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Abstract

SUMO proteases of the SENP/Ulp family are master regulators of both sumoylation and

desumoylation and regulate SUMO homeostasis in eukaryotic cells. SUMO conjugates rap-

idly increase in response to cellular stress, including nutrient starvation, hypoxia, osmotic

stress, DNA damage, heat shock, and other proteotoxic stressors. Nevertheless, little is

known about the regulation and targeting of SUMO proteases during stress. To this end we

have undertaken a detailed comparison of the SUMO-binding activity of the budding yeast

protein Ulp1 (ScUlp1) and its ortholog in the thermotolerant yeast Kluyveromyces marxia-

nus, KmUlp1. We find that the catalytic UD domains of both ScUlp1 and KmUlp1 show a

high degree of sequence conservation, complement a ulp1Δmutant in vivo, and process a

SUMO precursor in vitro. Next, to compare the SUMO-trapping features of both SUMO pro-

teases we produced catalytically inactive recombinant fragments of the UD domains of

ScUlp1 and KmUlp1, termed ScUTAG and KmUTAG respectively. Both ScUTAG and KmU-

TAG were able to efficiently bind a variety of purified SUMO isoforms and bound immobi-

lized SUMO1 with nanomolar affinity. However, KmUTAG showed a greatly enhanced

ability to bind SUMO and SUMO-modified proteins in the presence of oxidative, temperature

and other stressors that induce protein misfolding. We also investigated whether a SUMO-

interacting motif (SIM) in the UD domain of KmULP1 that is not conserved in ScUlp1 may

contribute to the SUMO-binding properties of KmUTAG. In summary, our data reveal impor-

tant details about how SUMO proteases target and bind their sumoylated substrates, espe-

cially under stress conditions. We also show that the robust pan-SUMO binding features of

KmUTAG can be exploited to detect and study SUMO-modified proteins in cell culture

systems.

Introduction

Sumoylation is the posttranslational modification of cellular proteins with the small ubiquitin-

like modifier protein SUMO and is analogous to the modification of proteins with ubiquitin

(ubiquitination). Sumoylation relies on the step-wise interactions of SUMO E1 (activating),
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SUMO E2 (conjugating) and SUMO E3 (ligating) enzymes, culminating in the addition of

conjugation-competent SUMO to lysine residues of substrate proteins [1,2]. These lysine resi-

dues may be part of a sumoylation consensus motif (CKxD/E) of the target protein [3]. Yeast

cells express one SUMO protein (Smt3) and mammalian cells express 3 (SUMO1, SUMO2

and SUMO3). A 4th mammalian paralog of SUMO, SUMO4, is not processed and conjugated

to proteins under physiological conditions. Smt3 in yeast and SUMO2/3 in mammalian cells

can also form polymers or chains. SUMO chains are formed via sequential interconnection of

SUMO monomers using internal lysine residues. Unlike proteins modified with ubiquitin

chains, SUMO chain–modified proteins are not directly targeted to the proteasome. However,

polysumoylation can lead to ubiquitination via SUMO-targeted ubiquitin ligases (STUbLs)

and proteins carrying hybrid SUMO/ubiquitin chains may be targeted for proteasomal degra-

dation [4–8]. Thousands of SUMO-modified proteins have been identified but the functional

relevance of SUMO modification is often difficult to elucidate [9]. Based on research over the

last 20 years, sumoylation of many key regulatory proteins plays a pivotal role in cell cycle reg-

ulation, nuclear transport, the DNA damage response, and chromosome segregation and

affects various cellular processes [10].

The accumulation of sumoylated proteins in the cell is in part counterbalanced by dedicated

SUMO-specific cysteine proteases that cleave SUMO off proteins that have been sumoylated.

Much of what we know about SUMO protease function, activity, and specificity was initially

identified in budding yeast Saccharmyces cerevisiae (Sc) [11–14]. Budding yeast cells express

two SUMO proteases of the Ulp family, ScUlp1 and ScUlp2. ScUlp1 is required for processing

of the SUMO precursor and several nuclear and cytosolic SUMO-modified proteins [11]. In

contrast, ScUlp2 preferentially cleaves SUMO chains and desumoylates a handful of nuclear

substrates [15–17]. Differences in substrate specificity are due to specific domains of ScUlp1

and ScUlp2 that affect their localization within the cell and their ability to act on SUMO

chains, monomeric SUMO, and sumoylated proteins. For example, karyopherin-interacting

domains enrich ScUlp1 at the nuclear envelope, restrict its access to the nuclear interior, and

control its cell cycle-regulated nuclear egress to interact with sumoylated septins at the bud

neck of dividing cells [14,18,19]. ScUlp2, on the other hand, is targeted to the nuclear interior

and carries SUMO-interacting motifs (SIMs) that may facilitate its interaction with SUMO

chains [15]. SIMs usually consist of 3–4 hydrophobic residues (usually Val or Ile), that are

often juxtaposed to a negatively charged amino acid (e.g. Glu or Asp). SIMs been found in

many eukaryotic proteins and have in several cases been confirmed to promote the interaction

with SUMO, SUMO chains, and sumoylated proteins [20].

Distinct cellular functions have been attributed to Ulp1 and Ulp2 activity. First, Ulp1 is an

essential SUMO protease who’s role in genome maintenance and cell cycle progression is still

not fully understood [11,21]. Impairment of Ulp1’s SUMO processing activity also adversely

affects many other cellular processes such as ribosome biogenesis, DNA damage response, cel-

lular DNA repair processes, the processing and export of the 60S pre-ribosomal particle,

nucleus–cytoplasm trafficking, and cell viability (reviewed in [22]). Second, impairment of

Ulp2 SUMO processing activity results in the accumulation of high-molecular weight poly-

SUMO chains. PolySUMO chains are normally formed when cells are exposed to proteotoxic

and genotoxic stressors. It has been hypothesized that this rapid increase of poly-sumoylation,

termed the SUMO-stress response (SSR), may be linked to a wave of transcription-coupled

sumoylation of mostly chromatin-associated proteins [23–25]). Therefore, Ulp2 may be

required to counteract the persistence of polySUMO chains that may interfere with restarting

normal transcriptional programs [17,23,26]. Ulp1 has also been linked to the cellular stress

response. For example, Ulp1 is sequestered in the nucleolus in response to alcohol stress but

not other stressors [27]. Additionally, upon mild oxidative stress exposure Ulp1 forms

SUMO targeting under stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0191391 January 19, 2018 2 / 23

LK, and DR. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0191391


protective dimers, to prevent the irreversible oxidation of its catalytic cysteine residues [28].

This inactivation of SUMO proteases during acute cellular stress likely contributes to the for-

mation of SUMO chains, suggesting an important role for the SSR. How the SSR and the accu-

mulation of SUMO chains is reversed is not entirely clear but it may involve the SUMO-chain-

mediated activation of STUbLs, the resulting degradation of SUMO ligases such as Siz, and

SUMO-chain specific SUMO proteases [29,30].

Yeast Ulp1 and Ulp2 are evolutionarily conserved in the form of at least 6 distinct SENP

proteases in mammalian cells. These SUMO proteases are differentially distributed to the

nucleoplasm, nucleolus, nuclear envelope, cytosol, nuclear bodies, and to mitochondria

(reviewed in [22,31,32]). SENP1 and SENP2 are most similar to Ulp1 and are, together with

SENP5, able to process the precursors of SUMO1, 2 and 3. SENP6 and SENP7 are most similar

to Ulp2 and are also involved in SUMO chain editing. Functionally, SENP proteases play a

role in ribosome biogenesis and regulate several other critically important nuclear activities

including transcription, genome maintenance, recombination, and chromosome segregation.

