behaviors but do not have difficulty with other types of addictive
behaviors. For example, gambling addiction is only weakly
associated with drug abuse. Addiction specificity describes this
phenomenon: one addictive pattern may be acquired whereas
another is not [26]. To date, the neurobiological evidence on why
some addictions may not co-occur within the same individual has
not been conclusively quantified. Similarly, the neural basis of co-
occurrence of addictions remain elusive as well [27]. We believe
that it is important to directly compare the neural substrates of
various types of addiction and examine the neural specificity of
each addiction. Such an approach may help explain addiction
specificity and addiction co-occurence.
Here we conducted two coordinate-based meta-analysis

approaches activation likelihood estimation (ALE) and Multilevel
Kernel Density Analysis (MKDA). Both ALE and MKDA are
coordinate-based meta-analysis (CBMA) approaches. Specifically,
the ALE method involves the modeling of the reported loci of
maximum activation as peaks of a 3D Gaussian probability, which
is defined by a specified full-width half-maximum (FWHM). 3D

Gaussian distribution produces a statistical map that assesses the
likelihood of activation for each voxel as determined by all studies
in the analysis [28]. Instead, the MKDA method establishes a
binary map for each study, which are averaged giving the
proportion of studies with any foci within a given radius from a
voxel [29]. ALE focuses on the distribution of peak coordinates
[28], while MKDA focuses on the distribution of statistical contrast
maps [29]. We conducted a systematic review and three ALE meta-
analyses of resting-state functional connectivity (rsFC) studies.
Both hypo and hyper connectivities were examined delineate the
abnormality patterns among intrinsic functional networks in
substance use disorders and behavioral addictions. Finally, using
the Multilevel Kerned Density Analysis (MKDA) meta-analytic
technique, we aimed to replicate the findings of our first meta-
analyses employed using a different meta-analytic technique [28].

METHODS
Search strategy
A comprehensive literature search was carried out using Pubmed (https://
www.ncbi.nlm.nih.gov/pubmed/) and Web of Science (http://www.
webofknowledge.com) in August 2021. This was performed by combining
a total of 18 searches using the key terms: [“rest” OR “resting”] and
[“connect” OR “connectivity”], [“fMRI” OR “neuroimaging”] and various key
terms corresponding to each search: “addiction”, “substance use disorder”,
“substance abuse”, “alcohol”, “cocaine”, “opioid”, “smokers”, “smoking”,
“heroin”, “stimulants”, “methamphetamine”, “gambling”, “gaming” and
“internet gaming”. The search resulted in 139 papers and after screening
seventy-two papers were reached. Figure 1 displays a PRISMA diagram of
the specific search method reported. Notably, most resting-state
connectivity meta-analysis analyses are based on these seventy-two
studies, see Table 1 for further details.
We included original functional magnetic resonance imaging (fMRI)

studies that used seed-based rsFC:

1. To compare group differences in seed-based functional connectivity
among SUD-HC were examined using the results of between-group
contrasts (SUD < HC and SUD > HC).

Fig. 1 PRISMA flowchart. PRISMA flowchart for the selection of eligible studies.
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2. To compare group differences in seed-based functional connectivity
among BA-HC were examined using the results of between-group
contrasts (BA < HC and BA > HC), respectively.

Effects were categorized based on the direction of effect (hypercon-
nectivity or hypoconnectivity in SUD or BA). Hyperconnectivity has been
defined as larger positive or reduced negative rsFC and hypoconnectivity
as larger negative or reduced positive rsFC compared with healthy
controls.

Study eligibility criteria
Studies focusing on other psychiatric comorbidities, such as depression,
schizophrenia, anxiety, obsessive-compulsive disorder and neurological
conditions were excluded as they have been separated in the DSM-V [30].
In the first screening of articles, the titles and abstracts were considered,
and the following exclusion criteria were applied: (1) non-empirical studies,
(2) non-human studies, (3) non-fMRI studies, (4) non-rsFC studies, (5) non-
substance use disorder studies and (6) no adults. Subsequently, the full
text of every article was further evaluated for eligibility. Studies were also
excluded due to (1) not in English, (2) no HC group, (3) entries having the
same seed regions of interest reported in another publication. These
searches and exclusion criteria yielded a sample, n= 1911 for SUD+ BA
and n= 1580 for controls (Table 1). Coordinates were reported either in
Talairach or Montreal Neurology Institute (MNI) coordinate space. The final
dataset included seventy-two articles for SUD and BA > HC (310 contrasts)
and seventy-two articles for the HC > SUD and BA (283 contrasts).

