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Dietary and food intake biomarkers offer the potential of improving the accuracy of

dietary assessment. An extensive range of putative intake biomarkers of commonly

consumed foods have been identified to date. As the field of food intake biomarkers

progresses toward solving the complexities of dietary habits, combining biomarkers

associated with single foods or food groups may be required. The objective of this

work was to examine the ability of a multi-biomarker panel to classify individuals into

categories of fruit intake. Biomarker data was measured using 1H NMR spectroscopy in

two studies: (1) An intervention study where varying amounts of fruit was consumed

and (2) the National Adult Nutrition Survey (NANS). Using data from an intervention

study a biomarker panel (Proline betaine, Hippurate, and Xylose) was constructed from

three urinary biomarker concentrations. Biomarker cut-off values for three categories of

fruit intake were developed. The biomarker sum cut-offs were ≤4.766, 4.766–5.976,

>5.976 µM/mOsm/kg for <100, 101–160, and >160 g fruit intake. The ability of the

biomarker sum to classify individuals into categories of fruit intake was examined in the

cross-sectional study (NANS) (N = 565). Examination of results in the cross-sectional

study revealed excellent agreement with self-reported intake: a similar number of

participants were ranked into each category of fruit intake. The work illustrates the

potential of multi-biomarker panels and paves the way forward for further development in

the field. The use of such panels may be key to distinguishing foods and adding specificity

to the predictions of food intake.
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INTRODUCTION

Dietary assessment is important for the elucidation of diet-disease relationships; however,
traditional dietary assessment techniques are subject to some well-documented limitations (1). The
identification of dietary and food intake biomarkers offers the potential of accurate and objective
measure of food intake (2, 3). Food intake biomarkers are single metabolites, or a combination
of metabolites, reflecting the consumption of either a specific food or food group, displaying a
clear time- and dose-response after intake (4). An extensive range of putative intake biomarkers
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of commonly consumed foods have been identified to date
(5) but more work is needed toward confirming the utility of
such biomarkers. To be efficient indicators of dietary intake,
biomarkers need to be validated including analysis of sensitivity,
specificity, and dose-response (6). Selecting a single intake
biomarker to represent exact dietary intake is difficult due to
the overlapping range of nutrients, non-nutrients, and bioactives
present in foods. However, previously investigated food intake
biomarkers have proven to be good predictors of consumption
for classes within food groups, such as fruits and vegetables (7).
As the field of food intake biomarkers progresses, and the need
to elucidate the complexities of dietary habits arises, combining
biomarkers associated with single foods or food groups may
be required (8). It is possible that by combining two or more
biomarkers together into multi-biomarker panels could result in
more sensitive and specific estimates of intake.

Development of validated and comprehensive multi-
biomarker panels have the potential to add value to the
assessment of dietary intake by enabling the capture of a broad
range of dietary exposure including bioactive compounds, foods,
food groups, and complex dietary patterns (9). Multi-biomarker
panels have been previously used to classify individuals
into banana consumers and non-consumers more robustly
compared to individual biomarkers (10). In another example
a multi biomarker panel, composed of beer ingredient and
food processing biomarkers was capable of distinguishing
beer consumption from urine samples collected before and
up to 12 h after intake of beer with excellent specificity and
sensitivity (11). Other examples of successful use of multiple
biomarkers include the SU.VI.MAX study, where the sum of
urinary flavonoid biomarkers demonstrated higher correlations
with fruit and fruit juice consumption than any of the included
biomarkers individually (12). A biomarker panel containing the
wine biomarkers ethyl glucuronide and tartrate outperformed
individual markers when predicting wine consumers and
non-consumers [90.7% receiver operating characteristics (ROC)
curves area under the curve (AUC) compared to 86.3% for ethyl
glucuronide and 85.7% for tartrate]. This panel was validated
in an epidemiological study and was capable of estimating
whether or not participants had consumed wine in the previous
3 days (13).