Clinically relevant dysregulation or overexpression of the SUMO protease SENP1 plays a role

in cancer development [33,34]. Additionally, cell culture and animal models indicate that

SENP1 and SENP2 prevent apoptosis of neuronal cells [35,36].

How do SUMO proteases target their sumoylated substrates? Access of SUMO proteases to

sumoylated proteins seems to be restricted by their subcellular localization. SUMO proteases

also possess sequence features that facilitate their interaction with SUMO. Structural studies

show that the catalytic domain of these SUMO proteases includes a SUMO-binding surface

(SBS) that makes multiple contacts with SUMO [37]. In yeast Ulp1 and the related mammalian

SENP1 and SENP2, the SBS is configured to allow binding and processing of all SUMO iso-

forms and their conjugates. In contrast, the SBS in SENP6 and SENP7 is altered to preferen-

tially accommodate chain-forming SUMO2/3 [38]. Ulp2, which is most similar to SENP6/7,

preferentially binds and processes chains of more than three SUMOs from the distal end, leav-

ing a tail of two SUMOs attached to its substrates [16]. SIMs that could promote the interac-

tion with sumoylated proteins and SUMO chains have been predicted in Ulp2, SENP1,

SENP2, SENP6 and SENP7 but not in Ulp1, SENP3 and SENP5 [22]. In all cases, these SIMs

are part of the non-catalytic regions but not the UD domain of these SUMO proteases. There

is currently no published evidence linking SIMs in SUMO proteases to their activity or

specificity.

We previously investigated how the budding yeast SUMO protease ScUlp1 that resides at

the inner face of the nuclear pore complex targets sumoylated septins at the bud-neck of divid-

ing cells [19]. We found that the substrate-targeting features of Ulp1 are restricted to its car-

boxy-terminal catalytic UD domain. Interestingly, we also determined that the UD domain of

Ulp1 with the catalytic cysteine (C580) replaced by a serine, traps sumoylated proteins. For

simplicity we will refer to this carboxy-terminal SUMO-trapping Ulp1(C580S) fragment as

UTAG (short for UD TAG). The budding yeast–derived UTAG (ScUTAG) is 218 amino acids

in length and can readily be expressed as a recombinant fusion protein in bacterial cells. When

expressed in yeast cells, ScUTAG localizes to the septin ring and the nucleus of G2/M-arrested

cells. The recombinant protein is able to pull down sumoylated proteins from yeast protein

extract and interact with SUMO chains. We previously found that the ScUTAG avidly binds to

immobilized SUMO1 with a Kd of ~12.8nM, which is about 200 times stronger than the inter-

action of SUMO with a SIM.

This remarkable affinity of the ScUTAG for SUMO raised the possibility that the UTAG

could be a useful reagent to identify important mitotic targets of Ulp1 and aid our studies of

how SUMO proteases interact with SUMO and sumoylated proteins. In our search for features

that could enhance SUMO binding and processing by SUMO proteases, we investigated a
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variant of ScUlp1 from the thermotolerant yeast strain Kluyveromyces marxianus. KmUlp1

contains a bona fide surface-exposed SIM sequence in the UD domain that is not conserved in

ScUlp1. In the current study we cloned the KmUD to generate KmUTAG. A previous study

showed that recombinant proteins derived from Kluyveromyces marxianus exhibit superior

stability when exposed to high temperature and chemical insults relative to their budding yeast

orthologs [39]. When compared to ScUTAG, we found that KmUTAG has greatly enhanced

pan-SUMO-binding properties under conditions that include oxidative stress, heat stress, and

protein denaturing reagents. Unexpectedly, replacement of the putative SIM in KmUTAG,

greatly reduced its ability to interact with immobilized SUMO even at ambient temperature.

However, whether this putative SIM plays a physiological role in SUMO binding is not yet

clear. Overall, we find that the binding of KmUTAG to SUMO is faster than ScUTAG and that

KmUTAG is retained longer on immobilized SUMO. Finally, we show that KmUTAG is a use-

ful reagent to identify sumoylated proteins and that KmUTAG fused to a fluorescent protein

can be used to detect sumoylated proteins in mammalian tissue culture cells. In summary, the

KmUTAG is a unique reagent for the study of SUMO processing and sumoylation, and it may

allow us to address fundamental questions about the roles of SUMO under stress.

Results

A Ulp1 SUMO protease from K. marxianus, a thermotolerant yeast strain

SUMO proteases are pivotal components of the sumoylation cycle in all eukaryotes but the

question of how these enzymes target specific substrates, especially those involved in cell cycle

progression, remains largely unanswered. Our quest to identify determinants of SUMO-target-

ing in SUMO proteases led us to analyze a Ulp1 protease from Kluyveromyces marxianus (K.

marxianus or Km). K. marxianus is a thermotolerant yeast strain and proteins isolated from

this yeast show exceptional tolerance to heat and chemical stressors [39]. We reasoned that

this feature of K. marxianus would extend to proteins of the sumoylation cycle, including

Ulp1, and that KmUlp1 would possess sequence features allowing it to target, bind, and pro-

cess SUMO and SUMO-modified proteins under otherwise unfavorable conditions.

We compared the sequences of budding yeast ScUlp1and KmUlp1 and noticed that, as

expected, the catalytic UD domains of KmUlp1 and ScUlp1 showed a high degree of sequence

conservation (63% identity and 80% similarity). Additionally, we noted that full-length

KmUlp1 was 66 amino acids shorter than ScUlp1, which was consistent with a previous report

on K. marxianus proteins. However, there is only a 3 amino acid difference in size between the

UD domains of ScUlp1 and KmUlp1 (Fig 1A and 1B). One striking difference was the pres-

ence of a predicted SIM motif in the UD domain of KmUlp1 (VDILD) that is not found in the

UD domain of ScUlp1 (GPS-SUMO [40]). This KmSIM-specific motif is not part of a previ-

ously described SUMO-binding surface of ScUlp1 (Fig 1A) [37]. We mapped the putative

KmSIM onto the surface of the published co-crystal structure of ScUlp1 with budding yeast

SUMO and found that it was surface exposed and accessible. If functional, this KmSIM may

thus aid the interaction of KmUlp1 with SUMO and sumoylated proteins (Fig 1C). Based on

this interesting observation we decided to focus on the conserved UD of KmUlp1 and to com-

pare its SUMO-binding properties to those of ScUlp1 (see also Materials and methods).

SUMO processing by KmUlp1

ScUlp1 is an essential protein. Therefore, to assess whether KmUlp1 can substitute for the

activity of ScUlp1 in budding yeast we cloned both catalytically active UD domains (Fig 1B).

