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Recent evidence has suggested that blood oxygenation level-dependent (BOLD) signals

convey information about brain circulation via low frequency oscillation of systemic

origin (sLFO) that travels through the vascular structure (“lag mapping”). Prompted by

its promising application in both physiology and pathology, we examined this signal

component using multiple approaches. A total of 30 healthy volunteers were recruited to

perform two reproducibility experiments at 3 Tesla using multiband echo planar imaging.

The first experiment investigated the effect of denoising and the second was designed

to study the effect of subject behavior on lag mapping. The lag map’s intersession test-

retest reproducibility and image contrast were both diminished by removal of either the

neuronal or the non-neuronal (e.g., cardiac, respiratory) components by independent

component analysis-based denoising, suggesting that the neurovascular coupling also

comprises a part of the BOLD lag structure. The lag maps were, at the same time,

robust against local perfusion increases due to visuomotor task and global changes

in perfusion induced by breath-holding at the same level as the intrasession reliability.

The lag structure was preserved after time-locked averaging to the visuomotor task

and breath-holding events, while any preceding signal changes were canceled out for

the visuomotor task, consistent with the passive effect of neurovascular coupling in the

venous side of the vasculature. These findings support the current assumption that lag

mapping primarily reflects vascular structure despite the presence of sLFO perturbation

of neuronal or non-neuronal origin and, thus, emphasize the vascular origin of the lag

map, encouraging application of BOLD-based blood flow tracking.

Keywords: BOLD contrast, cerebral blood flow, neurovascular coupling, resting-state fMRI, functional

connectivity, image denoising, image reproducibility

INTRODUCTION

Current functional magnetic resonance imaging (fMRI) technique, based on fluctuations in blood
oxygenation level-dependent (BOLD) signals, are subject to various artifacts. While much is known
about head motion, there are sources of confound related to blood flow and oxygenation dynamics:
respiration (Birn et al., 2009; Birn, 2012), pseudo-positives from draining blood (Lai et al., 1993;
Boubela et al., 2015) or mislocalization due to non-T2∗ components (Wu et al., 2012; Kundu et al.,
2014). Despite the inherent susceptibility of resting-state fMRI to both random and non-random
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noises, these confounds are easily or often overlooked because
their impact is not always observable. It is therefore imperative
to elucidate BOLD signal components that are uncoupled from
neural activity to develop reliable biomarkers based on functional
connectivity (FC).

Recently, a growing body of evidence has emerged supporting
a spatiotemporally structured BOLD signal component that
appears to reflect vascular anatomy. Since the introduction of
fMRI, the impact of intravascular BOLD signals, which may lead
to mislocalization, has been a major concern (Lai et al., 1993).
It was subsequently found that the parenchymal fMRI signal is
also not free from the vascular anatomy, causing variable latency
(Chang et al., 2008; Wu and Marinazzo, 2016). This temporal lag
structure can be imaged by mapping the phase of the systemic
low-frequency oscillation (sLFO), which is also observable from
non-brain body parts as a fluctuation of fMRI or a near-infrared
spectroscopy signal (Anderson et al., 2011; Tong and Frederick,
2012). While the physiological mechanism underlying sLFO is
yet to be fully understood, there are possible sources of temporal
variation, such as blood oxygenation level, heart rate and blood
pressure, that can concomitantly affect these signals (Tong and
Frederick, 2014b). In parallel with the works on its physiology,
a growing number of studies has sought a clinical application,
taking advantage of the noninvasive nature of this blood tracking
technique (Amemiya et al., 2013; Lv et al., 2013; Ni et al., 2017).
The method, known as “lag mapping,” had only been validated in
patients with cerebrovascular disease until recently, but has been
confirmed in healthy controls to reflect the cerebral blood flow
(Tong et al., 2016b).

According to the recent advances, the temporal lag structure
accounts for ∼30% of the signal variance on average, suggesting
a profound impact of this lag structure on fMRI data (Erdoğan
et al., 2016). In fact, it has been reported that effective
connectivity analysis can be heavily contaminated by vascular
structures when applied without caution (Taylor Webb et al.,
2013). However, to date, although this time-lag structure is
considered to be noise in fMRI (Chang et al., 2008; Tong and
Frederick, 2010; Anderson et al., 2011), the extent to which it
selectively reflects vascular structure is unknown. Theoretically,
BOLD lag mapping should be sensitive to both perturbation of
the sLFO time series in the brain, and its propagation pattern.
For example, one cannot rule out the effect of the neuronal
component within the global signal fluctuation (Schölvinck et al.,
2010), which is often used as the reference time series to track
sLFO. Moreover, many physiological parameters including heart
rate and respiration, that should affect both sLFO and cerebral
circulation, are also dependent on subject behavior (Birn et al.,
2009). It has certainly been of fundamental importance in fMRI
whether one can completely isolate neurovascular coupling from
the BOLD signal: a thorough investigation of this spatiotemporal
lag structure would be of significant interest.

