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Abstract

Tacrolimus (Tac) is an effective remission inducer of refractory ulcerative colitis (UC). Gene

polymorphisms result in interindividual variability in Tac pharmacokinetics. In this study, we

aimed to examine the relationships between gene polymorphisms and the metabolism,

pharmacokinetics, and therapeutic effects of Tac in patients with UC. Forty-five patients

with moderate-to-severe refractory UC treated with Tac were retrospectively enrolled. Gen-

otyping for cytochrome P450 (CYP) 3A4*1G, CYP3A5*3, CYP2C19*2, CYP2C19*3,

nuclear receptor subfamily 1 group I member 2 (NR1I2)–25385C>T, ATP-binding cassette

subfamily C member 2 (ABCC2)–24C>T, ABCC2 1249G>A, and ABCC2 3972C>T was per-

formed. Concentration/dose (C/D) ratio, clinical therapeutic effects, and adverse events

were evaluated. The C/D ratio of Tac in UC patients with the CYP3A4*1G allele was statisti-

cally lower than in those with the CYP3A4*1/*1 allele (P = 0.005) and significantly lower in

patients with CYP3A5*3/*3 than in those with CYP3A5*1 (P < 0.001). Among patients with

the CYP3A4*1G allele, the C/D ratio was significantly lower in patients with CYP3A5*1 than

in those with CYP3A5*3/*3 (P = 0.001). Patients with the NR1I2–25385C/C genotype pre-

sented significantly more overall adverse events than those with the C/T or T/T genotype

(P = 0.03). Although CYP3A4*1G and CYP3A5*3 polymorphisms were related to Tac phar-

macokinetics, CYP3A5 presented a stronger effect than CYP3A4. The NR1I2–25385C/C

genotype was related to the overall adverse events. The evaluation of these polymorphisms

could be useful in the treatment of UC with Tac.

Introduction

Ulcerative colitis (UC), a chronic inflammatory disease of unknown etiology, occurs in the col-

orectum [1]. Although corticosteroid therapy is the mainstay option for inducing UC remis-

sion, 33% of severe active UC cases have been reported to be refractory to corticosteroids [2].

Calcineurin inhibitors such as cyclosporine and tacrolimus (Tac) [3] are effective remission
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inducers for refractory UC. The effective and safe doses of Tac differ among individuals as the

therapeutic range of Tac is narrow. Therefore, close monitoring of the plasma drug concentra-

tion is necessary.

Cytochrome P-450 (CYP) 3A, a major member of the CYP enzyme subfamily, is predomi-

nantly responsible for the metabolism of Tac via the demethylation of 13-o-demethyltacroli-

mus [4]. The mRNAs and proteins of CYP3A4 and CYP3A5, two major enzymes of the

CYP3A subfamily, are abundantly expressed in the adult liver [5]. Interindividual variability in

Tac metabolism is mainly due to single nucleotide polymorphisms (SNPs) in CYP3A5, and

dosing recommendations for Tac based on the CYP3A5 genotype have been published in the

field of organ and stem cell transplantation [6]. A SNP at position 6986A within intron 3 of

CYP3A5, which is referred to as CYP3A5�3 (rs776746, 6986A > G), can reduce the expression

of the functional CYP3A5 protein because of a splicing disorder [7]. Therefore, individuals

with at least one CYP3A5�1 allele are known as CYP3A5 expressers and those with

CYP3A5�3/�3 genotype are known as CYP3A5 non-expressers [8]. CYP3A5 expressers have

lower dose-adjusted Tac blood concentrations and require higher Tac doses than CYP3A5

non-expressers [9–11]. Despite these findings, the interindividual variability in Tac pharmaco-

kinetics has not been adequately explained [12, 13], as the pharmacokinetics vary among

CYP3A5 expressers and non-expressers. Therefore, polymorphisms in other candidate genes

have been investigated to explain the interindividual variability in Tac pharmacokinetics [14].