We found that both the ScUD and the KmUD, but not an empty vector, complemented an

essential ulp1::HIS3 deletion in a 5FOA shuffle assay at 30˚C (Fig 2A). We reasoned that this
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Fig 1. Alignment and features of the Ulp1 SUMO protease from Saccaromyces cerevisiae and Kluyveromyces
marxianus. (A) Alignment of Ulp1 from Kluyveromyces marxianus (top) and Saccharomyces cerevisiae (bottom). The

arrow indicates the catalytic cysteine at position C580 in ScUlp1 and C517 in kmUlp1. The yellow line indicates the

region of the conserved catalytic UD domain of Ulp1 (NCBI #COG5160) characterized in this study and the blue

highlight indicates a previously described SUMO-binding surface. A potential SIM (VDILD) that is present in

KmULP1 but not ScULP1 is marked with a red box. (B) Schematic representation of SUMO proteases, truncations,

SUMO targeting under stress
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ability of KmUD to complement the ulp1::HIS3 deletion was due to its ability to process

SUMO and sumoylated proteins. To confirm this prediction, we expressed fusion proteins of

KmUD or of the catalytically inactive mutant, KmUTAG, with maltose-binding protein

(MBP) in bacteria and tested their activity in vitro. Combining KmUD or commercially avail-

able Ulp1 in a reaction with the purified SUMO1 precursor (pro-SUMO) resulted in the for-

mation of processed SUMO1 (Fig 2B top). In contrast, the KmUTAG failed to processes the

SUMO precursor. Similarly, KmUD efficiently cleaved the Smt3 moiety off a purified

Smt3-chloramphenicol acetyltransferase fusion protein (SUMO-CAT–Fig 2B bottom).

SUMO-CAT was cut to completion by kmUD both at 30˚C and 37˚C. Finally, we tested the

processing of physiological SUMO conjugates by KmUD (Fig 2C) Purified wildtype human

poly-SUMO2 chains that are linked via isopeptide bonds on lysine 11 were incubated with

varying concentrations of KmUD. Analysis of the poly-SUMO2 chains by western blotting

using an anti SUMO2/3 antibody confirmed that SUMO chains were processed by KmUD in

a concentration-dependent manner. These data suggest that, similar to ScUlp1, KmUlp1 can

process SUMO precursors, SUMO fusion proteins, and SUMO conjugates.

SUMO binding of KmUlp1

In our sequence alignment the catalytic cysteine (C580) of ScUlp1 corresponds to C517 of

KmUlp1 (Fig 1A and 1B). We previously showed that when cysteine (C580) of ScUlp1 UD was

changed to a serine, the mutant recombinant protein (ScUTAG) was rendered catalytically

inactive but interacted avidly with sumoylated proteins [19]. To study the SUMO-binding of

KmUlp1 we introduced the corresponding C517S mutation into the KmUD to form a SUMO-

trapping KmUTAG protein. First, we assayed the ability of KmUTAG to interact with SUMO

in a two-hybrid assay (Fig 3A). In this assay we found that Gal4-activation domain (AD)

fusions of both ScUTAG and KmUTAG interact with the Gal4-DNA binding domain (BD)

fusion of yeast SUMO/Smt3. In contrast, both catalytically active ScUD and KmUD did not

activate the HIS3 reporter gene and failed to support growth on media lacking histidine (Fig

3A). We then investigated the binding of recombinant KmUD, ScUTAG and KmUTAG to

beads coated with non-cleavable SUMO1, 2 or 3. Bound proteins were eluted, separated by

SDS-PAGE, and visualized using a Coomassie G250 stain. In this in vitro binding assay,

KmUD, KmUTAG, and ScUTAG interact avidly with SUMO1. All proteins also bind to

SUMO2 and SUMO3 binding beads, albeit less efficiently (Fig 3B). SUMO beads used in this

study contained equivalent or very similar amounts of SUMO1, SUMO2, or SUMO3 (4.9–5.0

mg/ml or ~0.45μM respectively). However, SUMO1 is most similar to Smt3 (~50%), and this

may explain why the yeast-derived KmUD, KmUTAG, and ScUTAG are preferentially

enriched on SUMO1 beads. This is consistent with our previous finding that the C580S con-

taining ScUTAG is a SUMO-trapping protein [19]. Next, we investigated the binding of

KmUD, KmUTAG, and ScUTAG to a soluble, recombinant SUMO-CAT fusion protein,

unbound SUMO1, and the pro-SUMO1 precursor (Fig 3C). As we show above, KmUD is cata-

lytically active (Fig 2B) and did not precipitate SUMO-CAT, pro-SUMO1 or SUMO1 (Fig 3C

lanes 2, 5, 8). In contrast, KmUTAG and ScUTAG efficiently precipitated the SUMO-CAT

fusion protein (Fig 3C lanes 3 and 4). We were also able to detect a small amount of SUMO1

(Fig 3C lanes 9 and 10) but no pro-SUMO1 (Fig 3C lanes 6 and 7). This may indicate that

and mutants studied in this work. (C) Three dimensional representation of the co-crystal structure of the catalytic

domain of Ulp1 (Ulp1-UD, magenta) with yeast small ubiquitin-like modifier (SUMO/Smt3, blue). Indicated in yellow

are the residues that correspond to the predicted SIM domain (VDILD) present in KmUlp1. The model was derived

using MMDB database entry 13315.

https://doi.org/10.1371/journal.pone.0191391.g001
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Fig 2. KmUlp1 is a SUMO protease. (A) Catalytically active UD fragments of ScUlp1 (ScUD) and KmUlp1 (KmUD)

complement a ulp1::HIS3 deletion in a yeast 5-FOA shuffle assay. An empty vector (-) does not support growth of

ulp1::HIS3 on 5-FOA and is included as a negative control. All transformed cell patches grow on media lacking 5-FOA

(-Leu) (B) Purified catalytically active KmUD cleaves recombinant SUMO fusion protein (SUMO-CAT) (top gel) and

pro-SUMO1 (bottom gel) in vitro. Cleaved recombinant proteins are labeled as CAT, SUMO and SUMO1,

respectively. In contrast, the catalytically inactive KmUTAG carrying the C517S mutation is unable to process either

SUMO targeting under stress
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KmUTAG and ScUTAG preferentially remain bound to proteins that have been modified

with SUMO. Finally, we also investigated the ability of KmUTAG to interact with an in vitro–

sumoylated RanGAP1 fragment (RG1f). To assess binding, the SUMO1-modified RG1f was

combined with KmUTAG or KmUD (Fig 3D). SUMO1-modified RG1f efficiently precipitated

with KmUTAG, but not KmUD, as shown by western blotting with an anti-SUMO1 antibody.

In summary, these experiments suggest that SmUTAG and KmUTAG are pan-SUMO binding

proteins with a preference for SUMO conjugates.

SUMO-binding under stress

Considering that K. marxianus is a thermotolerant yeast, we compared the SUMO-binding

ability of KmUTAG to ScUTAG under conditions that impede proper protein folding and

protein/protein interactions. Initially, we compared the binding of purified KmUTAG and

ScUTAG proteins to SUMO1 beads at 25˚C (RT) and 42˚C. K. marxianus is known to with-

stand temperatures up to 49˚C and this observation was reflected in the binding to SUMO1

beads. Both UTAGs showed robust binding to SUMO1 beads at RT, but at 42˚C ScUTAG

binding was greatly reduced (87% reduction of ScUTAG) while the interaction between KmU-

TAG and SUMO1 was much less affected (25% reduction) (Compare Fig 4A lanes 4 and 5).

We reasoned that the recombinant KmUTAG protein is more stable at 42˚C and so we also

attempted our SUMO1-binding reaction in the presence of hydrogen peroxide (H2O2), a com-

pound known to induce oxidative damage of proteins and the oxidation of the catalytic cyste-

ine in SUMO proteases. Intriguingly, we observed that KmUTAG is able to bind SUMO1

beads even in the presence of 0.6% H2O2 while ScUTAG binding under these conditions is

reduced to 17% (Fig 4B compare lanes 8 and 10). A ScUTAG protein that was mutated to

express the proposed SIM residues of KmUTAG did not reveal a significant enhancement of

SUMO1-binding in the presence of peroxide (Fig 4B compare lanes 8 and 9). Further analysis

showed that the SUMO-binding activity of ScUTAG was extremely sensitive to peroxide with

even minute levels of peroxide (0.006%) reducing the ability to bind SUMO1 by 50% (Fig 4C).