Multi-biomarker panels can be applied to classify andmonitor
adherence to dietary patterns. This was recently illustrated in
post-menopausal women where a biomarker panel was capable
of discriminating between high and low quintiles of adherence
to four diet scores [the alternate Mediterranean diet score
(aMED), alternate Healthy Eating Index (AHEI)-2010, Dietary
Approaches to Stop Hypertension (DASH) diet, and the Healthy
Eating Index (HEI)-2015] (14). Another interesting application
of multiple biomarkers is the interrogation of the relationships
between food intake and diseases incidence. In this context
previous work has employed a biomarker score, derived from
multiple biomarkers of fruit and vegetable intake, as a proxy
for intake to examine the relationship with diabetes incidence
(15). This biomarker score demonstrated an inverse association
with diabetes incidence, with odds ratio (OR) of incidence
decreasing with increasing intake of fruit and vegetables (highest

quartile of intake compared to lowest OR: 0.13; 95% CI: 0.08,
0.21) (15). Collectively, these studies highlight the potential for
combinations of multiple biomarkers in determining intake of
foods or dietary patterns and assessment of relationships with
health outcomes.

Fruit is an important component of a healthy diet and
previous work has investigated biomarkers of various fruit. A
recent systematic review of the literature conclude that we have
limited knowledge for biomarkers of pome and stone fruit (16)
with many biomarkers requiring validation in terms of relating
to fruit intake. With respect to apple intake the most promising
biomarker identified was phloretin and phloretin glucuronide.
The biomarker arbutin is promising for pear intake but again
requires more validation. A review of biomarkers of tropical fruit
intake also highlighted a dearth of information (17), concluding
clearly that there is a need for further research in the area.
Proline betaine is a well-established biomarker of citrus intake
with previous work indicating that urinary proline betaine
concentrations can give quantitative food intake information (18,
19). However, as most consumers eat more than one fruit, there
is an interest to examine total fruit intake and thus combining
multiple biomarkers could be a useful approach to estimate total
fruit intake.

Although previous work has indicated the potential of
multiple biomarkers in the form of multi biomarker panels,
combining of biomarkers to give quantitative information on
food intake is not trivial. Previous studies have highlighted the
potential of multi biomarker panels in terms of classification
into consumers and non-consumers. However, more work is
needed in the field to examine the potential of such biomarker
combinations for use in assessment of consumption of different
quantities of food. Therefore, the objective of this work was
to examine the ability of a multi-biomarker panel to classify
individuals into categories of fruit intake.

MATERIALS AND METHODS

National Adult Nutrition Survey (NANS)
Study—Cross-Sectional Study
Details of the NANS study have been published elsewhere
(https://www.iuna.net/) (20). Ethical approval for this study
was granted by the University College Cork Clinical Research
Ethics Committee of the Cork Teaching Hospitals [ECM 3
(p) 4 September 2008] and recruitment began in May 2008.
Briefly, NANS collected data on habitual food and beverage
consumption, lifestyle, health indicators, and attitudes to food
and health in 1,500 adults, representative of the population
during 2008–2010 in Republic of Ireland. A subset of this
population (N = 565) was randomly selected, to ensure equal
numbers of men and women across the age ranges (18–90 years)
for metabolomics analysis as previously described (20). A 4 days
semi weighed dietary record was used to collect dietary data over
4 consecutive days. Detailed information on the type and amount
of all foods, drinks and nutritional supplements consumed
over the 4 days was recorded by participants. Where possible,
participants were asked to weigh foods and encouraged to retain
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food packaging for further information on foods consumed, but
where weights were not recorded a photographic food atlas was
used to estimate food weights (18). Dietary data was analyzed
using WISP software (Tinuviel Software, Anglesey, UK), which
uses data from McCance and Widdowson’s The Composition of
Foods, fifth and sixth editions and all supplementary editions to
generate nutrient data (21–24). Dietary data was coded into 2552
individual food codes and grouped into one of 68 food groups.
For the purpose of this analysis any fruit containing food groups
were collapsed into a single “Total Fruit Intake” group and the
mean daily fruit intake over the 4 days was calculated. Biological
samples were collected at the end, or as close to as possible, of
the dietary recording period, including a fasting first void urine
sample in a sterile 50mL tube which was chilled until processing.
All urine samples were centrifuged at 1,800× g for 10min at 4◦C.
Aliquots of 1mL were stored at−80◦C for later analysis.