CYP3A4, which encodes CYP3A4, another major enzyme of the CYP3A subfamily involved

in drug pharmacokinetics, has several SNPs related to the metabolic activity of CYP3A4 [15,

16], such as the CYP3A4�1B (rs2740574, –392A>G) [17] and CYP3A4�1G (rs2242480,

20230C>T) alleles with increased CYP3A4 enzyme activity [18–20] and the CYP3A4�22
(rs35599367, 15389C>T) allele with reduced CYP3A4 enzyme activity [21]. The mutation fre-

quency of CYP3A4�1G is relatively high in the Japanese population [22], but Japanese individ-

uals do not have the CYP3A4�1B and CYP3A4�22 alleles [9, 21]. Other gene polymorphisms

related to drug metabolism can influence the pharmacokinetics of Tac. Pregnane X receptor

(PXR, encoded by NR1I2) is involved in the transcriptional regulation of CYP enzymes,

including CYP3A4 and CYP3A5. In fact, the induction of CYP3A4 by the NR1I2 –25385T

(rs3814055, –25385C>T) allele has been reported to be higher than that by the NR1I2 –

25385C/C allele [23], resulting in lower Tac concentrations [24]. Although CYP2C19 may not

directly affect Tac pharmacokinetics, CYP2C19 polymorphisms can affect the pharmacokinet-

ics of Tac when co-administered with voriconazole [25, 26]. Regarding drug efflux, a recent

study showed that the polymorphism of ABCC2, which encodes multidrug resistance-associ-

ated protein 2 that plays a role in Tac efflux into the lumen in association with CYP3A in the

small intestine [27], can affect Tac pharmacokinetics [28]. However, the relationship between

these SNPs, except CYP3A5�3, and the pharmacokinetics and effects of Tac in patients with

UC has not been clarified. Therefore, the aim of this study was to investigate the relationship

of CYP3A4, CYP2C19, NR1I2, and ABCC2 polymorphisms as well as CYP3A5�3/�3 with the

pharmacokinetics and therapeutic effects of Tac in patients with UC. Furthermore, we exam-

ined the relationship between gene polymorphisms and adverse events in patients with UC.

Materials and methods

Patient selection

We retrospectively enrolled 47 Japanese patients with moderate-to-severe UC. All patients

were treated with Tac for remission induction in the University Hospital between January

2009 and January 2018. Demographic characteristics, laboratory results, and medication his-

tory were obtained from the medical records.
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Treatment protocol and evaluation of treatment efficacy

The initial Tac dose was generally 0.05 mg/kg/day and orally administered twice a day at 12-h

intervals. Blood Tac concentration was measured by either an affinity column-mediated

immunoassay (from January 2009 to January 2013), a chemiluminescent immunoassay (from

February 2013 to June 2014), or an electro-chemiluminescence immunoassay (July 2014 to

January 2018) in the in-hospital laboratory. In most patients, to monitor the blood Tac con-

centration, trough Tac level was measured three times a week in the first 2 weeks. The dose

was adjusted to achieve a high trough level of 10–15 ng/mL in the first 2 weeks. Two weeks

after administration, the dose was adjusted to achieve a low trough level of 5–10 ng/mL.

Clinical disease activity was assessed using the partial Mayo score (sum of 3 subscores of the

Mayo score without the endoscopic findings) [29] at 1, 2, and 4 weeks. Clinical response was

defined as a reduction in the partial Mayo score by�2 points accompanied by a decrease of at

least 30% from baseline and a decrease in the rectal bleeding subscore of�1 or an absolute rec-

tal bleeding subscore of 0 or 1. Safety was evaluated using physical findings and blood tests

based on medical records for 12 weeks.

Ethical considerations

This study was approved by the Ethics Committee of Osaka City University Graduate School

of Medicine (approval number: 3293). Written informed consent was obtained from all

patients at the start of this study. All data were fully anonymized before we accessed them.

Genotyping

DNA was isolated from the patients’ peripheral blood samples in ethylenediaminetetraacetic

acid using the QIAamp1DNA Blood Mini Kit (Qiagen, Hilden, Germany). We selected the

SNPs that have been reported to potentially affect the pharmacokinetics of Tac, as described in

the Introduction. Finally, genotyping was performed for the following nine SNPs: CYP3A4
rs2242480 C>T (CYP3A4�1G allele), CYP3A4 rs4646438 –>T (CYP3A4�6 allele), CYP3A5
rs776746 C>T (CYP3A5�3 allele), CYP2C19 rs4244285 G>A (CYP2C19�2 allele), CYP2C19
rs4986893 G>A (CYP2C19�3 allele), NR1I2 rs3814055 C>T, ABCC2 rs717620 C>T (–24),

ABCC2 rs2273697 G>A (1249), and ABCC2 rs3740066 C>T (3972). It was performed using

TaqMan1 SNP genotyping assay kit (Applied Biosystems, Foster City, CA, USA) according to

the manufacturer’s instructions.