Since the catalytic cysteine of ScUTAG and KmUTAG is replaced by a serine, these data sug-

gest that oxidation of another residue or possibly oxidative damage to multiple residues

impedes SUMO binding.

The apparent stability of KmUTAG prompted us to further test its SUMO-binding resil-

ience. First we tested the ability of the chaotrophic protein denaturant urea and the anionic

detergent SDS to impede binding of KmUTAG and ScUTAG to SUMO1 beads. Both KmU-

TAG and ScUTAG bound SUMO1 beads in the presence of up to 0.2M urea. Binding of KmU-

TAG was reduced by 23% in 2M urea while ScUTAG binding was reduced by 82% (Fig 4D).

This data suggests that KmUTAG is overall less prone to denaturation than ScUTAG. In con-

trast, both KmUTAG and ScUTAG were sensitive to 0.2% SDS, as all binding to SUMO1

beads in the presence of this detergent was prevented (Fig 4E). Similarly, both KmUTAG and

ScUTAG failed to bind to SUMO1 in the presence of deoxycholate, an ionic detergent known

protein. Commercially available Ulp1 is included as a positive control (2 units/Rx) and (-) indicates a negative control

reaction without active or inactive SUMO proteases. Sloped triangle shapes indicate 10-fold serial dilutions of KmUD

and KmUTAG (0.07μg each in the first 100μl reaction) used in this assay Proteins were resolved on an SDS-PAGE gel

and stained using a Coomassie-dye. (C) KmUD can cleave wildtype human poly-SUMO2 chains that are linked via

isopeptide bonds on lysine 11 in vitro. Each lane contains 0.6ug poly-SUMO2 (2–8). Cleavage reactions are shown

below the sloped triangle shape and contain 10-fold serially diluted KmUD (0.14ug in the first reaction lane) as well as

0.6ug poly-SUMO2 (2–8). Proteins were resolved on an SDS-PAGE gel and western-blotted with an anti SUMO2/3

rabbit polyclonal primary antibody. Mono-, di, tri- and poly-SUMO2 adducts are as indicated. Numbers on the left

indicate molecular weight markers.

https://doi.org/10.1371/journal.pone.0191391.g002
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Fig 3. KmUTAG is a SUMO-binding protein. (A) Two-hybrid assay demonstrating that catalytically inactive

KmUTAG, ScUTAG, and ScUTAGSIM prey constructs (in LEU2marked pOAD) interact with a BD-SMT3/SUMO

bait construct (in TRP1marked pOBD2) and activate a HIS3 reporter construct as assayed on –Trp-Leu-His media. All

transformed strains grow on –Trp -Leu media. Catalytically active KmUD and ScUD fail to activate the reporter. (B)

Binding of recombinant KmUD, ScUTAG and KmUTAG to SUMO1, SUMO2, and SUMO3-conjugated agarose

beads. Proteins were bound to the indicated beads in the presence of the reducing agent TCEP in SUMO Protease
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to disrupt protein/protein interactions, and N-ethylmaleimide, a compound that forms stable,

covalent thioether bonds with sulfhydryls. The latter, NEM-mediated inhibition of SUMO1-

binding warrants further investigations because both KmUTAG and ScUTAG harbor serine

replacement mutations of their catalytic cysteines, suggesting that additional NEM-modified

cysteines interfere with SUMO-binding. As controls, incubation in the presence of 1% ethanol

or 1mM PMSF did not affect SUMO1-binding.

Finally, we also tested how binding of KmUTAG and ScUTAG to the soluble SUMO-CAT

fusion protein is affected by various stressors. Purified SUMO-CAT was combined either with

KmUTAG or ScUTAG. After incubation in the presence or absence of H2O2 or at 42˚, MBP

fusions of KmUTAG or ScUTAG were precipitated using amylose resin. Co-purifying proteins

were eluted from washed beads, separated by SDS PAGE and stained with a Coomassie dye.

As was seen with the SUMO1 beads, KmUTAG but not ScUTAG was able to bind SUMO-

CAT in the presence of H2O2 (Fig 4F compare lanes 4 and 5). At 42˚C, binding of either

UTAG to SUMO-CAT was greatly reduced or absent (Fig 4F lanes 2 and 3). One possible

explanation for this observation is that the SUMO-CAT substrate denatures at this tempera-

ture. We also wanted to assess the contributions of the putative SIM in KmUTAG on the stress

tolerance. Therefore, we replaced the core SIM in kmUTAG (VDIL) with the equivalent

sequence (TQID) of ScUlp1 to form kmUTAGsim. Unexpectedly, the kmUTAGsim mutant

failed to bind SUMO1 beads even at ambient temperature (see S1 Fig) and potential reasons

for this unexpected observation are discussed below. Nevertheless, these data reveal that

SUMO-binding features of K. marxianus Ulp1 reside in its catalytic domain and have evolved

with exceptional resilience to oxidation and protein-misfolding stressors.

SUMO-binding kinetics of KmUTAG

We sought to investigate the SUMO-binding kinetics of KmUTAG. First, we tested KmU-

TAG’s association with SUMO1 beads over time. We found that binding was rapid and that

within 15 minutes of incubation 50% of the protein was bound to SUMO1 beads. A maximum

of 70% was achieved after 45 minutes of incubation (Fig 5A). In the presence of peroxide

about 60% of KmUTAG was bound to SUMO1 beads after 45 minutes (Fig 4A lanes 3 and 4).

Second, we investigated how KmUTAG was retained on SUMO beads. For this experiment

KmUTAG or ScUTAG was bound to SUMO2 beads and after initial binding for 45 minutes,

the beads were washed for the indicated times. The results show that KmUTAG but not ScU-

TAG is retained for 90 minutes during the extended washes. Little or no ScUTAG is retained

after 30 minutes. Binding to SUMO1 beads also showed an avid binding of KmUTAG even

Buffer (SPB: See Materials and methods). After 3 washes proteins were eluted, resolved on SDS-PAGE gels, and stained

using a Coomassie G-250 stain. Lane 1 in all figures corresponds to the protein ladder with molecular weights

indicated in kDa. (C) Binding of recombinant MBP (maltose binding protein) fusions of KmUD, ScUTAG and

KmUTAG to a soluble SUMO fusion protein (SUMO-CAT), SUMO1, and pro-SUMO. After incubation in SPB with

TCEP, protein complexes were pulled down using amylose resin. Proteins were resolved on SDS-PAGE gels, and

stained as above. Arrows indicate UD and UTAG proteins. Also indicated are SUMO-CAT and SUMO1. 6μg of each

protein was used for binding assay and half of the binding reactions were run on the gel (compare also Fig 2B). (�)

indicates 1μg of SUMO-CAT that was included as a loading control in the lane with the ladder. SUMO1 and

proSUMO1 inputs are show in the S2 Fig (D) KmUTAG binds an in vitro–sumoylated fragment of RanGAP1 (RG1f).

RG1f (lane 2) was sumoylated in vitro with SUMO1 to produce RG1f –SUMO1 (lane 1) (see Materials and methods).