Meta-analysis
GingerALE is a freely available, quantitative meta-analysis method developed
by Turkeltaub et al [31] with the latest version described by Eickhoff and
colleagues [28, 32] and Turkeltaub and colleagues [33]. Here, the latest
version of GingerALE (3.0.2) was used (The BrainMap Database, www.
brainmap.org; San Antonio, TX, USA), which relies on activation likelihood
estimation (ALE) to compare coordinates compiled from multiple articles,
estimate the magnitude of overlap, and yield clusters most statistically likely
to become active across studies. The algorithm minimizes within-group
effects and provides increased power by allowing for the inclusion of all
relevant experiments [28, 33]. Talairach coordinates were converted to MNI
with the Lancaster and colleagues (2007) transformation algorithm.
Coordinates in MNI space were imported into the software. Imported foci
were modeled using a full-width at half-maximum (FWHM) kernel estimated
based on the corresponding experiment’s sample size as three-dimensional
Gaussian spatial probability distributions [28, 33]. The resulting statistical
maps were thresholded at p < 0.05 using a cluster-level correction for
multiple comparisons and a cluster threshold at p< 0.05 [28]. Group
differences were examined using contrast analyses. The threshold for
group-contrasts was set to p < 0.05 uncorrected for multiple comparisons
with 5000 permutations [34]. Group differences in resting-state functional
connectivity were examined using the following six contrasts in ALE analyses:
SUD+ BA >HC and SUD+ BA <HC; SUD >HC and SUD <HC; BA > HC and
BA <HC; SUD> BA and SUD < BA.

MKDA
Multilevel kernel density analysis (MKDA) was implemented through
Matlab toolbox NeuroElf (http://neuroelf.net/) consistently with MKDA
neuroimaging meta-analytic procedures [35, 36]. Contrast coordinates in
Talaraich space were converted to MNI space. For all analyses, we used a
priori threshold of p < 0.05 (family-wise error-corrected for multiple
comparisons). Specifically, we investigated these meta-analytic contrasts
as follow: [SUD > HC and SUD < HC] and [BA > HC and BA < HC].

RESULTS
Included studies and sample characteristics
Meta-analyses were performed using GingerALE and consist of
individuals with SUD (1911 subjects) and healthy controls (1580),
both of which satisfied ALE power recommendations and include
a minimum of 17 contrasts [28]. The mean age for SUD individuals
and for healthy controls was 33.24 (±6.16) and 34.28 (±5.99) years
old, respectively. See Supplementary Table S1 for more informa-
tion regarding the rsFC methodology of the studies included in
the meta-analyses.

For the SUD group, eight studies reported participants with
nicotine addiction [37–44] and eight articles reported participants
with alcoholism and/or harmful drinking habits [36–39, 42, 44, 45].
Four studies reported participants [46–49] who were cannabis
users and 13 studies reported participants who were cocaine users
[19, 50–60]. The remaining articles on SUD reported a variety of
stimulants including methamphetamine/amphetamine (n= 5)
[61–65], and heroin/methadone (n= 12) [66–71]. For the BA
group, three articles reported participants with pathological
gambling disorder [72–74] and eight studies reported participants
with internet gaming disorder [66, 75–81].

Meta-analytic resting-state functional connectivity
SUD results. A total of forty-four studies investigating rsFC
abnormalities in SUD patients were identified. Table 3 shows a
complete list of the independent meta-analysis of rsFC on SUD
and HC only (ALE values are listed in Table 2).
The rsFC meta-analysis in SUD, when compared with HC,

revealed the largest hyperconnectivity cluster to be within the
striatum (putamen, caudate) and middle frontal gyrus (dorsolat-
eral prefrontal cortex or DLPFC) (Fig. 2A and B). This was followed
by a relatively large globus pallidus and anterior cingulate cluster
and thalamus, as well as medial frontal gyrus (ventromedial
prefrontal cortex or VMPFC) for the largest hypoconnectivity cluster
(See Table 2).

BA Results. A total of eight studies investigating rsFC abnorm-
alities in BA patients were identified. The majority of the identified
studies investigated pathological gambling addiction and the
remaining three studies investigated rsFC in internet gaming
disorder. Table 2 shows a complete list of brain connectivity for
independent meta-analyses on BA and HC (ALE values are listed in
Table 2). The rsFC meta-analysis in BA included hyperconnectivity
in regions within the putamen, amygdala, and medial frontal
gyrus (Fig. 2C and D), and hypoconnectivity in the caudate,
cingulate, and thalamus.