In this study, a portion of which was presented previously as a
poster (Aso et al., 2015), we aimed to investigate basic properties
of this major confound in BOLD signal by testing the effect of
various manipulations. The effect of fMRI denoising on the lag
map was first assessed to confirm its non-neuronal sources. An
independent component analysis (ICA)-based artifact removal

with a set of simple heuristics, as one of the common approaches
to fMRI denoising, was chosen. Test-retest reproducibility and
image contrast were the quality measures examined. Tominimize
the number of potential sources of instability, we chose to
introduce a temporally sparse task instead of performing the
acquisition as complete resting state. The participants were given
a low-demand, simple reaction time task (SRT) primarily to
minimize variation from neural activity, including at vigilance
level. Using this treatment, the reproducibility was accounted for
mainly by non-neuronal confounders. Under these settings, the
differential effects of denoising on FC and lag maps derived from
the same dataset were investigated.

In contrast, for the second experiment, we manipulated the
subject behavior to further assess the response of lag structure
to BOLD signal perturbations. Respiration is one of the major
sources of physiological noise, the manipulation of which is
known to enable measurement of cerebrovascular reactivity
according to BOLD signal (Kastrup et al., 1999; van Niftrik et al.,
2016). If the lag maps simply reflect the vascular structure, the
map would be robust to some degree against the modification of
both sLFO and cerebral blood flow—either coupled or uncoupled
to—neuronal activity. These two complementary approaches
should help provide a better understanding of the mechanisms
underlying the BOLD lag structure.

MATERIALS AND METHODS

Subjects and Experimental Procedures
Thirty healthy volunteers (six women; 20–29 years of age)
participated in the study. Among them, 10 were specifically
chosen from a list of volunteers who had recently participated in
a study in our MRI scanner, given their excellent performance
in terms of head stability, for the intersession reproducibility
study. The other 20 volunteers participated in the breath-holding
experiment. All of the subjects had no history of neurological
or psychological problems, and written informed consent was
obtained in a manner approved by the university medical school’s
institutional review board. To avoid vigilance level fluctuations,
all of the MRI sessions were scheduled in the morning, and the
participants were encouraged to sleep well the previous night.

Image Acquisition
A Tim-Trio 3 Tesla scanner (Siemens, Erlangen, Germany)
with a 32-channel phased-array head coil was used to obtain
all of the images. For the reproducibility study, T2∗-weighted
echo-planar images were acquired using multiband gradient-
echo echo-planar imaging (EPI; Feinberg et al., 2010) with the
following parameters to cover the entire cerebrum and dorsal
part of the cerebellum: 64 × 64 pixels, interleaved 28 slices;
224-mm field of view (FOV); 4 mm slice thickness; repetition
time (TR)/echo time (TE) = 500/35; and multiband factor of
four. From each experimental session, two 5 min runs (624
volumes × 2) were subjected to analysis to enable both inter-
session (day 1 vs. day 2) and intra-session (run 1 vs. run 2)
comparisons. Only slightly different settings were used for the
breath-holding experiment: 35 slices, 192-mm FOV, 3 mm slice
thickness, multiband factor of five, and one 9 min run (1,080
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volumes). After the main runs, a 3D T1-weighted image was
acquired with the following parameters: TR = 1630 ms; TE =

4.38 ms; inversion time = 990 ms; FOV = 240 mm; voxel size =
0.94× 0.94× 0.95 mm; 8◦ Flip angle, and 130 Hz bandwidth.

Intersession Reproducibility Experiment
Volunteers underwent two MRI sessions separated by at least
6 days. During the two BOLD runs in each day, the subjects
were given a sparse SRT with a varying inter-trial interval of 6–
24 s. They were instructed to hold a button box while viewing a
computer screen showing “Please hold still” and to respond as
soon as the screen changed to “Press the button.” The screen
returned to “Please hold still” at the button press or after 3 s if
the participant did not press the button. The reaction time was
recorded for performance evaluation.

Breath-Holding Experiment
The subjects underwent 4 runs each with different conditions:
simple rest, a sparse SRT, animation viewing and brief breath-
holding tasks. Animation viewing was not used for the present
analysis. The screen showed “Please hold still” for the entire
duration of the simple rest condition. The breath-holding task
was cued by a “Hold your breath” instruction on the screen,
at which point the subjects were asked to immediately hold
their respiration irrespective of the respiration phase. The
holding periods lasted for 10 s and were separated by 90 s
intervals.