A-Diet Validation Intervention Study
Ethical approval for this A-Diet study was granted by the
UCD Sciences Human Research Ethics Committee (LS-17-16-
Brennan). Recruitment commenced at the end of March 2017
via advertisement (posters, flyers, and emails) and finished
in November 2017. The recruitment process is outlined
in Supplementary Figure 1. Details of the study design are
published elsewhere (25). Briefly, inclusion criteria included
healthy, non-pregnant/lactating and non-smoking individuals,
between 18 and 60 years old, and with a body mass
index (BMI) between 18.5 and 30 kg/m2, without any
diagnosed health condition (chronic or infectious diseases), no
consumption of medications/nutritional supplements or any
allergies/intolerances to the test foods. Once informed consent
was acquired, participants were assigned to either a lunch (N =

27) or dinner (N = 34) test meal group and invited to partake
in a 5-weeks study. Each test week participants were provided
with four portions of a test meal and asked to consume this test
meal for 4 consecutive days. During these 4 days, participants
were also asked to avoid consuming any other foods related to
the test meal ingredients. Participants were also asked to record a
4 days dietary record for each test week, to ensure compliance.
The focus of this analysis is the amount of fruit consumed as
part of these test meals. The low, medium, and high portions of
fruit provided was 50, 100, 300 g and 80, 160, 320 g for apples and
oranges, respectively.

Fasting first void urine was collected after an overnight 12 h
fast at the end of each test week and chilled until processing. All
urine samples were centrifuged at 1,800 × g for 10min at 4◦C.
Aliquots of 1mL were stored at−80◦C for later analysis.

Metabolomic Analysis of Urine Samples
Metabolomic analysis was performed using nuclear magnetic
resonance (NMR) spectroscopy. Urine samples were first
defrosted and then prepared by addition of 250 µL phosphate
buffer (0.2mol KH2PO4/L, 0.8mol K2HPO4/L) to 500 µL urine.
After centrifugation at 5,360 × g for 5min at 4◦C, 10 µL
sodium trimethylsilyl [2,2,3,3-2H4] propionate (TSP) and 50 µL
deuterium oxide (D2O) were added to 540µL of the supernatant.
Spectra were acquired on a 600 MHZ Varian Spectrometer

(Varian Limited, Oxford, United Kingdom) by using the first
increment of a nuclear Overhauser enhancement spectroscopy
pulse sequence at 25◦C. Spectra were acquired with 16,384 data
points and 128 scans. Water suppression was achieved during
the relaxation delay (2.5 s) and the mixing time (100ms). All
1H NMR urine spectra were referenced to TSP at 0.0 parts per
million (ppm) and processed manually with the Chenomx NMR
Suite (version 7.7) by using a line broadening of 0.2Hz, followed
by phase and baseline correction. Three metabolites were
chosen to demonstrate the proof-of-concept that combinations
of biomarkers could be used to predict total fruit intake. The
biomarkers chosen were xylose, proline betaine, and hippurate.
Identification and quantification of metabolites was achieved
using the Chenomx library. To confirm correct assignment, a
urine sample was spiked with an analytical standard and a 1H
NMR spectrum acquired.

Osmolality was measured by using an Advanced Micro
Osmometer model 3300 (Advanced Instruments). Aliquots of
urine were measured for osmolality with the use of micro-
osmometry by freezing point depression, with values reported as
the number of solute particles, in moles, dissolved in a kilogram
of urine (mOSM). Metabolite concentrations were normalized
to osmolality for quantifying urinary concentrations of xylose,
proline betaine and hippurate.

