Supplementary Table 1. Summary of the biological functions of EVs from different sources via diverse cargos

Type of EVs		Contents of EVs	Biological effects	References
Epithelial	Oral epithelial	miR-135a	Promote tooth tissue development	6
cell-derived	cell-derived EVs	miR-30a, miR-200 family members	Promote EBV reactivation in B cells and EV71	22-24
EVs			replication during virus infection	
	Hertwig's epithelial root	/	Promote the regeneration of dentin-pulp tissue	19
	sheath cell-derived EVs			
	Oral mucosal epithelial	/	Promote wound healing	20
	cells sheets-derived EVs			
	SGEC-derived EVs	autoantigens Ro/SSA, La/SSB, Sm	Regulate immunologic reactions	21
Immune	Macrophage-derived EVs	miR-378a, IL-10 mRNA, miR-21a-5p, miR-483-5p	Regulate osteogenic differentiation	35-38,40
cell-derived		miR-31-5p, lncRNA LBX1-AS1	Pose a two-sided effect on tumor progression	45-47
EVs	B cell-derived EVs	EBV-miR-BART13-3p	Impaire glandular cell function in SS	28

	T cell-derived EVs	miR-142-3p	Impaire glandular cell function in SS	29
		interleukin-7, -10, -12, -17, interleukin-1 β , -5,	Drive the trafficking of CD8+ T cells and induce	30-31
		interferon-γ	keratinocytes apoptosis to promote OLP progression	
	Dendritic cell-derived	SASP	Promote and amplify senescence in normal	25-27
	EVs		bystander dendritic cells and T cells	
		MHC II	Suppress inflammation and collagen-induced	32
			arthritis	
		/	Inhibit tumor progression	44
Tumor-deriv	OSCC cell-derived EVs	miR-142-3p, miR-1246, miR-200c-3p, EGFR, HSP90,	Promote OSCC cells proliferation, migration and	8,48-54
ed EVs		miR-21, LOXL2	invasion	
		miR-210-3p, miR-221, miR-142-3p, miR-130b-3p,	Promote angiogenesis	10,60-63,69-70
		miR-23b-3p, EPHB2, adenosine		
		miR-29a-3p, CMTM6, THBS1, miR-9, PD-L1,	Regulate tumor immunology by reprogramming	9,77-80,82-84

	galectin-1, NAP1	immune cells	
	miR-192/215, TGFβ1	Promote the activation of CAFs	10,88-90
	miR-21, miR-503-3p, miR-155, miR-30a	Enhance OSCC cisplatin resistance and	102,104-108
		radioresistance	
NPC cell-derived EVs	MMP13, EGFR, HMGA2	Promote NPC cells proliferation, migration and	56-59
		invasion	
	miR-205-5p, miR-17-5p, miR-9, miR-144, miR-23a,	Promote angiogenesis	64-68,71,73,75
	angiogenic proteins, HAX1, HMGB3		
	CCL20	Regulate tumor immunology	85
	LMP1	Promote the activation of CAFs	91
	miR-106a-5p	Enhance NPC cisplatin resistance and	103
		radioresistance	
SACC cell-derived EVs		Promote SACC cells migration and invasion	55

		proinflammatory cytokines, nerve growth factor	Educate human periodontal ligament fibroblast cells toward the protumorigenic phenotype	92
	CAF-derived EVs	MFAP5, ITGB1, BMI1, miR-34a-5p, miR-382-5p,	Promote the proliferation and migration of OSCC	93-101
		miR-146b-5p, miR-3188, miR-196a, miR-876-3p	cells	
MSC-derive	BMSC-derived EVs	anti-inflammatory miRNAs, VEGF, miR-29a,	Promote bone regeneration	120-121,123-124,
d EVs		miR-210-3p		125-128
		miR-326	Promote cartilage regeneration	129-130,134
		miR-1246, lncRNA HCP5, miR-223-3p	Promote periodontal tissue regeneration	156-159,176-177
		miR-223, VEGF-A, FGF-2, HGF, PDGF-BB	Promote skin wound healing	183,185
		miR-101-3p	Inhibit OSCC progression	180
	UCMSC-derived EVs	VEGF-A, FGF-2, HGF, PDGF-BB, miR-21-5p,	Promote skin wound healing	186-189
		miR-125b-5p, Ang-2		
	ADSC-derived EVs	VEGF-A, FGF-2, HGF, PDGF-BB	Promote skin wound healing	186

	miR-451a	Promote bone regeneration	122
DPSC-derived EVs		Promote bone regeneration	116-117
	miR-140-5p	Promote cartilage regeneration	131-132
	miR-150, miR-125a-3p, miR-146a-5p, miR-2110,	Promote pulp regeneration	17,140-141,143,1
	miR-200b-3p, miR-223-3p, miR-1246, miR-494-3p,		46,148-150
	LOXL2		
	miR-378a	Promote periodontal tissue regeneration	170
	/	Promote skin wound healing	190
SHED-derived EVs	mitochondrial transcription factor A mRNA	Promote bone regeneration	118
	miR-100-5p	Prevent TMJOA	135
	miR-582-3p, miR-3622a-3p, miR-4657, miR-147b,	Promote periodontal tissue regeneration	166-169
	miR-152-5p, miR-3152-3p, miR-7-1-3p, Wnt3a, BMP2		
	miR-100-5p, miR-1246	Inhibit OSCC progression	182