Conjunction and contrast analyses: SUD and BA Results. Conjunc-
tion and contrast analyses were performed to assess whether
addiction specificity was present, based on previous reviews
[26, 27]. While the conjunction analysis revealed hyperconnectivity
for both SUD and BA in the putamen, the contrast analysis
revealed hyperconnectivity in the claustrum, caudate, putamen and
anterior cingulate for SUD (largest cluster size 8112) when
compared with BA. The putamen/caudate and insula had the
greatest hyperconnectivity cluster size in BA when compared with
SUD (largest cluster size 1544). Hypoconnectivity for SUD and BA
was shown in the medial frontal gyrus and thalamus. Hypocon-
nectivity within the temporal lobe was shown in SUD when
compared with BA. The medial frontal gyrus and anterior cingulate
revealed hypoconnectivity in BA when compared with SUD (ALE
values are listed in Table 2).

SUD+ BA Results. A total of seventy-two studies investigating
rsFC abnormalities in SUD+ BA were identified. Table 2 shows a
complete list of brain activities for independent meta-analyses on
SUD+ BA and HC. Data from each cluster are listed in order of
cluster size in MNI space identified by all ALE meta-analyses.
Higher ALE values are indicative of a greater likelihood of rsFC
(ALE values are listed in Table 3).
For SUD+ BA, the meta-analysis revealed that the largest

hyperconnectivity cluster was within the amygdala, thalamus, and
midbrain (Fig. 3) and relatively large parahippocampal gyrus,
caudate, and putamen cluster, as well as hypoconnectivity in the
posterior lobe and parahippocampal gyrus. For HC, the rsFC meta-
analysis showed hyperconnectivity in the thalamus, midbrain,
cingulate and frontal lobe and hypoconnectivity within the pa
rietal lobe and cerebellum. The contrast analysis revealed
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hyperconnectivity in the basal ganglia, thalamus, insula, amygdala,
and parahippocampal gyrus in SUD+ BA in comparison with HC
(See Table 3 for further details). MKDA results for SUD vs controls,
and BA vs controls, are displayed in Fig. 4.

DISCUSSION
The need to better describe the human brain connectivity in SUD
and BA has long been recognized, whereby meta-analyses serve
as a crucial tool for consolidating evidence and streamlining the
prevalent narrative (for a recent perspective see Suckling and

Nestor, 2017; Yip et al., 2017) [18, 82]. To our knowledge, no
previous meta-analysis has examined how connections between
different brain areas during rest are altered in addictive
neuropathologies. Here, we aimed to apply the ALE meta-
analysis method to estimate convergence in functional connec-
tivity rs-fMRI-based FC in substance use and behavioral disorders
across studies.
We integrated findings from seventy-two rsFC studies and

found convergent hyperconnectivity in individuals with SUD and/
or BA: in the amygdala-basal ganglia, thalamus-midbrain and
hypoconnectivity in the posterior lobe. In addition, basal ganglia,

Table 2. Results of the meta-analysis of resting-state functional connectivity in SUD and BA.