Statistical Analysis
Statistical analysis was performed using IBM SPSS software
package version 24.0 for windows (SPSS Inc. Chicago, IL,
USA) and SIMCA-P software (version13; Umetrics). One-way
analysis of variance was performed to compare tertiles of self-
reported intake and urinary concentrations of three biomarkers.
Spearman’s correlations were used to assess association between
mean daily self-reported total fruit intake and biomarkers. The
urinary concentrations of each biomarker were summed together
to create a single combined biomarker value for each individual.
Using the intervention data cut-offs were developed for certain
fruit intake categories.

RESULTS

Examining Relationship Between
Biomarkers and Self-Reported Fruit Intake
Urinary biomarkers of interest were quantified by 1H NMR
analysis in the NANS cross-sectional study. The following
concentrations were obtained: xylose (range: 0.07–2.19mM),
proline betaine (range: 0.04–2.13mM), and hippurate (range:
0.13–15.87mM). Participants were grouped into tertiles based
on self-reported mean daily intake of total fruit from semi-
weighed food records (Table 1, Supplementary Table 1). All
three urinary biomarker concentrations increased as the intake
of fruit increased with significant increases observed for proline
betaine and hippurate. The urinary concentrations of all three
biomarkers were also significantly correlated with mean daily
intake of fruit. The main contributors to total fruit intake were
apples, bananas, oranges, pears, strawberries, and pineapple, all
of which increased significantly across tertiles of intake except
for pineapple.
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TABLE 1 | Urinary food intake biomarker concentrations across tertiles of fruit intake in cross-sectional study (NANS).

Tertile 1 (N = 180) Tertile 2 (N = 181) Tertile 3 (N = 185) Spearman’s correlation+

Mean SD Mean SD Mean SD p-value Rho p-value

Metabolite (µM/mOsm/kg)

Xylose 0.596 0.34 0.614 0.35 0.637 0.42 0.574 0.078 0.070

Proline betaine 0.285 0.22 0.415 0.34 0.569 0.44 <0.001 0.400 <0.001

Hippurate 3.600 2.78 3.991 2.87 4.727 3.20 0.001 0.181 <0.001

Mean daily intakes (g/d)

Total fruit 28.42 24.61 127.80 32.61 315.19 115.44 <0.001

Apples 4.94 13.50 23.93 30.76 58.15 65.78 <0.001

Banana 7.17 15.28 26.86 31.77 43.07 42.70 <0.001

Oranges 2.49 9.86 29.56 42.55 94.14 105.97 <0.001

Pears 0.52 3.70 4.46 15.61 22.18 47.46 <0.001

Strawberry 1.03 5.41 2.48 9.34 4.44 13.40 0.005

Pineapple 0.47 3.73 1.20 7.47 2.75 16.91 0.129

All values presented are mean and standard deviation (SD) unless stated otherwise. ANOVA, analysis of variance; MDI, Mean daily intake. N = 546.
+Spearman’s correlation between each biomarker and total mean daily fruit intake.

Further analysis was performed using total fruit consumers
only (N = 509) (Table 2). Similar trends were observed for the
urinary biomarker concentrations, increasing across of tertiles of
intake with significant values for proline betaine and hippurate.

Using Multiple Biomarkers to Classify
Individuals Into Categories of Intake
The multi-biomarker panel was used to create a combined
biomarker value by summing the individual biomarkers. In the
A-Diet validation dataset (N = 160) the combined biomarker
values were used to determine cut-offs for classification
of individuals into categories of intake. Participants were
categorized into one of three groups of intakes (0–100, 101–
160, and >160 g/d) based on the fruit consumed as part of the
intervention. The average sum of biomarkers for participants
who consumed ≤100 g/day of fruit (4.766 µM/mOsm/kg)
was set as cut-off point 1. Cut-off 3 was calculated as the
average biomarker sum (5.976 µM/mOsm/kg) of participants
who consumed >160 g of fruit in the A-diet study. The middle
cut-off was set at any value in between cut-off 1 and 3 (Table 3).