Statistical analysis

The concentration and dose ratio (C/D ratio) [(ng/mL)/(mg/kg)] were calculated as Tac

trough levels (ng/mL) multiplied by body weight (kg) and divided by Tac dose (mg), and it

was used as an index of Tac metabolism.

All SNPs were tested for deviation from the Hardy–Weinberg equilibrium and p> 0.05

(chi-squared test) was considered to indicate equilibrium. For pairwise linkage disequilibrium

(LD) analysis, r2 was calculated using Haploview software (Broad Institute, Cambridge, MA).

Continuous variables are summarized as mean and standard deviation (SD). Unpaired t-
test was used to assess the differences in mean values. Chi-squared test or Fisher’s exact test

was performed to evaluate the differences in clinical data between each group. Fisher’s exact

test was applied to small samples. Multivariate analyses were performed using a linear logistic

regression model to identify factors associated with the therapeutic effect of Tac. The associa-

tion between gene polymorphisms and Tac pharmacokinetics was analyzed without and with

correction for age and the partial Mayo score. These statistical analyses were performed using
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EZR (Saitama Medical Center, Jichi Medical University), a graphical user interface for R (The

R Foundation for Statistical Computing, version 2.13.0). Results with a p value of<0.05 were

considered statistically significant.

Results

Baseline characteristics

There were 47 patients with moderate-to-severe UC; they were all Japanese. Of these patients,

two were excluded owing to follow-up loss. Finally, 45 patients were eligible for this retrospec-

tive study.

Table 1 shows the baseline characteristics of the 45 patients, including 24 men (53%). The

mean age was 43 years and the mean disease duration was 6 years. The number of patients

who received systemic corticosteroids before starting Tac was 30 (67%). The mean corticoste-

roid dose was 22 mg. Other treatments were antitumor necrosis factor (TNF)-α antibodies in

seven patients (16%) and thiopurines in eight patients (18%). The mean partial Mayo score

was 7.

Frequency of genotypes

Table 2 shows the allele and genotype frequencies of the nine SNPs. Finally, we analyzed eight

SNPs in this study because no patient had the CYP3A4�6 allele. The allele frequencies of the

eight SNPs did not deviate from the Hardy–Weinberg equilibrium. However, there was

a strong degree of pairwise LD between the CYP3A5�3 and CYP3A4�1G polymorphisms

(r2 = 0.859).

Table 1. Baseline characteristics of patients.

All patients

Number of patients 45

Age, mean ± SD 43 ± 16.9

Male, n (%) 24 (53)

Body weight, mean ± SD, kg 55 ± 9.7

Disease duration, mean ± SD, years 6 ± 7.9

Disease location

Pancolitis, n (%) 34 (76)

Left-sided colitis, proctitis, n (%) 11 (24)

Response to corticosteroid therapy

Resistant, n (%) 19 (42)

Dependent, n (%) 26 (58)

Corticosteroid dose, mean ± SD, mg† 22 ± 23.1

Anti-TNF-α antibody (or biologics) refractory disease, n (%) 7 (16)

Thiopurine treatment, n (%) 8 (18)

Food intake (yes/no) 6/39

Hemoglobin, mean ± SD, g/dL 12 ± 2.1

Serum albumin, mean ± SD, g/dL 3 ± 0.7

C-reactive protein, mean ± SD, mg/dL 4 ± 5.1

Partial Mayo score before starting Tac therapy, mean ± SD 7 ± 1.3

†The listed value is the prednisolone equivalent.

SD: standard deviation; TNF: tumor necrosis factor

https://doi.org/10.1371/journal.pone.0250597.t001
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As previously reported [8], the CYP3A5 genotype was divided into CYP3A5�1/�1+�1/�3
(expressers) and CYP3A5�3/�3 (non-expressers). The CYP3A4 genotype was divided into

CYP3A4�1/�1 and CYP3A�1/�1G+�1G/�1G, as reported previously [18].

Association of gene polymorphisms with tacrolimus pharmacokinetics

To reveal the association between these gene polymorphisms and Tac pharmacokinetics, we

investigated the days required to achieve the target trough level, daily tacrolimus dose, and

C/D ratio in the high trough phase (Table 3).