RG1f –SUMO1 was incubated with KmUTAG or KmUD as indicated and pulled down using amylose resin. Proteins

were resolved on SDS-PAGE gels and western blotted with an antibody to SUMO1. In this western blot the anti

SUMO1 antibody cross-reacted with KmUTAG, KmUD and RG1f as indicated on the blot (�). Note that RG1f –

SUMO1 was only pulled down with KmUTAG (lane 3), but not KmUD (lane 4). Sumoylated RG1 is cleaved by

catalytically active KmUD1 (lane 4) and is then removed with the washes before elution (see Materials and methods).

Graphic representations to the right of B,C,D indicate whether SUMO or a protease domain was immobilized on the

beads (circles) and which protein was bound.

https://doi.org/10.1371/journal.pone.0191391.g003
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Fig 4. KmUTAG SUMO-binding under stress conditions. (A) Analysis of SUMO-binding under heat stress. Recombinant KmUTAG or ScUTAGs were

incubated with SUMO1 beads in the presence or absence of the indicated treatments: with TCEP at room temperature (lanes 2 and 3) and at 42˚C (lanes 4

and 5). Subsequently, SUMO beads with bound UTAG proteins were visualized and quantitated using a BioRad imager and BioRad Image Lab software.

(B) Three recombinant UTAG proteins, ScUTAG, ScUTAG containing the putative KmSIM and KmUTAG (lanes 2–4), were incubated with SUMO1-

conjugated agarose beads in the presence of a reducing agent TCEP [5mM] or 1% hydrogen peroxide (H2O2). SUMO1-bound UTAG proteins in TCEP-

containing buffer (lanes 5–7) or in peroxide-containing buffer (lanes 8–10) were eluted and visualized as above. Reduced binding of both ScUTAG proteins
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after prolonged washes. This association and retention over time was analyzed quantitatively

using biolayer interferometry, an optical biosensing technique similar to surface plasmon reso-

nance (Fig 5C). We analyzed the binding of KmUTAG and ScUTAG to immobilized biotiny-

lated SUMO1 at 25˚C (Fig 5C, KmUTAG (top) and ScUTAG (bottom)). When fit to a single-

state binding model, KDs were 8.7 nM for KmUTAG and 2.0 nM for ScUTAG. KmUTAG

exhibited faster binding (kon = 9.6 x 104 M-1s-1 vs. 2.1 x 104 M-1s-1 for ScUTAG) but also faster

dissociation (koff = 8.4 x 10−4 s-1 vs 4.2 x 10−5 s-1). While there is a secondary component

apparent in KmUTAG binding, elimination of the top two analyte traces from analysis

changed KD only modestly (8.7 nM). KmUTAG did not fit a two-state parallel model, indicat-

ing that the secondary component, if biologically relevant, is complex.

In vitro and in vivo SUMO-targeting of KmUTAG

When expressed in living cells, catalytically inactive GFP-tagged SUMO proteases are enriched

at sites of SUMO modification. For example, in living yeast cells GFP-tagged Ulp1(C580S) local-

izes to septins after nocodazole-induced G2/M arrest, and in mammalian cells SENP1(C603S)
mutant localizes to PML nuclear bodies and domains of the HDAC4 protein [19,41]. There-

fore, we were curious to determine whether KmUTAG could be used to detect sumoylated

proteins in cultured mammalian cells. To this end we created a codon-optimized mCherry-

tagged kmUTAG construct that was transfected in 786–0 renal carcinoma cells together with

YFP-tagged SUMO1. Transfected cells were grown on cover slips for 24 hours in DMEM

media before fixation and imaging using a Nikon Confocal microscope. Z-sections of repre-

sentative cells were collected using the appropriate filter sets (FITC, TRITC, UV) to differenti-

ate between YFP (SUMO1), mCherry (kmUTAG), and DAPI (chromatin) signals. As

previously reported, the majority of YFP-SUMO1 localized to the nucleus and was enriched in

numerous nuclear (PML) bodies (Boudreau 2012). In all cells that displayed a clearly discern-

ible SUMO1 signal, mCherry-tagged kmUTAG co-localized with SUMO1, suggesting that the

pan-SUMO binding KmUTAG associates with sumoylated proteins in living cells (Fig 6A).

We also used KmUTAG to purify sumoylated proteins from extracts of 786–0 cells. Extracts

were prepared from untransfected 786–0 cells, from GFP-only transfected cells, and from

YFP-SUMO1-tranfected cells. Cleared extracts were then incubated with 6 μg of recombinant

KmUTAG and Talon beads were used for pulldowns (see Materials and methods). After west-

ern blotting with an anti-GFP antibody, both GFP and YFP-SUMO1 were detected in the

whole cell extract (WCE). In contrast, only YFP-SUMO1 was detected in the KmUTAG pull-

downs, demonstrating the specificity of this pan-SUMO trapping protein (Fig 6B). Similarly,

we compared the ability of recombinant KmUTAG and ScUTAG to pulldown SUMO1 conju-

gates from peroxide-treated human prostate cancer (PC-3) cells (Fig 6C). For this comparison

a mock-pulldown without either SUMO-trapping protein was includes as a control. Levels of

to SUMO1 beads was quantitated as above. (C) Analysis of SUMO-binding in the presence of various concentrations of hydrogen peroxide (H2O2).

KmUTAG or ScUTAG proteins were incubated with SUMO1 beads in the presence or absence of the indicated concentrations of hydrogen peroxide (lanes

4–9), without hydrogen peroxide (lanes 2 and 3). Subsequently, eluted UTAG proteins were visualized and quantitated as above. (D & E) Analysis of

SUMO-binding in the presence of various concentrations of urea and SDS. Recombinant KmUTAG or ScUTAGs in the presence of urea (0.02 M, 0.2 M,

2.0 M) or SDS (0.02%, 0.2%, 2.0%) as indicated. All binding reactions were performed in the presence of 5mM TCEP. SUMO1 binding reactions without

urea and SDS are included as controls (F) Binding of UTAG to a SUMO-fusion protein. Recombinant HIS6-SUMO-CAT (a linear fusion protein of a HIS6

affinity tag, Smt3/SUMO, and chloramphenicol acetyl transferase) was incubated with KmUTAG or ScUTAG (these UTAGs were produced as fusions with

the maltose binding protein MBP). Individual reactions were incubated as follows: at 42˚C (lanes 2 and 3), in the presence of 0.6% hydrogen peroxide

(H2O2) (lanes 4 and 5), or in the presence of 5mM TCEP (lanes 6 and 7). After incubation at the stated conditions, amylose beads were used to pull down

the UTAG and associated SUMO-CAT. UTAG and co-purifying proteins were eluted with 2x SDS-PAGE sample buffer, visualized and quantitated as

detailed above. Also shown for comparison and as controls are samples of recombinant SUMO-CAT (lane 8) and SUMO1 purified KmUTAG (lane 9) and

ScUTAG (lane 10). Graphic representation to the right of A-F indicate which proteins were linked to SUMO beads or amylose resin and which proteins

were pulled down.

https://doi.org/10.1371/journal.pone.0191391.g004
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Fig 5. Analysis of binding kinetics of the KmUTAG protein to SUMO. (A) Lanes 2–7: Binding of KmUTAG to

SUMO1 beads over time (min) or in the presence or absence of hydrogen peroxide (H2O2) as indicated. Lane 2: total

protein in each binding reaction. (B) Retention of bound KmUTAG (Km) or ScUTAG (Sc) on SUMO2 beads over

time (min). (C) Sensorgrams for KmUTAG (top) and ScUTAG (bottom) binding to biotinylated SUMO1. Analyte

UTAG concentrations were 250 nM (red), 125 nM (orange), 63 nM (yellow), 31 nM (green), 16 nM (blue), 8 nM

(purple) and 4 nM (magenta). Raw data (points) are shown with fits (solid lines) to a global one-state binding model.