To examine the ability of these biomarker sum values to
categorize participants into categories of intake the method
was applied to NANS study. Using the NANS (N = 546)
self-reported dietary data participants were categorized into
three groups of fruit intake (Table 4). Independently using the
urinary biomarker concentrations, participants were assigned to
a category of intake using the biomarker sum cut-offs. Excellent
agreement between the two methods was observed with for
example, 97 participants self-reporting intakes between 101 and
160 g/d, and 86 participants assigned into this category based on
the biomarker panel data (Table 4 and Supplementary Table 2).
Assessment of the data split by gender revealed similar agreement
trends (Table 5).

In order to examine other biomarker combinations, the
biomarker values that increased across categories of intake
were selected (Supplementary Table 3). The ability to categorize

participants into categories of intake was examined with all
biomarkers and the sum of proline betaine and hippurate
providing the best agreement (Table 6).

DISCUSSION

This study developed a biomarker panel that was capable
of classifying individuals into categories of fruit intake.
Examination of the approach in a free-living cross-sectional study
revealed excellent agreement with self-reported intake. Similar
number of participants were ranked into each category of fruit
intake. The work illustrates the potential of multi-biomarker
panels and paves the way forward for further development in
the field.

The three biomarkers chosen to build the multi-metabolite
panel in this research have frequently been found in previous
research to be associated with fruit intake. Xylose was previously
identified as a food intake biomarker associated with apple intake
and capable of ranking participants in an observational study
by increasing intake (25). Proline betaine is a well-established,
robust, and quantitative biomarker of citrus intake (18, 26).
Proline betaine was previously included as part of a biomarker
panel for the investigation of orange juice intake and juice quality
(27). Hippurate, has often been associated with consumption
of polyphenol rich plant foods, such as citrus fruit, bananas,
and berries (10, 26, 28–30). This research combined these three
food intake biomarkers into a biomarker score for the successful
ranking of fruit intake. It is important to acknowledge that
there are other potential biomarkers of fruit intake; however,
examination of the full panel of potential biomarkers was beyond
the scope of the current work where the emphasis was on the
demonstration of the potential of combination of biomarkers.

Previous multi-metabolite panels have focused on associating
the panels with intake of certain foods or achieving a
dichotomous classification of consumers and non-consumers.
An example of previous work demonstrated good associations
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TABLE 2 | Urinary food intake biomarker concentrations across tertiles of fruit intake in cross-sectional study (NANS), total fruit consumers only.

Mean daily intakes (g/d) Tertile 1 (N = 168) Tertile 2 (N = 168) Tertile 3 (N = 173) One-way ANOVA Spearman’s correlation+

Mean SD Mean SD Mean SD p-value Rho p-value

Metabolite (µM/mOsm/kg)

Xylose 0.601 0.35 0.604 0.35 0.649 0.43 0.424 0.090 0.043

Proline betaine 0.298 0.24 0.425 0.33 0.581 0.45 <0.001 0.382 <0.001

Hippurate 3.622 2.63 3.957 2.82 4.771 3.24 0.001 0.187 <0.001

Mean daily intakes (g/d)

Total fruit 42.67 26.44 139.58 32.28 323.36 114.98 <0.001

Apples 8.66 18.54 25.60 33.86 59.09 66.35 <0.001

Banana 10.05 17.90 29.61 32.63 43.12 43.46 <0.001

Oranges 4.18 13.92 33.34 43.80 97.75 108.18 <0.001

Pears 1.11 6.39 4.24 15.46 23.71 48.71 <0.001

Strawberry 1.36 6.01 2.42 9.45 4.74 13.81 0.008

Pineapple 1.07 7.08 1.14 7.21 2.55 16.75 0.399

All values presented are mean and standard deviation (SD) unless stated otherwise. ANOVA, analysis of variance; MDI, Mean daily intake. N = 509.
+Spearman’s correlation between each biomarker and total mean daily fruit intake.