There were no significant associations of NR1I2, CYP2C19, and ABCC2 polymorphisms

with the C/D ratio in the high trough phase. Patients with the CYP3A4�1G allele required sig-

nificantly longer duration and higher Tac daily dose to achieve the target trough levels than

those with the CYP3A4�1/�1 allele (P = 0.002 and P = 0.019, respectively). The C/D ratio was

significantly lower in patients with the CYP3A4�1G allele than in those with the CYP3A4�1/�1
allele (P = 0.005). Regarding CYP3A5 polymorphism, CYP3A5 expressers required

Table 2. Allele and genotype frequencies.

Gene dbSNP Position Allele Allele frequency (%) Genotype n Frequency (%)

CYP3A4 2242480 20230 G (�1) 81 �1/�1 30 �1/�1 67

A (�1G) 19 �1/�1G 13 �1/�1G + �1G/�1G 33

�1G/�1G 2

CYP3A4 4646438 99766411 – 45 –/– 45

A (�6) 0 –/�6 0

�6/�6 0

CYP3A5 776746 6986 A (�1) 17 �1/�1 2 Expresser (�1/�1 + �1/�3) 29

G (�3) 83 �1/�3 11 Non-expresser (�3/�3) 71

�3/�3 32

CYP2C19 4244285 681 G 80 GG 28 GG 62

A 20 GA 16 GA + AA 38

AA 1

CYP2C19 4986893 �3 G 89 GG 35 GG 78

A 11 GA 10 GA + AA 22

AA 0

ABCC2 717620 –24 C 84 CC 32 CC 71

T 16 CT 12 CT + TT 29

TT 1

ABCC2 2273697 1249 G 84 GG 34 GG 76

A 16 GA 8 GA + AA 24

AA 3

ABCC2 3740066 3972 C 81 CC 30 CC 67

T 19 CT 13 CT + TT 33

TT 2

NR1I2 3814055 –25385 C 76 CC 26 CC 58

T 24 CT 16 CT + TT 42

TT 3

ABCC2, ATP-binding cassette subfamily C member 2; CYP2C19: cytochrome P450 family 2 subfamily C member 19; CYP3A4: cytochrome P450 family 2 subfamily A

member 4; CYP3A5: cytochrome P450 family 2 subfamily A member 5; dbSNP: the single nucleotide polymorphism database; NR1I2, nuclear receptor subfamily 1

group I member 2

https://doi.org/10.1371/journal.pone.0250597.t002
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significantly longer duration and higher Tac daily dose to achieve the target trough level than

CYP3A5 non-expressers (P = 0.002 and P< 0.0001, respectively). The C/D ratio was signifi-

cantly lower in CYP3A5 expressers than in CYP3A5 non-expressers (P< 0.001).

Furthermore, we investigated the interaction effect between CYP3A4�1G and CYP3A5�3
polymorphisms on Tac pharmacokinetics, as there was a strong degree of pair-wise LD

between CYP3A5�3 and CYP3A4�1G polymorphisms (S1 Table). Among CYP3A5 expressers,

none had CYP3A4�1/�1. Among 15 patients with the CYP3A4�1G allele, the C/D ratio was sig-

nificantly lower in CYP3A5 expressers than in CYP3A5 non-expressers (P = 0.001). This sug-

gests that CYP3A5 polymorphism could have a stronger effect on Tac pharmacokinetics than

CYP3A4 polymorphism.

Relationship between CYP3A4�1G and CYP3A5�3 polymorphisms and

therapeutic effects

We evaluated the therapeutic effects of Tac at 1, 2, and 4 weeks in patients with each genetic

polymorphism. There were no significant associations between NR1I2, CYP2C19, and ABCC2
polymorphisms and therapeutic effects (data not shown). Patients with CYP3A4�1/�1 showed

a significantly higher therapeutic effect than those with CYP3A4�1/�1G+�1G/�1G at 1 week

after Tac initiation (Fig 1A). Similarly, CYP3A5 non-expressers showed a significantly higher

therapeutic effect than CYP3A5 expressers at 1 week after Tac initiation (Fig 1B).

Table 3. Relationship between genetic polymorphism and pharmacokinetics.