Data Preprocessing and ICA-Based
Denoising
Images from each individual were treated as one dataset with
4 runs in the preprocessing and ICA-based denoising. The
frames of the four-dimensional (4D) BOLD image data were
first corrected for head motion using SPM (SPM8; Wellcome
Department of Cognitive Neurology, London, United Kingdom)
in MATLAB. After high-pass filtering at 0.008 Hz to remove
slow drifts, the images were fed into the ICA pipeline without
any spatial smoothing for efficient noise classification (Smith
et al., 2012). MELODIC/FSL software, version 5.0 (FMRIB
Software Library, http://www.fmrib.ox.ac.uk/fsl; Smith et al.,
2004) was used to perform the individual ICA with automatic
dimensionality estimation, identifying 102–144 components
(mean 122.4).

Under the assumption that BOLD signal dynamics consist
of spatially independent processes of various physiological and
physical mechanisms, ICA has been used for cleaning fMRI
data (Thomas et al., 2002; Perlbarg et al., 2007; Pruim et al.,
2015). A simplified version of the noise classification strategy
with a feature set was used, an approach used in previous
studies (Thomas et al., 2002; Bhaganagarapu et al., 2013;
Pruim et al., 2015). To quantitatively evaluate the likelihood
of each component being noise, three measurements were
obtained: high-frequency power fraction >0.2 Hz; non-gray
matter involvement; and slice dependency. Non-gray matter
involvement was calculated using the tissue segmentation results
of each subject’s anatomical T1 images (Ashburner and Friston,
2005). Note that the precision of tissue classification was limited

by the noticeable partial volume effect with the low resolution of
BOLD images. A weighted mask image was created as a summed
image of tissue probability images of the gray matter (range
0–1) and white matter, divided by 2 to compensate for partial
volume. Each independent component map was smoothed at
an 8 mm full width at half maximum (FWHM) kernel, and
was thresholded at z > 1 (or z < −1) before the mask was
applied to calculate the mean gray-matter involvement index
over voxels, which was then subtracted from 1 to yield the
non-gray matter index. Slice dependency was defined as the
ratio of the mean Fourier spectral power in space between
the Z- and Y-axes to capture components with large variations
between neighboring slices (e.g., with motion or mechanical
origin).

On obtaining the three parameters, components were
classified as non-neuronal when at least one of the three
measurements exceeded the respective threshold. The cutoff
thresholds were determined on a purely arbitrary basis to
achieve a stepwise increase in denoising strength (Figure 1C).
The weakest denoising (Dn1) used only the high-frequency
power index at a high/low-frequency power ratio >0.6, by which
34.8% of components on average were classified as noise. For
moderate denoising (Dn2), 67.5% of components were removed
by adding a non-gray matter involvement threshold of 0.6 and a
slice dependency of four. Aggressive denoising (Dn3) removed
86.3% of components with a high-frequency power index of
0.4, a mean gray matter index of 0.5, and a slice dependency
of 3. A noise-only dataset was also created by regressing out
the non-noise components from the Dn3 procedure (Noise
dataset). The regression in this denoising process involved all
of the components, instead of aggressively removing the full
space of the noise components (Griffanti et al., 2014; Pruim
et al., 2015). An additional analysis with even lower denoising
strength was performed using only the slice dependency to
classify 15.1% of components as noise for confirmation of the
main analysis.

After denoising, spatial normalization was applied to the
Montreal Neurological Institute template, using the parameters
obtained via the unified segmentation process described above.
The first 20 volumes (10 s) were discarded from each run to
exclude transition responses related to factors such as scanner
noise. The time series of each voxel was then normalized to zero
mean and unit variance before concatenating the two runs from
each day (for inter-session comparison) or from the first and
second runs of each day (intra-session). To focus on the effect of
denoising, the remainder of the procedures were made uniform
across mapping methods and datasets, including the band-
pass filtering (0.008–0.16 Hz). For example, low-pass filtering
may be redundant after sophisticated denoising (Smith et al.,
2012); however, a conservative approach was chosen because our
analysis included the raw dataset. Nevertheless, a wider band pass
was used to track the lag, following earlier studies (Braun et al.,
2012; Tong and Frederick, 2014b).

In the breath-holding experiment, which involved 20
subjects, both neural activity and physiological confounds were
manipulated, no denoising was performed, and only lag maps
were created (see below).
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FIGURE 1 | (A) Region of interest for the seed time series of Lag-SSS covering the posterior part of superior sagittal sinus. (B) Schematic diagram of Lag-rec

mapping procedure. (C) Scatterplot of the 1,224 components from the individual ICA for denoising. Components regressed out in Dn1 owing to high temporal

frequency power (crosses), those additionally removed in Dn2 (shaded rectangles) and in Dn3 (open circles), and the “signal” components surviving the Dn3 filtering

(filled circles) are shown.