TABLE 3 | Cut-off points for each of the fruit intake categories derived from the

Intervention Study.

Fruit intake category (g/d) Biomarker cut-offs (µM/mOsm/kg)

0–100 <4.766

101–160 4.766–5.974

>160 ≥5.975

Cut-offs were calculated using sums of biomarker concentrations in each intake category

from the A-Diet intervention study.

between biomarkers of fruit and vegetables intake and self-
reported dietary records (12). When 24 h urinary concentrations
of isorhamnetin, hesperetin, naringenin, kaempferol, and
phloretin were combined in a panel they were correlated with
fruit intake (r = 0.27, p = 0.06), fruit juice intake (r = 0.28, p
= 0.04), and intake of total fruits and fruit juices (r = 0.38, p
= 0.006). The correlations for the fruit related panel improved
when examined in spot urine samples: fruit intake (r = 0.34, p
= 0.01), fruit juice intake (r = 0.44, p = 0.001), and total fruit
and juice intake (r = 0.47, p = 0.0004). The authors concluded
that this combination of flavonoids could be used as a reliable
biomarker of total fruit and juice intake, however, to the best of
our knowledge there is no demonstration that the biomarkers
could predict intake. Our work is an important advancement
as it clearly demonstrates that the multi-biomarker approach is
capable of a classification of intake into a range of categories.
However, it should be noted that the present work did not make
the distinction between whole fruit and fruit juices and the
biomarker panel classification was based on total fruit intake
including juices.

Our previous work identified four food intake biomarkers
of sugar sweetened beverages (formate, citrulline, taurine, and
isocitrate) using heat-map analysis of metabolomic urinary
profiles from the NANS study (31). These markers were

TABLE 4 | Classification into categories of fruit intake based on biomarker data or

based on self-reported intake data in the cross-sectional study (NANS).

Fruit intake category (g/d) Self-reported data (N) Biomarker data (N)

0–100 227 306

101–160 97 86

>160 222 154

Participants were classified into one of 3 categories based on either (1) Self-reported

dietary data or (2) biomarker data. The number of participants into each category is

reported, N = 546.

TABLE 5 | Distribution of participants classified into each category of intake

based on sum of urinary biomarker concentrations compared to reported intake

data in the cross-sectional study, split by gender.

NANS

Self-reported Predicted

Gender M F M F

N 278 268 278 268

Intake category

0–100 (g/d) 128 99 170 136

101–160 (g/d) 42 55 42 44

>160 (g/d) 108 114 66 88

Participants (N = 546) categories based on cut-offs were calculated using sums of

biomarker concentrations in each intake category from the A-Diet intervention study. ADV,

A-Diet Validation Study; NANS, National Adult Nutrition Survey; M, Male; F, Female; N,

Number of participants.

confirmed by food analysis of the sugar-sweetened beverage
and an acute intervention study. The markers were combined
in a panel and ROC curves demonstrated that the panel
could discriminate between consumers and non-consumers
of sugar-sweetened beverages (AUC = 0.8) and was more
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TABLE 6 | Urinary biomarker classification of fruit intake compared to reported intake in the cross-sectional study (NANS).

Classification method Self-reported intake Sum of proline betaine and hippurate Sum of xylose and proline betaine Sum of all biomarkers

Average fruit intake (g/d) N N N N

0–100 227 304 306 306

101–160 97 70 194 86

>160 222 172 46 154

Number of participants (N = 546) classified into each intake category was based self-reported intake and on combinations of urinary biomarker concentrations.