Gene Position Genotype n Days required to achieve

target trough levels†
Daily dose when reached high

trough‡
C/D ratio when reached high trough

day, mean ± SD P value mg/kg, mean ± SD P value ng/mL per mg/kg, mean ± SD P value

CYP3A4 �1G �1/�1 30 6.9 ± 2.6 0.002## 4.3 ± 3.1 0.019# 146.5 ± 68.1 0.005##

�1/�1G + �1G/�1G 15 10.9 ± 4.0 7.0 ± 3.8 87.9 ± 46.1

CYP3A5 �3 �1/�1 + �1/�3 13 7.8 ± 3.6 0.002## 11.7 ± 3.8 < 0.0001### 74.9 ± 32.6 < 0.001###

�3/�3 32 4.2 ± 3.1 6.8 ± 2.6 148.2 ± 66.3

CYP2C19 �2 GG 28 5.8 ± 3.9 0.17 7.7 ± 2.8 0.21 134.9 ± 67.9 0.32

GA + AA 17 4.3 ± 3.0 9.1 ± 4.7 114.0 ± 66.0

CYP2C19 �3 GG 35 5.4 ± 4.0 0.66 8.4 ± 3.9 0.54 131.0 ± 73.4 0.46

GA + AA 10 4.8 ± 1.7 7.6 ± 2.8 112.9 ± 38.2

ABCC2 –24 CC 32 4.9 ± 3.1 0.33 7.9 ± 3.9 0.39 129.0 ± 71.7 0.76

CT + TT 13 6.1 ± 4.6 9.0 ± 3.0 122.0 ± 56.8

ABCC2 1249 GG 34 5.5 ± 3.8 0.36 8.3 ± 3.8 0.80 130.5 ± 64.7 0.54

GA + AA 11 4.4 ± 2.9 8.0 ± 3.3 116.2 ± 76.6

ABCC2 3972 CC 30 4.9 ± 3.2 0.42 7.9 ± 4.0 0.33 129.5 ± 72.1 0.73

CT + TT 15 5.9 ± 4.3 9.0 ± 2.8 122.1 ± 58.2

NR1I2 –25385 CC 26 5.5 ± 3.2 0.59 9.1 ± 3.9 0.075 117.8 ± 66.4 0.29

CT + TT 19 4.9 ± 4.2 7.1 ± 3.0 139.6 ± 68.0

# = P < 0.05,
## = P < 0.01,
### = P < 0.001
†Target trough levels mean high trough level of 10 to 15 ng/mL for first two weeks low trough level of 5 to 10 ng/mL after 2 weeks of administration.
‡High trough means trough level more than 10 ng/ml.

ABCC2: ATP binding cassette subfamily C member 2; C/D ratio: Tacrolimus concentration and dose ratio; CYP2C19: cytochrome P450 family 2 subfamily C member

19; CYP3A4: cytochrome P450 family 2 subfamily A member 4; CYP3A5: cytochrome P450 family 2 subfamily A member 5; NR1I2, nuclear receptor subfamily 1 group

I member 2

https://doi.org/10.1371/journal.pone.0250597.t003
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CYP3A4 and CYP3A5 polymorphisms, patient background, concomitant thiopurine treat-

ment, and laboratory data before Tac induction were analyzed to identify factors affecting the

therapeutic effects of Tac. The univariate logistic regression analysis indicated CYP3A4 and

CYP3A5 polymorphisms as significant factors involved in the therapeutic effect of Tac

(Table 4). For these polymorphisms, a multivariate logistic regression model after adjusting for

age and p-Mayo revealed both CYP3A4 and CYP3A5 polymorphisms as significant factors

affecting the therapeutic effects of Tac with similar odds ratios (ORs): CYP3A4�1/�1 (OR: 0.15,

Fig 1. Response rate of patients with CYP3A4 and CYP3A5 polymorphisms after tacrolimus initiation. Panel A

shows the response rate of patients with CYP3A4 polymorphisms at 1, 2, and 4 weeks after Tac treatment, and panel B

shows that of patients with CYP3A5 polymorphisms. Clinical response was defined as a partial Mayo score reduction

of�2 points accompanied by a decrease of at least 30% from baseline and a decrease in the rectal bleeding subscore of

�1 or an absolute rectal bleeding subscore of 0 or 1. CYP3A4: cytochrome P450 family 2 subfamily A member 4;

CYP3A5: cytochrome P450 family 2 subfamily A member 5.

https://doi.org/10.1371/journal.pone.0250597.g001
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95% confidence interval (CI): 0.04–0.64, P = 0.010) and CYP3A5 non-expressers (OR: 0.16,

95% CI: 0.04.0.71, P = 0.016) (Table 5).

Association between gene polymorphisms and adverse events

Fifty-three adverse events were observed over 12 weeks. There were no serious adverse events.