	PDLSC-derived EVs	miR-590-3p, miR-155-5p	Promote periodontal tissue regeneration	164-165,173-174
	SCAP-derived EVs		Promote pulp regeneration	142,147
		Cdc42	Promote tissue regeneration of palatal gingival	178
			complex critical-size defects	
	GMSC-derived EVs	miR-1260b	Promote periodontal tissue regeneration	160-163
		IL-1RA	Promote gingival wound healing	179
		/	Promote taste bud regeneration	192
Body	Salivary EVs	miR-24-3p, miR-512-3p, miR-412-3p, miR-302b-3p,	Serve as biomarkers for the diagnosis of OSCC	195-198,202
fluid-derived		miR-517b-3p, miR-140-5p, miR-143-5p, miR-145-5p,		
EVs		miR-10b-5p, miR-486-5p, miR-200a, Alix		
		miR-125a-3p, miR-223-3p, miR-140-5p, miR-146a-5p,	Serve as biomarkers for the diagnosis of	15,208-212
		miR-628-5p, global 5mC hypermethylation, PD-L1	periodontitis	
		mRNA, CD9, CD81		

	miR-4484	Serve as biomarkers for the diagnosis of OLP	14
	miR-1307-5p	Serve as biomarkers for the prognosis of OSCC	220
Serum EVs	miR-130a, Alix, PD-L1 mRNA	Serve as biomarkers for the diagnosis of OSCC	199-204
	miR-let-7d, miR-126-3p, miR-199a-3p, miR-1304-3p,	Serve as biomarkers for the diagnosis of	208,213
	miR-200c-3p, SNORD57, SNODB1771	periodontitis	
	circ-IQGAP2, circ-ZC3H6, miR-127-3p, miR-541-3p,	Serve as biomarkers for the diagnosis of SS	218-219
	miR-409-3p, miR-410-3p, miR-329-5p		
	miR-126, miR-130a	Serve as biomarkers for the prognosis of OSCC	221,199
Postoperative drainage	EHD2, CAVIN1	Serve as biomarkers for the prognosis of OSCC	206
fluid-derived EVs			
GCF-derived EVs	/	Serve as biomarkers for the diagnosis of	215
		periodontitis	
PICF-derived EVs	miR-21-3p, miR-150-5p	Serve as biomarkers for the diagnosis of	216

			peri-implantitis	
	OKC fluid-derived EVs	/	Serve as biomarkers for the progression monitoring	207
			of OKC	
Tissue	OLP/OLL-derived EVs	protein disulfide isomerase family A member 3	Promote the development of OLP and OLL	224
derived-EVs	Dental pulp tissue-derived	/	Promote pulp regeneration	225
	EVs			

EVs extracellular vesicles, EBV Epstein-Barr virus, EV71 Enterovirus 71, SGEC salivary gland epithelial cell, SS Sjögren's syndrome, OLP oral lichen planus, SASP senescence associated secretory phenotype, OSCC oral squamous cell carcinoma, CAF cancer associated-fibroblast, NPC nasopharyngeal cancer, SACC salivary adenoid cystic carcinoma, BMSC bone marrow mesenchymal stem cell, UCMSC umbilical cord mesenchymal stem cell, ADSC adipose-derived mesenchymal stem cell, DPSC dental pulp stem cell, SHED stem cell from exfoliated deciduous teeth, TMJOA Temporomandibular joint osteoarthritis, PDLSC periodontal ligament stem cell, SCAP stem cell from apical papilla, GMSC gingival mesenchymal stem cell, GCF gingival crevicular fluid, PICF peri-implant crevicular fluid, OKC odontogenic keratocyst, OLL oral lichenoid lesions

Supplementary Table 2. Three strategies for the preparation of artificial exosomes