Association was 0–300 s. Dissociation was 300–600 s. Graphic representations to the right of A and B indicate that

SUMO1 or 2 was immobilized on the beads (circles) and that KmUTAG was precipitated.

https://doi.org/10.1371/journal.pone.0191391.g005
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Fig 6. UTAG expression in mammalian cells. (A) UTAG localization to sites of sumoylation in mammalian cells.

mCherry-tagged KmUTAG and pEYFP-SUMO1 were transfected into mammalian cells that were grown on cover

slips. Cells were then fixed, stained with DAPI, and visualized using a confocal microscope. An overlay of DAPI,

mCherry, and YFP images is shown in the lower right corner (merge). Expression of kmUTAG did not alter the

distribution or localization of YFP-SUMO (B) Using UTAG to pulldown SUMO-modified proteins from mammalian

cell extracts. Whole cell extracts (WCE) of 786–0 renal carcinoma cells transfected with YFP-SUMO1, control GFP or
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SUMO1 in the pull-downs and the control were then analyzed using quantitative western blot-

ting. Our results suggest that under these conditions kmUTAG is ~40% more effective in pull-

ing down SUMO1 conjugates. Therefore, we predict that KmUTAG may be a useful reagent

for the detection of SUMO and sumoylated proteins in many different types of eukaryotic

cells. Additionally, these data show for the first time the application of a stress and thermo-tol-

erant SUMO-trapping Ulp1 SUMO protease mutants such as KmUTAG for the specific detec-

tion and purification of SUMO-modified proteins.

Discussion

DMKU 3–1042 is a particularly stress-resistant strain of the thermotolerant hemiascomycetous

yeast K. marxianus, making it an attractive organism for biofuel and recombinant protein pro-

duction. The stress tolerance of K. marxianus is positively correlated to the abundance of tran-

scripts for ribosome assembly, translation, transcription, DNA repair, and scavenging reactive

oxygen species (ROS) [42].

Additionally, the reduction in primary sequence length of K. marxianus proteins has been

hypothesized to be an important contributing factor to their superior thermotolerance and

unfoldability. A recent study took advantage of these stress-tolerant features to clone a suite of

thermostable autophagy core proteins for the elucidation of molecular details of autophagy

[39]. Similar to autophagy-related proteins, components of the SUMO system are also con-

served in Kmarxianus. Studying SUMO pathway proteins expressed in this thermotolerant

yeast may, therefore, yield useful molecular details about the transient interactions with

SUMO and its substrates, especially under stress conditions.

Our ultimate goal was to compare and contrast determinants of SUMO targeting, binding,

and processing in Ulp1 SUMO protease of K.marxianus and S. cerevisiae. Next to Ulp1 we

were also able to identify putative orthologs of Ulp2, Smt3, Siz1, Mms21, Ubc9, Aos1, Uba2

and also Slx5 and Slx8 (see S1 Table and https://www.ncbi.nlm.nih.gov/genome/10898). We

failed to detect a match for budding yeast Siz2 raising the possibility that, similar to S. pombe,
K. marxianus may only express two SUMO E3 ligases, Siz1 and Mms21/Nse2. We also found

that SUMO pathway components, except KmUlp2, were generally shorter than their budding

yeast orthologs, and this is consistent with a previously published comprehensive bioinformat-

ics analysis of K.marxianus and S. pombe proteins [39]. We observed the biggest size difference

between KmUlp1 and ScUlp1 (66 amino acids) and Km and Sc Siz1 (99 amino acids). Using

the Foldindex webs-tool, we generated the predicted unfoldability scores for all SUMO path-

way components [43]. We found that, as expected, Km SUMO pathway components were gen-

eral less disordered (see the S1 Table). Consistent with its predicted thermotolerance, the UD

domain of KmUlp1 (+0.136) showed a dramatic reduction in disordered segments when com-

pared to ScUlp1 (+0.09) even though both protein domains only differed by 3 amino acid resi-

dues (215 vs 218).

One prediction that we investigated is that growth at elevated temperatures may necessitate

additional features of KmUlp1 that facilitate its productive interaction with SUMO, SUMO

conjugates and SUMO-chains under conditions that are unfavorable for protein interactions.

untransfected (none). Pulldowns using recombinant KmUTAG on the right. Note high molecular weight

YFP-SUMO1 conjugates in the pulldown of YFP-SUMO1. The graphic representation to the right indicates that

KmUTAG was immobilized on amylose beads (circle) and that YFP-SUMO conjugates were pulled down. (C) 5ug

KmUTAG, SCUTAG or no protein (mock) were added to 100ul diluted cell extracts (see Materials & methods) and

nutated in the presence of nickel beads for 1 hour at 25˚C. Eluted proteins were run on SDS-PAGE, western blotted

with anti SUMO1 antibody, and quantitated using a c-DIGIT scanner (Li-Cor Biosciences). 20% of input whole cell

extract (WCE) probed with the anti SUMO1 antibody is shown for comparison.

https://doi.org/10.1371/journal.pone.0191391.g006
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Focusing on the catalytic domain of KmUlp1 and ScUlp1, we noted a surface-exposed putative

SIM in the KmUD domain. This SIM (VDILD) is of the h-X-h-h type followed by a negative

charge (D) and was defined using the high threshold on GPS-SUMO [40]. This putative SIM

is not conserved in the ScUD domain (TQIDK). This is interesting because SIMs have not

been reported to reside in the UD domains of SUMO proteases. However, upon further inves-

tigation we found the identical sequence motif in putative orthologs of Ulp1 in K. lactis
(XP_455581.1) and K. dobzhanskii (CDO95827.1).

To study the SUMO-binding properties of KmUlp1 we first showed that, analogous to

ScUlp1, KmUlp1 binds and cleaves a variety of SUMO isoforms and SUMO conjugates. Next,

we used a SUMO-trapping mutant of KmUlp1, KmUTAG, to investigate SUMO binding in

the presence of proteotoxic stress. Our analysis indicates that SUMO-trapping by KmUTAG is

considerably more stress-tolerant than the previously described SUMO-trapping by ScUTAG

[19]. For example, SUMO-trapping by KmUTAG is little or not at all affected by elevated tem-

perature (42˚C), the presence of oxidative stress (0.6% hydrogen peroxide), or the presence of

a strong protein denaturant (2M urea). Under these conditions, SUMO-trapping by ScUTAG

is greatly reduced or absent. However, both KmUTAG and ScUTAG fail to bind SUMO in the

presence of SDS (0.2%), NEM (5mM), and deoxycholate (0.5%). It should also be noted that

the ability of KmUTAG to trap SUMO-modified proteins will depend on the solubility of indi-

vidual SUMO-modified proteins and whether SUMO is properly oriented and accessible.