Creating BOLD Signal-Based Maps
Seed-Based Correlation Mapping
The default mode network (DMN) and executive control network
(ECN) maps were created using seed-based correlation mapping
(Fox et al., 2005). The human ECN was originally defined by
Seeley et al. (2007) as a system dissociable from the saliency
network by the inclusion of a dorsal medial prefrontal cortex
region, instead of the anterior cingulate cortex. These two
networks were chosen because of their rich remote connectivity,
high reproducibility in the general population (Smith et al.,
2012), and mutually exclusive distribution. The seed region for
the DMN was the posterior cingulate cortex, as defined in the
automated anatomical labeling atlas (Tzourio-Mazoyer et al.,
2002). For the ECN, a region of interest (ROI) was defined
along the paracingulate sulci [centered on (±10, 24, 42)], based
on the earlier studies. For the principal analysis, the data were
not “cleaned” by regressing out white matter and cerebrospinal
fluid (CSF) signals, as proposed in the classic FC studies. The
effects of this common procedure have not been well-established
in combination with ICA-based denoising techniques, which
themselves can reduce non-gray matter components (Chang and
Glover, 2009). Moreover, the present study explicitly assumed
that those signals contain information about blood circulation;
therefore, the cleaning procedure could directly affect lag
mapping. Consequently, white matter/CSF signal regression was
tested solely for confirmation of the denoising effect on the FC
maps.

Lag Mapping
Two types of lag mapping techniques were used: Lag-SSS, a
simple seed-based lag mapping; and Lag-rec, a recursive tracking
method. For Lag-SSS, an ROI along the descending part of the
superior sagittal sinus (SSS) was used to obtain the reference time

course with which the time lags in all of the voxels were measured
(Figure 1A; Christen et al., 2015). The lag maps were created by
calculating the time shift relative to the SSS signal, which yielded
the maximum of the correlation coefficients for each brain voxel.
This procedure was actually performed by creating a 3D array
with dimensions of time × space (voxel) × time-shift and by
calculating themaxima along the third dimension. Positive values
were assigned to the upstream (i.e., earlier arrival of the labeling
component of the signal) voxels providing a majority of the brain
regions’ positive values. The lag map took discrete values between
−4 s and +6 s at the interval of TR (= 0.5 s), which was then
spatially smoothed at 8 mm FWHM.

In contrast, in Lag-rec, the reference signal was updated
recursively (Tong and Frederick, 2014b). A schematic diagram
of the procedure is shown in Figure 1B. In each step, a cross-
correlogram was calculated with the seed signal to obtain a set
of voxels with a local peak at a time lag of ±0.5 s, which then
served as the new seed region. The global mean signal was used
to select the initial seed, indicating that the voxels presenting
maximal correlation with the global signal at zero time shift
served as the first seed. In this recursive method, the tracking
part left some voxels without any lag values because the cross-
correlogram peak <0.2 was discarded (Tong et al., 2016b). These
“holes” in the resulting lag maps were single isolated voxels in
most cases and filled using a partial differential equation-based
interpolation (Huang et al., 2005). The lag was tracked up to 4 s
in both directions: up- and down-stream.

Effect of TR on Reproducibility
To investigate the differential effect of sampling interval on
the BOLD-based metrics, each 4D dataset was decimated at
every 2–10 time points to achieve varying effective TRs from
1 to 5 s. Because the MR signal time course cannot be filtered
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before sampling, unlike electroencephalogram, the BOLD signal
is inherently subject to contamination from physiological noise
from an aliasing effect. To observe the confounding effect
of aliasing on the BOLD image analyses, the situation was
intentionally simulated by applying no high-pass filtering before
the decimation (Yang et al., 2007).

Statistical Analysis
Intra-class correlation coefficient (ICC; Raemaekers et al., 2007;
Thomason et al., 2011) was used to evaluate test-retest reliability
as consistency of measurement. Two measures of reproducibility
were computed: one for stability of the images and one for
repeatability as a measurement (Raemaekers et al., 2007). To
facilitate comparison, the seed regions in the DMN and ECN
were masked out beforehand. According to McGraw and Wong
(1996), an ICC via two-way, mixed, single-measurement testing
for absolute agreement of two measurements was formulated as

ICC(2, 1) =
MSR −MSE

MSR +MSE − 2(MSC −MSE)/n

where MSR, MSC, and MSE represent mean squares for rows,
columns, and errors obtained from repeated-measures ANOVA,
respectively. The number of columns is denoted as n. In the
case of image reproducibility between the two sessions, image
data were arranged in a matrix with sessions (days) as rows
and voxels as columns (ICCbetween; Raemaekers et al., 2007).
Absolute agreement across measurements within each voxel was
calculated to create reproducibility maps by treating the subjects
as columns (ICCwithin; Thomason et al., 2011). The results were
statistically compared using the nonparametric Friedman test.
For the breath-holding experiment, ICCwithin was calculated
using three measurements (rest, SRT and breath holding).

RESULTS

Stability of the Sparse SRT Task
Performance
The mean response times were 603 ± 169 and 631 ± 134 ms for
the first and second days, respectively. The Friedman test failed
to detect significant session effects (P = 0.21).