Artificial exosomes	Cells or materials	Preparation strategy	Yield	Potential application	References
Top-down	Monocytes or macrophage	Serial extrusion through filters with	100-fold	Deliver chemotherapeutic drug to treat	227
strategies		diminishing pore sizes (10, 5, and 1		malignant tumors	
		μm)			
	Natural killer cell	Serial extrusion through filters with	50-fold	As an immunotherapeutic agent for	228
		diminishing pore sizes (5, and 1 μ m)		cancer treatment	
	Murine embryonic stem cell	Slicing living cell membrane with	100-fold	Exogenous material delivery	229
		microfabricated 500 nm-thick silicon			
		nitride (SixNy) blades.			
	Human monocyte	Sonication	200-fold	Mitigate the symptoms of outer	230
				membrane vesicles-induced systemic	

				inflammatory response syndrome	
	hUCMSC	Ultrasonication	20-fold	Skin regeneration and rejuvenation	231
Bottom-up	/	Liposomes tailored with integrin	/	Targeted cancer drug delivery	233
strategies		α6β4			
	/	Liposomes bind with APO2L, TRAIL	/	Treat rheumatoid arthritis and	234-236
				haematological tumor	
	/	Liposomes with membrane proteins	/	Targeted hepatocellular carcinoma	237
		chimeric modification		therapy	
	/	Conjugate a CD11c monoclonal	/	Transdermal delivery of vaccines	238
		antibody to the surface of			
		immunoliposomes			
Biohybrid	Raw264.7 cell-derived	Freeze-thaw technique	/	As nanocarriers for drug delivery	239
strategies	exosomes and liposomes				

HEK293FT cell-derived	Direct incubation	/	Deliver CRISPR/Cas9 system in MSCs	240
exosomes and liposomes				
HUVEC-derived EVs and	PEG-mediated fusion	/	Efficient drug loading and delivery	241
liposomes				
Macrophage-derived sEVs	Extrusion-based membrane fusion	/	Tumor-targeted drug delivery	242
and liposomes	technique			
CXCR4+ exosomes and	Extrusion	/	As an anabolic therapy for aged bone	243
liposomes			loss	

EVs extracellular vesicles, MSC mesenchymal stem cell, UCMSC umbilical cord mesenchymal stem cell, HUVEC human umbilical vein endothelial cells

Supplementary Table 3. Strategies for the preparation of engineered exosomes by parental cell modification

Parent cell	Origin of EVs	Modification	Transfection	Potential application	References
modification	Origin of Evs	Modification	vectors	т отенцат аррисации	References
Transfection	MSC	yCD::UPRT	Retrovirus	Targeted cancer drug delivery	244
	OSCC cell	LncRNA ADAMTS9-AS2	Lentivirus	Suppress OSCC progression	245
	OSCC cell	LncRNA PART1	Lentivirus	Suppress OSCC malignant progression	246
	hADSC	miR-375	Lentivirus	Enhance bone regeneration	247
	BMSC	BMP2	Lentiviral particles	Enhance bone regeneration	248
	293T/17 cell	CXCR4 and miR-126	Lentivirus and	Alleviate periodontitis	249
			RFect		
			siRNA/miRNA		
			Transfection		
			Reagent		

	HEK293FT cell	NFIC	Lentivirus	Treat apical periodontitis and dentin	250
				regeneration	
	HEK293 cell	miR-31	Lentivirus	Promote diabetic wounds healing	252
	MSC	HOTAIR	Plasmids	Enhance angiogenesis and wound	253
				healing	
Co-culture	MSC	Paclitaxel	/	Package and deliver active drugs in	254
				cancer	
Preconditioning	MSC	yCD∷UPRT and iron oxide	/	Facilitate targeted tumor cell ablation	255
		(Venofer)		for tumor treatment	
	BMSC	miR-21-5p	/	Enhance wound healing	256

EVs extracellular vesicles, MSC mesenchymal stem cell, BMSC bone marrow mesenchymal stem cell, ADSC adipose-derived mesenchymal stem cell, OSCC oral squamous cell carcinoma

Supplementary Table 4. Strategies for the preparation of engineered exosomes by direct exosome modification

EVs	Origin of EVs	Modification	Potential application	References
modification		- Trioumenton		
Co-incubation	HEK293T cell	Cholesterol-modified miR-34a	Inhibite OSCC cell proliferation,	263
			migration, and invasion	
	HEK293 cell	exoSTING	Promote tumor immune surveillance	264
Sonication	Regulatory DC	TGFB1 and IL10	Treat degenerative alveolar bone disease	265
	Monocyte-derived DC	TGFB1 and IL10	Effective delivery system for immune	266
			modulation	
	M2 macrophage	Melatonin	Inflammatory periodontal tissue	267
			regeneration	
	M1 macrophage	Paclitaxel	Enhance the anti-tumor effects of	268
			chemotherapeutics	

Electroporation	Normal fibroblast transfected	siRNA of lymphocyte cytoplasmic	Attenuate oral cancer progression	269
	with Epstein-Barr Virus	protein 1		
	Induced-3			
	hADSC	miR-21-5p	Promote diabetic cutaneous wound	270
			healing	

EVs extracellular vesicles, OSCC oral squamous cell carcinoma, DC dendritic cell, ADSC adipose-derived mesenchymal stem cell