predictive of intake than the individual biomarkers themselves
(AUCs ranging from 0.5 to 0.7). A recently published study
used data from the KarMeN study to identify five metabolites
[methoxyeugenol glucuronide (MEUG-GLUC), dopamine
sulfate (DOP-S), salsolinol sulfate, 6-hydroxy-1-methyl-1,2,3,4-
tetrahydra-β-carboline sulfate, and xanthurenic acid] that were
discriminative between high and non-consumers of banana
(10). Individually, DOP-S had the best prediction ability [AUC
= 0.84, error rate (ER) = 0.25] for classifying high consumers
against non-consumers but was not as robust as a combination
of all five metabolites (AUC = 0.90, ER = 0.13). However, the
best predictive ability was a combined panel of MEUG-GLUC
and DOP-S with the lowest error rate of misclassification. This
research demonstrates how a panel of food intake biomarkers
which individually were not robust enough, when combined
can be used to classify recent banana intake. Our research takes
the application of biomarker panels a step further by classifying
participants into categories of fruit consumed and moves beyond
the dichotomous classification of consumer/non-consumer.

While the above work demonstrates the potential for multi-
biomarkers in terms of estimating food intake such panels
can also be used to assess the relationship between food
and diet-related diseases. A combined biomarker-score was
developed using the standardized plasma values of vitamin C,
β-carotene, and lutein, all of which were previously related
to fruit and vegetable intake (15). This score was inversely
associated with odds of incidence of type 2 diabetes (OR:
0.13; 95% CI: 0.08, 0.21) even after adjustment for lifestyle
factors and demographics. An identified plasma biomarker panel
representative of dietary habits consisted of β-alanine (beef
intake), alkylresourcinols (wholegrain/rye), eicosapentaenoic
acid and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid
(fish), lauric acid (saturated fats), linoleic acid (seeds, nuts,
and vegetable oils), oleic acid (olive and rapeseed oil), and
α and γ tocopherol (32). This combined panel was capable
of predicting new cases of type 2 diabetes over a 5-years
follow-up period with a specificity and sensitivity similar to
classic diabetes predictors (serum adiponectin, insulin resistance,
impaired glucose tolerance and impaired fasting glycaemia).
Collectively, these and other studies highlight the potential of
a multi-metabolite panel for the assessment of the relationship
between diet and health/disease.

If future studies develop comprehensive and validated multi-
biomarker panels, they could add value to the assessment
of dietary intake by enabling the capture of a broad range
of dietary exposures including bioactive compounds, foods,
food groups, and complex dietary patterns. Panels could

then be used in epidemiological research to elucidate the
mechanisms and metabolic pathways of diet-related diseases
and to validate self-reported dietary data. Further development
of more comprehensive panels could enable measurement of
adherence to specific dietary patterns, such as the Mediterranean
diet. Future challenges for the field will be finding the simplest
combination of metabolites to accurately determine exposures
as well as validating these panels to a standard where they can
be applied in nutritional research and public health surveys (9).
As the field develops further, there will be a need to develop
new statistical tools to integrate multiple biomarkers with self-
reported data. Our work has recently developed calibration
equations based on biomarker-predicted citrus intakes to gain
a more accurate and objective measure of true intake (33).
Using biomarker data to correct self-reported data for food
intake is a promising option and could be adapted to include a
biomarker panel. Further work is to develop the statistical tools
to achieve this.

This study has strengths and limitations. A limitation worth
noting is the fact that we examined the ability of the biomarker
panel to categorize fruit intake in a cross-sectional study where
intake was estimated with self-reported data. Future studies
where comparison is performed in large intervention studies
would be useful to examine relationships with true food intake.
On the other hand, including the development of a food intake
biomarker panel with testing in cross-sectional study is a strength
as it demonstrates that the panel was capable of ranking fruit
intake at a population level, against the background of exposure
to various other foods. This research did not examine the
potential impact of gut microbiome on the biomarker panel.
Future work is warranted to address this.

To conclude, this study successfully demonstrated the utility
of a panel of biomarkers for estimating fruit intake. The
identification of comprehensive and validated multi-biomarker
panels related to certain foods will be important as this field
develops. The use of such panels may be key to distinguishing
foods and adding specificity to the predictions of food intake.
Combining such panels with self-reported measures will be
important for increasing the accuracy of dietary assessment
methods. Furthermore, there is potential for the use of
such panels in large epidemiological studies to examine the
relationships between diet and disease.
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