We tested the putative SIM of KmUTAG detailed above. First, we replaced the IDKLD

sequence in ScUTAG with VDILD. However, ScUTAG with the VDILD motif remained sensi-

tive to peroxide treatment and failed to bind to SUMO1 beads (Fig 4B). Next, we replaced

VDIL in KmUTAG with the TQID sequence and this SIM replacement mutant failed to bind

SUMO1 beads even at ambient temperatures. One possible interpretation of this observation

is that KmUlp1, but not ScUlp1, may rely on the VDILD SIM motif to bind SUMO-modified

proteins. However, at this point we cannot exclude the likely possibility that replacement of

the SIM alters the folding of the KmUD domain and prevents SUMO binding. We also

attempted to replace the putative VDILD SIM with alanines but the purified protein precipi-

tated after cryostorage. Confirmation of this potential SIM in KmUlp1 and its functional rele-

vance awaits further analyses. We continue to test our model that the putative SIM and the

SBS of KmUD cooperate to bind poly-sumoylated proteins or SUMO chains

We reasoned that additional difference could be apparent from the kinetic analysis of both

UTAG proteins. BLI analysis shows that both KmUTAG and ScUTAG bind SUMO1 with

high affinity, exhibiting rapid-on, slow-off binding from which we can conclude that both ana-

lytes are kinetically very similar, at least at 25˚C. The anomalous difference in signal ampli-

tudes, much higher for any given concentration of KmUTAG, may result from differences in

quantitation of the UTAGs or some other unknown factor, e.g. shape (compare Fig 5C traces

in top and bottom graphs). They may, however, be reflective of some biologically relevant dif-

ference of KmUTAG such as oligomerization. We hope to characterize any such differences in

a future study.

Another question concerns the peroxide-resistance of KmUTAG. It has been reported that

ROS inactivate Ulp-type SUMO proteases either through a reversible intermolecular dimeriza-

tion or the irreversible oxidation of the catalytic cysteines [28]. KmUTAG relies on the same

catalytic residues as the peroxide-sensitive ScUTAG. How KmUTAG achieves its peroxide

resistance is, therefore, not immediately clear. One interesting possibility is that an additional

surface-exposed cysteine residue (C504) that is present in the UD-domain of KmUlp1 contrib-

utes to the formation of a protective, reversible intermolecular disulfide bond under condi-

tions of oxidative stress. Similarly, KmUlp1 is missing a lysine (K602 in ScUlp1) that has been
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implicated in preventing the reduction of an overoxidized cysteine in ScUlp1. However, there

is currently no experimental evidence to support either of these hypotheses.

In summary, our observations suggest that KmUlp1 has evolved to not only withstand

denaturation but to functionally interact with SUMO even under extreme conditions. Con-

ceivably, since K. marxianus can grow at temperatures above 49˚C and is resistant to pro-

teotoxic stress, KmUlp1 had to evolve to maintain its SUMO targeting, binding, and

processing activity under adverse conditions [44]. This is particularly interesting since

heat-shock and oxidative stress are known to inactivate SUMO proteases and lead to the

accumulation of SUMO conjugates and SUMO chains in cultured mammalian cells [28,45].

Recent work has shown that SUMO and SUMO chains accumulate in the nucleus at sites of

active transcription and are hypothesized to protect protein complexes during proteotoxic

stress [23,25,46]. As cells recover from heat shock, SUMO chains are depolymerized, pre-

sumably as SUMO protease activity is recovered and SUMO-targeted ubiquitin ligases

(STUbLs) antagonize the formation of SUMO chains and proteins modified with SUMO

[29,47].

Due to its pan-SUMO binding properties and its ability to bind SUMO in the presence of

proteotoxic reagents, KmUTAG may represent a useful reagent for the detection and purifica-

tion of SUMO conjugates and SUMO chains that form under stress. For example, we were

able to show that recombinant kmUTAG is more effective in the purification of SUMO1 con-

jugates from peroxide-treated PC-3 cells than ScUTAG (Fig 6C). Albeit, identification of these

SUMO conjugates is beyond the scope of this paper our findings provide evidence that this

strategy to precipitate and visualize sumoylated proteins may be aided by the stress-tolerant

Km version of this SUMO-trapping protein fragment. Ultimately, we plan to transfect the

stress-tolerant KmUTAG expression construct into mammalian tissue culture cells to trap

sumoylated proteins as they accumulate during heat or oxidative stress. The KmUTAG may

not be affected by these treatments (e.g. denature or become inactivated) and bound SUMO-

modified proteins can then be identified using mass spectrometry or specific antibodies. Fur-

thermore, since KmUTAG is a single–chain SUMO-trapping protein, we are using a cell-pene-

trating CPP-adaptor system to deliver and release these small stress-tolerant SUMO-trapping

proteins into the cytoplasm of mammalian cells (Salerno et al., 2016). This novel technique has

recently been used to show the intracellular delivery of several model cargos proteins (e.g.

myoglobin, horseradish peroxidase, and ß-galactosidase) into a variety of cell lines (HEK and

HT-3). We predict that the delivery of recombinant fluorescent KmUTAG will then allow us

to visualize the distribution of SUMO and sumoylated proteins in living cells. The latter is of

particular interest, because SUMO, proteins involved in SUMO dynamics, and certain

SUMO-modified proteins are grossly increased or mislocalized in cell culture models of cancer

[33,48], heart disease [49], viral infection [50], fertility-related problems [51], and neurodegen-

erative diseases [52].

Materials and methods

Strains and plasmids

The K. marxianus yeast strain BY28356 was purchased from the Yeast Genetic Resource Cen-

ter Japan. Yeast strains for the two hybrid analysis as well as bacterial strains and plasmids for

the production of MBP fusions proteins are described in Elmore et al., 2011. The SUMO-CAT

expression plasmid was purchased as part of the Champion pET SUMO Expression system

(Thermo Fisher, K30001). pEYFP-SUMO1 was purchased from addgene (#13380 [53]). Addi-

tional strains and plasmids are listed in the S2 Table.
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Web-based analyses and databases

The sequence alignment in Fig 1A was generated using T-Coffee and boxshade programs as

described in https://labs.mcdb.ucsb.edu/weimbs/thomas/content/links. 3D structure of the

ULP1 UD with Smt3 was derived using Cn3D software v4.3. Sequences analyzed in the S1

Table were compared using the Kluyveromyces marxianus DMKU3-1042 reference genome at

www.ncbi.nlm.nih.gov/genome/10898, uniprot.org, and www.yeastgenome.org/. foldability

indices were compared using http://bip.weizmann.ac.il/fldbin/findex.

Cloning of KmUD and KmUTAG

Primers corresponding to the UD domain of kmULP1 (see Fig 1A) were used to amplify the

KmUD coding sequence from genomic DNA of Km strain DMKU 3–1042. Mutagenic prim-

ers and the Q5 site-directed mutagenesis kit (NEB E0554S) were used to generate KmUTAG,

KmUTAGSIMΔ, and ScUTAGSIM. To overexpress and purify Ulp1 truncations were cloned

into pMALc-HT (a gift from Sean T Prigge, Department of Molecular Microbiology and

Immunology, The Johns Hopkins University School of Public Health, Baltimore, MD, USA),

thereby adding an in-frame MBP module followed by a TEV protease cleavage site and a His6

epitope tag (Elmore et al., 2011). AD-fusions of KmUD and kmUTAG were cloned into

gapped pOAD2 (Stan Fields Lab, University of Washington, Seattle WA) and used for two-

hybrid and complementation studies. All primer sequences are available upon request.

Codon-optimized mCherry-tagged KmUTAG for expression in mammalian cells was cloned

using a commercial service (Genewiz).

Expression, purification, and in vitro assays

Frozen bacterial cell pellets from 100 ml of isopropyl β-D-1-thiogalactopyranoside-induced

BL21 Star (DE3) cells were thawed on ice and resuspended in 2 ml of 1 × SUMO protease

buffer (SPB: 50 mM Tris-HCl, pH 8.0, 0.2% NP-40, 150mM NaCl) containing 1 × TCEP (Tris

(2-carboxyethyl)phosphine hydrochloride) (5mM) added just before use. Ice-cold cells were

sonicated using a Branson Sonifier ultrasonic cell disruptor (Branson Ultrasonics, Danbury,

CT, USA), and extracts were cleared by centrifugation at 15, 000 rpm for eight minutes at 4˚C.