BOLD-Based Maps and the Effects of
Denoising
To confirm the performance of the denoising algorithm, spatial
distribution of the noise components removed in each of the
three denoising strengths was first investigated (Supplementary
Figure 1A). Throughout the three levels, the noise components
tended to involve the brain surface, presumably owing to the
motion-related artifacts or pial vein signal. Components removed
at the most aggressive level (Dn3) did not involve the white
matter or scalp, indicating that noise components involving these
regions had already been captured at the lower levels. Among
the additionally removed noise components, 4.8% exceeded
the criteria for slice dependency at Dn2 and 10.9% at Dn3.
Most of these slice-dependent components demonstrated the
involvement of multiple (typically 28/4 = 7) slices uniformly

separated from one other, possibly related to the simultaneous
acquisition by multiband sequence (Feinberg et al., 2010).
The effect of the denoising on global time series spectra is
shown Supplementary Figure 1B. Reduction of high-frequency
components >0.8 Hz is evident in Dn1, while the effect of
denoising was most evident in the “hump” at∼0.2–0.3 Hz, noted
previously (Smith et al., 2013; Tong and Frederick, 2014a). To
trace their origins, components from the individual ICA were
investigated. Shown in Figure 2 are the top two ICA components
from each subject, with the highest ratio of the integral of spectral
power between 0.2 and 0.3 Hz to that below 0.1 Hz. Many of these
components contributing to the hump presented a unique spatial
distribution with inter-individual variation in peak frequency,
both of which are characteristic of respiration signals (Tong and
Frederick, 2014a). The existence of harmonics and the alternating
bands parallel to the acquisition slices would further suggest
respiration-related, periodic motion as the main source of the
signal. All of these ICA components were classified as noise, but
at different denoising levels. Similarly, many of the components
substantially contributing to the 0.8–0.9 Hz power coincided with
the CSF voxels along the internal carotid and middle cerebral
arteries, possibly representing cardiac pulsation (Supplementary
Figure 2).

The effects of denoising on the group-averaged images are
shown in Figure 3. The three FC maps present narrower
and more defined clusters as more noise components were
eliminated. Decreased correlations outside of the network hubs
also resulted in extension of the negatively correlated areas,
precisely consistent with earlier reports using different denoising
techniques (Chang and Glover, 2009). On the two lag maps, there
were opposite effects that dramatically reduced the contrast and
thus the lag structure, suggesting the failure of blood tracking in
“cleaned” data. It is important to note that lag maps in the current
study were created to represent phase advance instead of delay,
thus resulting in opposite polarity to earlier works. Hence, the
voxel values indicate the relative “drainage time” in reference to
the seed. This choice was motivated by the fact that lag structure
is sensitive to the venous side of the circulation (Tong et al.,
2016b). The borderzone sign, which reflects delayed arrival in the
border between the arterial territories (Zaharchuk et al., 2009), is
found as the area of small phase advance for gray matter.

Effects of Denoising on Reproducibility
ICCbetween

Test–retest reliability has been characterized as excellent (ICC >

0.8), good (ICC 0.6–0.79), moderate (ICC 0.4–0.59), fair (ICC
0.2–0.39), or poor (ICC < 0.2; (Birn et al., 2014)). As shown
in Figure 4A, all four of the BOLD-based metrics evaluated
here showed moderate to good ICCbetween values in inter-
session comparisons, whereas intra-session ICC yielded good
peak reproducibility after optimal denoising. This difference
between the inter- and intra-session reproducibility was highly
significant (P < 0.0001; Friedman’s test), indicating between-day
component of variation.

As expected, there was a tendency for FC maps to be
more reproducible as more “noise” components were eliminated.
However, the ECN map failed to present significant effects
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FIGURE 2 | The top two components from each subject, with the highest contribution to the spectral power between 0.2 and 0.3 Hz are shown. All of

these components were removed at different denoising levels as indicated in the panels.

of denoising over the five levels, owing primarily to inter-
individual variation in the effects of moderate denoising. Within
a subset of the results (noise, raw, and Dn3) used, the effect
attained statistical significance (P = 0.02). The results were
essentially similar with or without white matter/CSF signal
removal (Supplementary Figure 3).

The lag maps, in contrast, presented moderate to good
reliability before denoising and became completely unstable
after aggressive denoising. This finding was observed in parallel
with the loss of lag information from denoising in Figure 3.
The lag maps’ reproducibility was greatest with the raw dataset
because, interestingly, removal of the non-noise components also
diminished the ICCbetween. After failing to find any improvement
by denoising, the additional analysis was conducted using the
weakest denoising strength, based only on slice dependency to
capture motion-related or mechanical noises. It again resulted in
significant degradation of reproducibility in Lag-SSS (P < 0.01)
and no improvement either in Lag-rec.