The most frequent events were renal impairment (n = 14), followed by hypomagnesemia

(n = 12), hyperkalemia (n = 6), and neuropathy (n = 5) (S2 Table). Individuals with the

NR1I2–25385C/C genotype presented significantly more events than those with the C/T or T/T
genotype for all events (P = 0.03) (Table 6). There was no association between the other gene

polymorphisms and adverse events.

Table 4. Univariate analysis of factors associated with efficacy at 1 week after tacrolimus treatment.

n Case (%) OR (95% CI) P value

Age 45 1.01 (0.98–1.05) 0.54

Gender 0.72

Male 24 15 (63) 1.00

Female 21 12 (57) 0.80 (0.24–2.64)

Body weight 45 0.97 (0.91–1.03) 0.30

Disease duration 45 1.00 (1.00–1.00) 0.98

Disease location 0.33

Pancolitis 34 19 (56) 1.00

Left-sided colitis, proctitis 11 8 (73) 2.11 (0.48–9.34)

Response to corticosteroids 1.00

Resistant 20 12 (60) 1.00

Dependent 25 15 (60) 1.00 (0.30–3.32)

Corticosteroids dose 45 1.00 (0.98–1.03) 0.97

Anti-TNF-α antibody (or biologics) refractory disease 0.51

Yes 7 5 (71) 1.00

No 38 22 (58) 0.55 (0.10–3.2)

Thiopurine treatment 0.53

Yes 8 4 (50) 1.00

No 37 23 (62) 1.64 (0.35–7.64)

Hemoglobin 45 0.91 (0.68–1.23) 0.54

Serum albumin 45 0.69 (0.27–1.77) 0.45

C-reactive protein 45 0.94 (0.84–1.06) 0.32

Partial Mayo score before starting tacrolimus therapy 45 1.61 (0.92–2.81) 0.09

Genotype

CYP3A4 0.013#

�1/�1 30 22 (73) 1.00

�1/�1G+�1G/�1G 15 5 (33) 0.18 (0.05–0.70)

CYP3A5 0.015#

�3/�3 (non-expresser) 32 23 (72) 1.00

�1/�1+�1/�3 (expresser) 13 4 (31) 0.17 (0.04–0.71)

# = P < 0.05,
## = P < 0.01,
### = P < 0.001

CI: confidence interval; CYP3A4: cytochrome P450 family 2 subfamily A member 4; CYP3A5: cytochrome P450

family 2 subfamily A member 5; OR: odds ratio

https://doi.org/10.1371/journal.pone.0250597.t004
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Discussion

This retrospective study showed that CYP3A4�1G and CYP3A5�3 polymorphisms affected the

pharmacokinetics and therapeutic effect of Tac in patients with UC. The effect of CYP3A5
polymorphism on Tac pharmacokinetics was strong compared with that of CYP3A4 polymor-

phism. Furthermore, the NR1I2–25385 genotype was related to the overall adverse events,

implicating that this polymorphism might be a potential predictor of the adverse events of Tac

therapy.

Table 5. Multivariate analysis of factors associated with efficacy at 1 week after tacrolimus treatment.

Without correction Correction for age and partial Mayo score

OR 95% CI P value OR 95% CI P value

CYP3A4 0.18 0.05–0.70 0.013# 0.15 0.04–0.64 0.010#

�1/�1G+�1G/�1G vs �1/�1
CYP3A5 0.17 0.04–0.71 0.015# 0.16 0.04–0.71 0.016#

�1/�1+�1/�3 vs �3/�3

# = P < 0.05,
## = P < 0.01,
### = P < 0.001

CI: confidence interval; CYP3A4: cytochrome P450 family 2 subfamily A member 4; CYP3A5: cytochrome P450 family 2 subfamily A member 5; OR: odds ratio

https://doi.org/10.1371/journal.pone.0250597.t005

Table 6. Association between gene polymorphisms and adverse events.