Cluster Cluster size (mm3) Brain regions BA x y z ALE

SUD >HC

1 18,160 L Putamen −20 16 −6 0.0220

L Caudate −10 16 −2 0.0200

L Middle Frontal Gyrus 44 −44 18 26 0.0200

L Insula −34 −6 20 0.0100

2 7200 R Putamen 26 6 4 0.0200

R Globus Pallidus 16 8 2 0.0190

BA >HC

1 20,592 R Putamen 26 6 −12 0.0110

R Amygdala 21 48 −10 −12 0.0110

SUD <HC

1 10,000 L Thalamus −8 −14 2 0.0168

2 7312 R Medial Frontal Gyrus 4 44 38 0.0102

3 6432 R Parahippocampal Gyrus 28 28 −4 −20 0.0168

4 5152 L Insula 13 −42 12 10 0.0256

BA <HC

1 14,416 R Medial Frontal Gyrus 9 22 46 18 0.0100

R Anterior Cingulate 32 4 24 42 0.0090

2 12,328 L Thalamus −6 −8 12 0.0090

R Caudate 6 6 0 0.0090

SUD ∩ BA+

1 2584 R Putamen 18 4 8 0.0096

SUD > BA+

1 8112 L Claustrum −30.2 17.2 4.1 0.1000

L Caudate −10.9 19.5 −5.6 0.1000

L Putamen −21.2 17 −9.2 0.0100

2 264 L Anterior Cingulate 24 −8 29 15 0.0100

BA > SUD+

1 1544 R Putamen 24.4 2.4 −10 0.100

2 1400 R Insula 45 −9 −9 0.100

3 192 R Caudate 20.3 8.5 17.3 0.040

SUD ∩ BA−

1 3168 R Medial Frontal Gyrus 6 0 36 32 0.0090

2 1904 L Thalamus −24 −20 4 0.0090

SUD < BA−

1 272 L Temporal Lobe 38 −48.9 4.1 −19.8 0.0400

BA < SUD−

1 88 R Medial Frontal Gyrus 9 14.9 50.7 14.4 0.0500

2 24 R Anterior Cingulate 32 12 45.3 8.7 0.0500

MNI coordinates (x, y, z) of brain regions surviving a cluster-level threshold of p < 0.05 and a cluster forming threshold of p < 0.05 for single studies. Contrast
threshold was set to p= 0.05, 5000 permutations, >50mm3, ALE= Activation Likelihood Estimate; BA= Brodmann Area; BA= Behavioral Addiction; HC=
Healthy Controls; +=Hyperconnectivity; −= Hypoconnectivity; SUD= Substance Use Disorders.
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insula, amygdala and parahippocampal gyrus exhibited hyper-
connectivity in the SUD group compared with the healthy control
group. These findings show the enhancement of connectivity in
the reward and salience networks, suggesting that altered
physiology in the basal ganglia, midbrain, insula and medio-
temporal lobe might be evaluated as specific biomarkers for drug
addictions [3]. Interestingly, and importantly, our findings are
consistent with an earlier systematic review of rsFC brain
connectivity in drug addiction [17], which proposed that nicotine
addiction had salience and executive network altered. This was
confirmed by another recent review on chronic stimulant users
which found enhanced coupling of reward, salience, and memory
networks [83]. The hyperconnectivity of the reward and salience
network in our meta-analysis might suggest that the recruited
patients might be in a more chronic state of addiction [83]. The
current meta-analysis expands upon previous results on specific
brain regions by showing that abnormality in larger brain
networks might be present in addiction.
Another novel finding of our ALE meta-analysis is the

convergence of intrinsic functional patterns in the putamen in
the SUD and BA, compared to HC. Numerous human and animal
studies have identified putamen as the key region in SUD and HC,

Table 3. Results of the meta-analysis of resting-state functional connectivity in SUD+ BA and controls.

Cluster Cluster size (mm3) Brain regions BA x y z ALE

Healthy Control+

1 55,056 L Thalamus −16 −10 12 0.0112

R Midbrain 6 −12 −10 0.0103

2 21,672 L Cingulate 24 −8 34 10 0.0101

R Medial Frontal Gyrus 32 6 32 44 0.0090

Healthy Control−

1 11,640 L Parietal Lobe 7 −14 −60 60 0.0093

2 10,256 R Cerebellum 0 −76 −24 0.0092

SUD+ BA+

1 31,088 L Amygdala −22 −6 −14 0.0159

R Thalamus 10 −20 8 0.0141

R Midbrain 10 −22 −8 0.0095

2 13,088 R Caudate 10 14 −4 0.0157

R Putamen 30 −4 −10 0.0099

SUD+ BA−

1 6832 R Posterior Lobe 44 −66 −20 0.0090

2 5536 R Parahippocampal Gyrus 42 −32 −18 0.0090

SUD+ BA >Healthy Control+

1 20,864 L Caudate −12 2 12 0.0209

L Putamen −20 16 −6 0.0193

L Thalamus −10 −16 14 0.0134

L Insula 13 −34 12 14 0.0125

2 13,136 R Putamen 26 6 4 0.0244

R Caudate Body 16 8 4 0.0222

R Amygdala 26 −8 −28 0.0129

R Parahippocampal Gyrus 34 16 −4 −18 0.0103

SUD+ BA <Healthy Control−

1 9832 R Dorsal Anterior Cingulate 32 8 36 22 0.0242

R Dorso Medial Frontal Cortex 32 4 30 36 0.0219

R Dorso Medial Frontal Cortex 6 2 24 44 0.0149

MNI coordinates (x, y, z) of brain regions surviving a cluster-level threshold of p < 0.05 and a cluster forming threshold of p < 0.05 for single studies. Contrast
threshold was set to p= 0.05, 5000 permutations, >50mm3, ALE= Activation Likelihood Estimate; BA= Brodmann Area; += Hyperconnectivity; −=
Hypoconnectivity.