ICCwithin

Although the overall effect of denoising on within-voxel
reliability was similar to that of ICCbetween, it was significantly

more sensitive to cleanup by the most intensive denoising, Dn3,
as depicted in the plot of median ICCs across voxels (Figure 4B).
This effect was also remarkable in terms of the loss of reliability
in the lag maps. The raw dataset was the most reliable for the lag
maps, in agreement with the findings for ICCbetween.

Lag Structure and Its Stability against
Blood Flow Perturbation
Lag Structure
The two types of lag maps showed different lag values but
with similar structures (voxel-by-voxel, Pearson’s correlation
coefficient = 0.83 ± 0.08, 20 pairs of lag maps, mean
± SD). This finding was confirmed by creating a voxel
histogram (Figure 5A). Most of the brain voxels in the Lag-
SSS maps showed positive values consistent with their positions
upstream of the SSS. When the Lag-rec maps were subtracted
from the Lag-SSS maps in every subject, the histogram
from the resulting images had a narrow shape, peaking
at∼1 s.

In the recursive method of lag mapping, the reference signal
updated at each step of lag tracking could be extracted. First,
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FIGURE 3 | The four BOLD-based metric maps investigated in the study and the effect of denoising intensity on the images. In the 3D rendered brain on

the left, the right and left hemispheres are split to show the medial surface. For the Lag maps, we assigned positive values to the voxels with earlier phase to make the

map represent travel time to the global signal phase. Both FC maps presented higher specificity with more contrast between the members and non-members of the

networks. Denoising had the opposite effect on the two lag maps, which was most prominent in the noise-only dataset (Noise), which showed similar results to the

raw maps.

the seed signal amplitude in each part of the lag map was
measured, in percent signal change normalized to global mean
(Figure 5B). The magnitude of the seed signal was smaller in
the upstream voxels (P < 0.0001; one-way ANOVA), and it
peaked at the downstream seed. Note that the signal amplitude
was already diminished at 4 s, suggesting that lag tracking
was less reliable beyond this range. As depicted in Figure 6,
the labeling component became visible by overlaying the seed-
time courses. The arrival timing of the component over brain
regions are reflected as phase variations of the curves in the

Figure 6A. To verify the effects of neurovascular coupling
on lag tracking, the time-locked response of each of these
curves to the SRT was calculated (Figure 6B). There was a
global response (black line) to infrequent SRT events, which
although small (∼0.06%), was still visible by grand averaging.
The recursively defined seed signals in the upstream direction
were quickly dispersed or averaged out by this procedure (reddish
sweeps). We further confirmed that denoising eliminated this lag
structure, along with the global response itself (Supplementary
Figure 4).
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FIGURE 4 | Results from the reproducibility experiment. (A) Test-retest reliability and denoising. Image similarity quantified by ICCbetween is plotted against

denoising strength. FC maps became more stable by increasing denoising strength, whereas lag maps presented the highest reproducibility in the raw dataset. The

overall effect of denoising on reproducibility was significant for all four BOLD metrics (Friedman test, P < 0.001) except for the ECN (P = 0.07). Error bars signify 95%

confidence intervals (n = 10). Horizontal bars denote a significant difference (P < 0.01) by the paired t-test. (B). Reproducibility of measurements within each voxel

(ICCwithin) is shown in histogram form. This analysis revealed superior performance of aggressive denoising (Dn3) over the moderate level (Dn2) on FC maps. For lag

maps, the effect of denoising was the opposite.

Stability of Lag Map across Different Conditions
As shown in Figure 6C, the 10 s brief breath hold caused a
delayed global signal increase via vasodilation (Kastrup et al.,
1999) with higher amplitude, compared with the SRT task
response (Figure 5B). After breath-hold onset (arrow), the
global signal exhibited a small peak at 5 s, presumably due
to neurovascular coupling (see Figure 6B). The lag maps were
preserved despite the perturbation from task or controlled
respiration with good reproducibility in ICCbetween (Figure 6D).
ICCwithin from this experiment confirmed the results of the
reproducibility experiment, but with strikingly higher stability of
Lag-rec measurement (Figure 7).

Effect of Sampling Rate on Reproducibility
The effect of the simulated sampling rate from decimation
was evaluated using inter-session ICCwithin and image
preservation, or similarity with the original dataset at TR
= 0.5 s (Supplementary Figures 5, 6). Both the ICC and
image preservation showed effects of TR (P < 0.01 for image
preservation; Friedman’s test), which were pronounced in lag

relative to the FC maps (all combinations between either DMN
or ECN vs. either Lag-SSS or Lag-rec; P < 0.001). Interestingly,
there were “notches” at 1 and 2 s in both measures for the lag
maps, creating a jagged pattern with long error bars indicating
additional sources of signal instability at these sampling rates.

DISCUSSION

The major findings of the present study are as follows: time-
lag structure within the BOLD signal is sensitive (or vulnerable)
to ICA-based denoising designed to remove non-neuronal
confound, losing both information and reproducibility; and lag
maps created from the raw signal presented good inter-session
reproducibility and were robust to subject behavior that causes
local (i.e., SRT) or global (i.e., breath-holding) perfusion changes.