Gene Position Genotype n All adverse events Renal impairment Hypomagnesemia

n (%) P value n (%) P value n (%) P value

CYP3A4 �1G �1/�1 30 21 (70) 0.53 9 (30) 1.00 6 (20) 0.29

�1/�1G + �1G/�1G 15 9 (60) 5 (33) 6 (40)

CYP3A5 �3 �1/�1 + �1/�3 13 7 (54) 0.50 5 (38) 0.50 4 (31) 0.72

�3/�3 32 22 (69) 9 (28) 8 (25)

CYP2C19 �2 GG 28 19 (68) 1.00 9 (32) 1.00 6 (21) 0.28

GA + AA 17 11 (65) 5 (29) 5 (29)

�3 GG 35 24 (69) 0.71 11 (31) 1.00 11 (31) 0.09

GA + AA 10 6 (6) 3 (30) 0

ABCC2 –24 CC 32 22 (69) 0.73 10 (31) 1.00 7 (22) 0.70

CT + TT 13 8 (62) 4 (31) 4 (31)

1249 GG 34 22 (65) 0.73 10 (29) 0.72 8 (24) 1.00

GA + AA 11 8 (73) 4 (36) 3 (27)

3972 CC 30 21 (70) 0.52 9 (30) 1.00 7 (23) 1.00

CT + TT 15 9 (60) 5 (33) 4 (27)

NR1I2 –25385 CC 26 21 (81) 0.03# 9 (35) 0.75 6 (23) 1.00

CT + TT 19 9 (47) 5 (26) 5 (26)

# = P < 0.05,
## = P < 0.01,
### = P < 0.001

ABCC2: ATP-binding cassette subfamily C member 2; CYP2C19: cytochrome P450 family 2 subfamily C member 19;

CYP3A4: cytochrome P450 family 2 subfamily A member 4; CYP3A5: cytochrome P450 family 2 subfamily A

member 5; NR1I2: nuclear receptor subfamily 1 group I member 2

https://doi.org/10.1371/journal.pone.0250597.t006
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Approximately 15% of UC patients have been reported to develop an acute severe colitis,

which sometimes requires urgent / emergency surgery owing to major complications such as

perforation, toxic megacolon, and massive hemorrhage [30]. The therapeutic range of the Tac

trough level, which is 10–15 ng/mL for an induction period of 1 week in Japan [31], is narrow;

therefore, close monitoring of the Tac trough level is necessary to achieve the optimum con-

centration as fast as possible and reduce the risk of emergency colectomy. Recently, Okabaya-

shi et al. showed that the individualized dosage adjustment of Tac based on CYP3A5�3
polymorphisms could be useful to quickly achieve a high Tac trough level and early therapeutic

efficacy [32]. The principle of this strategy is that Tac is primarily metabolized by the biotrans-

formation enzymes CYP3A4 and CYP3A5 in the liver and gut, and this affects its blood con-

centration [4]; moreover, CYP3A5 polymorphisms were used because they are reported to

affect the pharmacokinetics of Tac. Furthermore, organ transplantation studies have reported

that CYP3A5 expressers (CYP3A5�1/�1+�1/�3) have a significantly higher Tac metabolic

capacity than CYP3A5 non-expressers (CYP3A5�3/�3) [33–35]. Onodera et al. showed that

among UC patients, the C/D ratio of Tac was significantly lower in CYP3A5 expressers than in

CYP3A5 non-expressers at 7–10 days after reaching a high trough level [36]. Hirai et al. also

reported that CYP3A5-expressing patients with UC required a longer time to reach the effec-

tive blood concentration than CYP3A5 non-expressers [37]. Consistent with these previous

findings, in the present study, CYP3A5-expressers required a significantly longer duration and

significantly higher Tac dose and C/D ratio than CYP3A5 non-expressers.

In addition, the effects of CYP3A4 polymorphisms on the blood concentration and clinical

efficacy of Tac are controversial, especially in patients with UC. In the present study, we

revealed the frequency of CYP3A4�1G polymorphisms, which could affect the enzyme activity

of CYP3A4 [38] and regulate the metabolism of several drugs in Japanese patients with UC,

and their correlation with the pharmacokinetics and clinical efficacy of Tac. The allele fre-

quency of CYP3A4�1G was 19%, which is consistent with that reported previously, that is,

18.8%–23% in the Chinese population [39, 40] and 24.9% in the Japanese population [22].

Although the frequency of CYP3A4�1G polymorphisms is relatively high in East Asia, there

are only a few reports on the relationship between CYP3A4�1G polymorphisms and Tac phar-

macokinetics. Uesugi et al. reported that the Tac C/D ratio of patients with CYP3A4�1/�1G

transplanted liver was significantly lower in the first 1 week after surgery than in patients with

CYP3A4�1/�1 [41]. Li et al. reported that the C/D ratio of Tac in patients with CYP3A4�1/�1
was significantly higher on day 7 after renal transplantation than that in patients with the

CYP3A4�1G allele [24]. In the present study, patients with the CYP3A4�1G allele required a

significantly longer duration than those with CYP3A4�1/�1. The C/D ratio was significantly

lower in patients with the CYP3A4�1G allele than in those with CYP3A4�1/�1.