Fig. 2 Concordant activation across SUD and BA. A, B: regions
concordant across studies for SUD (in green) and C, D: regions
concordant across studies for BA (in yellow).
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given its role in a variety of functions encompassing higher motor
control, impulsivity and inhibitory control [77, 84–86]. In BA, a
selective involvement of putamen functional connectivity in
internet gaming disorder was revealed [77]. In addition, the

putamen is part of the striatal “habit network” underlying learning
of automatic behavior [19, 72].
Interestingly, no previous rsFC study has compared SUD and BA to

probe the neural specificity. No studies have directly provide neural
evidence to support the idea of addiction specificity [26, 27]. Here, we
found that SUD showed hyperconnectivity in the basal ganglia
(putamen, caudate, and globus pallidus), claustrum, middle frontal
gyrus, and anterior cingulate compared with healthy controls. Instead,
BA revealed hyperconnectivity in the putamen, temporal and frontal
lobe. We suggest that the basal ganglia, claustrum and anterior
cingulate are neuroanatomical substrates linked with SUD, which
showed increased connectivity compared with BA. The importance of
these regions in encoding rewards and/or reward-seeking and
cognitive control has been demonstrated by functional imaging
and human lesion studies [52, 87–90]. These increased connectivities
for SUD adds further support to their central role specifically in the
chronic phase of the addiction cycle. Much evidence exists on the
capacity of drugs to enhance the mesolimbic dopamine system,
whilst there is much less evidence in BA [52, 91–93].
Although our findings integrated a remarkably large sample size

to establish consensus on the location of network disruptions in
drug and behavioral addictions, limitations should be considered.
First, the golden standard for directly detecting monosynaptic
axonal pathways is the chemical tracer technique which requires
ex-vivo tissue processing and can only be acquired in animal
studies [94]. Thus, it is unclear how rsFC reflects the strength of
monosynaptic and polysynaptic pathways. Second, the seventy-
two experiments included in our meta-analysis differ in design,
methodology, age, gender of the population, illness severity and
duration of the use patterns (See Table 1 for further details). The
wide variation of the substances used, and measures of quantity

Fig. 3 Concordant connectivity across SUD and BA. Concordant hyperconnectivity (red) and hypoconnectivity (blue) across SUD and BA
(Sagittal, Coronal and Axial views).

Fig. 4 MKDA findings. Results from the MKDA analyses. A SUD vs
controls and (B) BA vs controls.

S. Tolomeo and R. Yu

8

Translational Psychiatry           (2022) 12:41 



illustrate the need to report these factors more thoroughly and
systematically in future studies. In addition, it highlights the need
to standardize the reporting in future studies. Third, although the
functional significance of positive and negative rsFC remains
unclear, we lumped higher positive rsFC and lower negative rsFC
in the SUD/BA vs. HC contrast, making it difficult to differentiate
whether the differences were driven by higher rsFC in one group
or lower rsFC in another group. The majority of studies only
reported group differences without providing details about
positive/negative rsFC in each group. Further studies may further
explore the nature of group differences in rsFC.
Notably, there are several explanations for group differences in

functional connectivity. It is possible that both groups may show
positive functional connectivity and one group exhibits stronger
positive functional connectivity than the other group. It is also
possible that both groups show negative functional connectivity
and one group exhibits weaker negative connectivity than the
other group. The third possibility is that one group shows positive
functional connectivity and the other group shows negative
functional connectivity and hence there is a significant group
difference. Unfortunately, in many of the original studies, the
functional connectivity patterns in each group were not always
reported. Hence, the current study cannot do separate within-
group ALE analyses, e.g., one ALE analysis for positive connectivity
in SUD group and one ALE analysis for negative connectivity in
SUD group. We suggest that future empirical studies should aim to
routinely report functional connectivity for each group before
reporting group differences. Such practice might help researchers
understand the nature of group differences and the pathophysiol-
ogy of mental illnesses, including addictive disorders.
Fourth, due to the limited number of studies included we

aggregated studies with heterogeneous patients, ranging from initial
to abstinence stage, from short to long-term addictions. Analysis of
subtypes of addictions and their cognitive functions and behavioral
changes would be a strong supplement and would provide more
context for each brain network. In the future, a meta-analysis with
ReHo [95], ICA [96], ALFF and graph analysis studies is warranted.
In conclusion, the findings of this meta-analysis suggest that

rsFC connectivity in drug and behavioral addictions are disrupted.
Altered hyperconnectivity within salience or emotion processing
may relate to deficits in regulating increased sensitivity to reward
and salience stimuli. These findings might be helpful when
attempting to identify potential putative markers for pharmaco-
logical interventions. A priority for future research would be to
further identify how these unbalanced networks impact different
phases (inclusive of intoxication, withdrawal and dependence) of
the addiction cycle. These results might be used as indicatives of
high risk in developing SUD or BA and might potentially guide
effective treatments at an early stage.
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