We first observed that the lag map lost both information and
reproducibility by the denoising. This effect of denoising, which
was essentially opposite to that of FC maps, is consistent with
the non-neuronal origin of the lag structure. Another intriguing
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FIGURE 5 | Analysis of the lag maps. (A) Voxel frequency histogram of the

two lag maps and their difference map. The narrow shape of the difference

map histogram suggests a common lag structure detected by the two

algorithms. Colors represent the 10 subjects. (B) Amplitude (standard

deviation) of the recursively defined reference time courses. There was a

reduction in the lag-encoding component magnitude beyond 2 s in both up-

and down-stream directions, suggesting loss of information.

finding was that the lag structure was most stable in the “raw”
signal without any ICA decomposition. Because the removal
of “neuronal” components reduced the reproducibility, either
neurovascular (or neuro-BOLD) coupling may also comprise a
part of the lag structure. This is compatible with the largely
passive nature of the neuro-BOLD coupling processes (Malonek
et al., 1997; Chang et al., 2008) and the broad impact of lag
structure in the fMRI signal as reported (Erdoğan et al., 2016).We
also found that the structure is robust to the detection algorithms,
again supporting the resilient nature of this component.

It was particularly interesting to observe that ICA-based
denoising always resulted in diminished reproducibility
compared with the Raw dataset, even at the weakest level. It
makes a good contrast with the favorable effects on FC maps.
Simply regressing out the time series from the respiration or
cardiac components may have impaired the lag structure as
there is considerable amount of low-frequency power that
can be attributed to the sLFO (Tong et al., 2013). However,
one should note that there may be a limitation of ICA itself
because the underlying assumptions may not hold in some cases
(Rajapakse et al., 2002). In fact, at the same time, we observed
a clear effect of TR or sampling interval on the quality of lag
mapping, which suggests room for improvement in lag map’s
reproducibility. This effect is possibly related to aliasing of
cardiac rhythm because the heart rate in young adult positioned
supine is often close to 60 beats/min (Budgell and Hirano, 2001;
Watanabe et al., 2007), or 1 Hz, leading to higher probability of
low-frequency contamination at the TR of 1 s (Cordes et al., 2014;
Liang et al., 2015). Although further investigation is warranted,
selective removal of the aliased cardiac rate using simultaneous
physiological measurement could therefore improve the stability
of lag mapping.

We also found that the reproducibility of the lag maps created
from the Raw dataset was comparable with that of the FC maps
created from cleaned dataset. The direction of blood flow is
believed to be reversible across collaterals because the cerebral
veins have no valves, and very acute changes in the outflow
pathway have been reported (Gisolf et al., 2004). Hence, vascular
topology in the sense of flow pattern can change. From the
marked improvement in reliability from combining runs from
different days (i.e., intrasession > intersession ICC), there may
be both short- and long-term fluctuations in cerebral blood flow,
as observed in blood pressure (Schillaci et al., 2012).

The second experiment used ICC as a direct measure of
stability, instead of a quality measure. It demonstrated robustness
of lag maps against the influence of manipulations in subject
behavior, which further suggests that the lag structure, detected
as a propagation pattern of the sLFO waveform, primarily
reflects vascular anatomy. This low-frequency fluctuation that
travels through the brain is believed to be largely of systemic
origin and intrinsic to blood (Tong et al., 2016b) such as
oxygen content (Rostrup et al., 1995) or cardiac output (Erdoğan
et al., 2016). The robustness of lag maps has already been
postulated by the reliability of this technique in detecting
pathological perfusion delay with very small segments of
BOLD time series (Amemiya et al., 2013), but not been
confirmed to hold true also in the physiological range. The
time-locked response of the seed time courses to the SRTs
revealed how neurovascular coupling is embedded in the lag
structure. As predicted by Tong and Frederick (2014b), there
was higher reproducibility of Lag-rec over Lag-SSS, suggesting
a fluctuation of propagating sLFO which is compensated for by
the adaptive approach. One possible source of this fluctuation
may be neurovascular coupling as observed in both SRT and
breath-holding conditions, with small but widespread aftereffect
(Boubela et al., 2015); however, further studies are needed for a
fuller picture.
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FIGURE 6 | Results from further evaluation of lag maps (breath-holding experiment). The color maps were chosen to represent more upstream (i.e., arterial)

structure by warm colors and venous side by cool ones. The y-axes of the plots display relative MR signal intensity in arbitrary unit, which should be proportional to the

normalized percent signal change. (A) Recursively generated seed-time courses on Lag-rec mapping from a single session of one subject. The phase is first tracked

back from the global signal (green sweep) to 4 s earlier (red) and then tracked forward to −4 s (blue), thus expressed in the opposite polarity to the convention used in