Regarding the effect of these gene polymorphisms on the therapeutic efficacy of Tac, the

response rate at 1 week after Tac initiation in the present study was significantly higher in

patients with UC with CYP3A5�3/�3 than in those with the CYP3A5�1 allele, consistent with

the findings of a previous study [37] although some studies have not shown significant results

in terms treatment efficacy [32, 36, 42]. Furthermore, in the present study, patients with

CYP3A4�1/�1 showed a higher response rate than those with CYP3A4�1G. Therefore, we con-

cluded that the CYP3A5�3 polymorphisms are independent predictors of early therapeutic

effects.

However, in accordance with the findings of previous studies [18, 22], our study showed

that CYP3A5�3 and CYP3A4�1G polymorphisms had a strong LD relationship. Because of this

LD, it is difficult to accurately evaluate the effect of CYP3A4�1G polymorphism on the phar-

macokinetics and clinical efficiency of Tac. These two polymorphisms are not perfect, but are

strongly related to each other. In fact, the CYP3A4�1G polymorphism has been reported to
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contribute to the difference of individual in Tac pharmacokinetics among CYP3A5 expressers

[18] and could help regulate the amount of Tac among CYP3A5 non-expressers [24]. In the

present study, all CYP3A5 expressers carried the CYP3A4�1G allele. Moreover, among 15

patients with the CYP3A4�1G allele, CYP3A5 expressers showed a significantly lower C/D

ratio than CYP3A5 non-expressers, suggesting that CYP3A5 polymorphisms could have a

stronger effect on Tac pharmacokinetics. However, because of the small sample size of the

present study, further large-scale studies are needed to better understand this metabolic

pathway.

Regarding safety, although several studies have shown that the CYP3A5�3 polymorphism is

related to nephrotoxicity, there is not enough consensus [42–46]. Asada et al. reported that the

incidence of overall adverse events and nephrotoxicity was significantly higher in CYP3A5

expressers than in CYP3A5 non-expressers [42]. In the present study, there was no significant

relationship between adverse events, including nephrotoxicity, and CYP3A5�3 polymorphism,

whereas patients with the NR1I2–25385C/C genotype presented significantly more overall

adverse events than those with the NR1I2–25385T genotype. However, the mechanism cannot

be explained by our findings as this polymorphism and adverse events were not related to the

blood Tac trough levels. NR1I2 63396TT polymorphisms have been reported to be a risk factor

for peripheral neuropathy in patients co-infected with human immunodeficiency virus and

Mycobacterium tuberculosis [47]. Li et al. revealed that severe liver injury could be caused by

certain drugs via PXR-mediated alteration of the heme biosynthesis pathway in PXR (encoded

by NR1I2)-humanized mice [48]. Therefore, further functional studies on the effect of NR1I2
on Tac treatment might provide useful information.

The present study had some limitations. First, this was a retrospective single-center study

that comprised a small number of patients. The statistical analysis of the relationship between

pharmacokinetics and CYP3A4�1/�1 polymorphism along with CYP3A4�1G polymorphism

could not be performed owing to the small number of patients. Second, measurement immu-

noassays of blood Tac concentration changed over the study period, which might affect con-

centration data. Third, the power to detect adverse events was insufficient because we only

examined medical records. Fourth, except CYP, NR1I2, and ABCC, we did not investigate

other enzymes involved in Tac metabolism, which might lead to missing potential confound-

ing SNPs.

In conclusion, although we found that CYP3A4�1G and CYP3A5�3 polymorphisms were

related to Tac pharmacokinetics, CYP3A5 polymorphism could have a stronger effect than

CYP3A4, suggesting that these polymorphisms can be used to predict the short-term therapeu-

tic effects of Tac. The NR1I2–25385C/C genotype was related to overall adverse events, whereas

CYP3A4�1G and CYP3A5�3 were not, suggesting that NR1I2 polymorphism might be a poten-

tial predictor of the adverse events caused by Tac therapy. The evaluation of these polymor-

phisms could provide useful information on the status of Tac treatment in patients with UC.

However, due to the small number of cases in this study, we hope that further external verifica-

tion of clinical usefulness will be performed.
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