some previous works. Note that blood flow-related information is emphasized in these time courses by pooling signals from voxels sharing lag phase. White vertical

lines indicate the stimulus presentation of the infrequent SRT task. (B) The time courses were subjected to time-locked averaging at the SRT task event and then

grand averaged over participants. Only events separated from the previous trial by 9 s and from the following trial by 15 s were used. The black line indicates the first

seed signal of lag = 0, which is almost identical to the global signal change time series (white broken lines denote a 95% confidence interval of the mean across

subjects). The flow-related signal components were dispersed by this time-locked averaging in the upstream voxels, indicating that the neuro-vascular coupling is

modifying the lag structure mainly in the venous side. (C) Seed time courses time-locked to the brief breath holding, pooled over the 20 participants. (D) Average

Lag-rec maps for the three conditions are presented. ICCbetween indicated good reliability of the Lag-rec map in spite of the perturbation by tasks. ICCbetween

between SRT and breath-holding was 0.75 ± 0.08.

Findings of the present study have additional implications for
common data-cleaning procedures using linear regression. The
lag structure maps revealed a clear anatomical and, thus, tissue
correspondence of blood circulation, as reported previously
(Taylor Webb et al., 2013; Tong et al., 2016a), meaning that the
white matter or CSF time course could contain traces of cortical
activity from a range of brain regions, depending on the venous
drainage route. Simply regressing out these BOLD time courses
would create spurious correlation enhancement or reduction
depending on the relative phase of each voxel (Erdoğan et al.,
2016). An interesting future direction would be to incorporate
the lag structure detected by a recursive procedure to model the
signal response for fMRI analysis.

To the best of our knowledge, this study is also the first to
demonstrate improvement in the test-retest reliability of FCmaps
via ICA-based denoising. In fact, test-retest reliability has not
been evaluated in relation to the preprocessing technique until

recently (Birn et al., 2014; Shirer et al., 2015). Reproducibility is
a prerequisite for a useful biomarker—as it is for any scientific
test—and it is critical for an “orphan” biomarker such as BOLD-
based connectivity, that does not allow for straightforward
validation using other techniques. Of course, high reliability
alone does not necessarily indicate successful measurement
(Braun et al., 2012). In the present results, for example, the
ECN map failed to present significant drops in reliability in
the noise dataset, despite considerable degradation of the map
itself. Conversely, the greatest reliability in the Dn3 dataset
may have been achieved at the expense of removing useful
information. Using a similar denoising technique, Pruim et al.
(2015) manually identified approximately three-quarters of the
ICs as noise, midway between our Dn2 and Dn3. Needless
to say, achieving maximum reproducibility while detecting the
target biological parameters is desirable. Currently, because
there is no gold standard for FC map quality, identification of
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FIGURE 7 | Within-voxel reproducibility from the breath holding

experiment. ICCwithin was calculated using the three runs: rest, SRT task,

and breath-holding. It is clear from the maps and the image histogram that

reliability of the Lag-rec map was superior to the Lag-SSS, although they

shared some spots of poor reproducibility.

non-neuronal components would serve as a helpful strategy.
In fact, information extracted by the lag mapping is relatively
straightforward because it is quantitative (in seconds) and
enables validation using other techniques (Christen et al., 2015;
Tong et al., 2016b). Elimination of both information and
reliability of the lag maps by denoising in the present study at
least strongly encouraged sufficient removal of these components
to achieve high level of neuro-BOLD coupling (Erdoğan et al.,
2016). In relation, higher spatial resolution will improve the
characterization of noise sources because the lag structure should
be spatially coarser and, as we experienced in the present study,
tissue classification for denoising is affected by partial volume
in the original BOLD image. The overall findings suggest that
optimized spatial and temporal resolutions should be combined

with a denoising algorithm to achieve higher level of neuro-
BOLD coupling.

CONCLUSION

Results of the present study add to the recently growing
recognition of the propagating low-frequency fMRI signal
component of systemic origin. Consistent with earlier reports,
our findings further emphasize the purely non-neuronal origin
of this lag structure by degradation of both the map’s information
and reproducibility in parallel with the strength of noise removal,
despite the use of independent denoising approach from the lag
mapping procedure. This time lag map should primarily reflect
the vascular anatomy, judging from its stability against local
(vasomotor task) or global (breath-hold challenge) perfusion
changes, while it should also be sensitive to change in CBF
dynamics such as instantaneous variation of transit time from
artery to vein, for example. There was also a gradual change
over vascular structure in the waveform of the low-frequency
component, resulting in superior reproducibility of the map
created by an adaptive, recursive procedure. Neurovascular
coupling should be contributing to this fluctuation of waveform;
however, further investigation with higher spatial resolution is
needed to fully address the relationship between these two, in
earnest with the ultimate goals of complete removal of non-
neuronal BOLD components in fMRI and reliable blood flow
tracking by lag mapping.
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