Cleared bacterial extracts were added to 15-ml conical tubes and diluted using 4 ml of 1 × SPB

containing 1 × TCEP. MBP/HIS6-tagged were bound to 5-ml columns containing 200 μl of

amylose resin (New England Biolabs, Ipswich, MA, USA) or Talon Resin (Clontech #635502)

and washed 3 times with 1 × cold SPB and then eluted with either 100mM maltose (amylose

resin) or 20mM imidazole (Talon resin) in 1x SPB. SUMO-CAT was purified as per manufac-

ture’s instructions (Thermo Fisher, K30001). Eluted proteins were supplemented with 10%

Glycerol, supplemented with 5mM TCEP, and aliquoted before freezing in liquid nitrogen.

For pulldown and binding reactions up to 6ug of each protein was added to dolphin-nose

tubes containing 1ml of 1X SPB with or without TCEP as indicated and 20μl of SUMO beads

were added. Reactions were nutated for 45 minutes or the indicated times, spun down, washed

with 3 times with 1xSPB and then eluted with 40ul of SPB. To assess binding to soluble pro-

teins such as SUMO1 and SUMO-CAT, 20ul of amylose resin was used to precipitate Talon-

purified UD and UTAG fusions. 20μl of the reaction was run out on NUPAGE 4–12% Bis/Tris

SDS PAGE gels. Gels were washed in water and then stained using Simply Blue G250 dye (Life

technologies # LC6060) before scanning and quantitation using a BioRad imager and BioRad

Image Lab software. SUMO protease digests were 20ul reactions containing 1xSPB with 5mM

TCEP, serially diluted KmUD or KmUTAG (0.07μg, 0.007μg, 0.0007μg), and 6ug substrate.

Reactions were incubated for 1 hour at 30˚C and stopped with 20μl 2x SDS Page Loading
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buffer. Half of each reaction was run on NUPAGE 4–12% Bis/Tris before staining with Simply

Blue dye.

Biolayer interferometry

SUMO1 (Boston Biochem UL-712) was biotinylated using NHS-LC-LC-biotin (succini-

midyl-6-[bio-tinamido]-6-hexanamidohexanoate) (Thermo Scientific) at a 5:1 molar ratio of

biotin to protein for 30 min at 25˚C followed by rapid exchange into HBS-T (10 mM HEPES,

pH 7.4, 150 mM NaCl, 0.05% Tween 20) by passage over a rapid desalting column. Conditions

were chosen according to the manufacturer so that each protein was likely randomly biotiny-

lated at an average of 1–2 positions. All BLI measurements were made on a FortéBio (Menlo

Park, CA) Octet QK biosensor using streptavidin sensors. Assays were performed in 96-well

microplates at 25˚C. All volumes were 200 μL. After loading biotinylated ligand onto SA sen-

sors, a baseline was established in buffer alone prior to association at varying analyte concen-

trations for 300 s. After the association phase, sensors were moved to buffer only to monitor

dissociation for another 300 s. Nonspecific binding to sensors without ligand was negligible.

Reference subtracted raw data were fit with a single-state global association-then-dissociation

model using GraphPad Prism 7.01.

Antibodies, proteins, and other reagents

Bead conjugated or unconjugated pro-SUMO1, SUMO1, SUMO2 and SUMO3 were pur-

chased from Boston Biochem. The Sumoylation kit for the productions and detection of

sumoylated RG1 was purchased from Enzo Lifesciences (BML-UW8955-0001). Commercially

available Ulp1 for in vitro desumoylation reactions was purchased from Thermo-Fisher

(12588018). TCEP was purchased from Thermo Fisher (Pierce 120490). 10x Cell Lysis Buffer

for cell extracts was purchased from Cell Signaling Technology (#9803) and cell extracts from

mammalian cells were generated as recommended by the manufacturer. The anti GFP anti-

body used was JL-8 was from Takara (632381). The anti SUMO1 and SUMO2/3 antibodies

were supplied with the Sumoylation kit.

Supporting information

S1 Fig. Analysis of SUMO1-binding when the putative core SIM in KmUTAG (VDIL) is

replaced with TQID from ScUTAG. This mutant protein is labeled as UTAG�. The binding

assay was performed as above and at room temperature.

(TIF)

S2 Fig. Loading controls for Fig 3C. SUMO1 and proSUMO1 after a pulldown with kmU-

TAG (lane 1 and 2). SUMO1 and proSUMO1 input to the pulldown reaction (Lane 2 and 3).

20% of KmUTAG used as input to the pulldown reaction.

(TIF)

S1 Table. Comparison of SUMO pathway components in S. cerevisiae (Sc) and K. marxia-
nus (Km). Sequence comparisons were derived using: https://www.ncbi.nlm.nih.gov/genome/

10898. FoldIndex comparisons (Δ) were calculating by substracting the reported Sc protein

unfoldability score from the reported Km protein unfoldability score. (+) indicates that the

Km protein is estimated to fold better (43).

(DOCX)

S2 Table. Plasmids used in this study.

(DOCX)
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14. Panse VG, Küster B, Gerstberger T, Hurt E. Unconventional tethering of Ulp1 to the transport channel

of the nuclear pore complex by karyopherins. Nat Cell Biol. 2003; 5: 21–27. https://doi.org/10.1038/

ncb893 PMID: 12471376

15. Kroetz MB, Su D, Hochstrasser M. Essential role of nuclear localization for yeast Ulp2 SUMO protease

function. Mol Biol Cell. 2009; 20: 2196–2206. https://doi.org/10.1091/mbc.E08-10-1090 PMID:

19225149

16. Eckhoff J, Dohmen RJ. In Vitro Studies Reveal a Sequential Mode of Chain Processing by the Yeast

SUMO (Small Ubiquitin-related Modifier)-specific Protease Ulp2. J Biol Chem. 2015; 290: 12268–

12281. https://doi.org/10.1074/jbc.M114.622217 PMID: 25833950

17. Bylebyl GR, Belichenko I, Johnson ES. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO

chains in yeast. J Biol Chem. 2003; 278: 44113–44120. https://doi.org/10.1074/jbc.M308357200 PMID:

12941945

18. Makhnevych T, Ptak C, Lusk CP, Aitchison JD, Wozniak RW. The role of karyopherins in the regulated

sumoylation of septins. J Cell Biol. 2007; 177: 39–49. https://doi.org/10.1083/jcb.200608066 PMID:

17403926

19. Elmore ZC, Donaher M, Matson BC, Murphy H, Westerbeck JW, Kerscher O. Sumo-dependent sub-

strate targeting of the SUMO protease Ulp1. BMC Biol. 2011; 9: 74–74. https://doi.org/10.1186/1741-

7007-9-74 PMID: 22034919

20. Kerscher O. SUMO junction-what’s your function? New insights through SUMO-interacting motifs.

EMBO Rep. 2007; 8: 550–555. https://doi.org/10.1038/sj.embor.7400980 PMID: 17545995

21. de Albuquerque CP, Liang J, Gaut NJ, Zhou H. Molecular Circuitry of the SUMO (Small Ubiquitin-like

Modifier) Pathway in Controlling Sumoylation Homeostasis and Suppressing Genome Rearrange-

ments. J Biol Chem. 2016; 291: 8825–8835. https://doi.org/10.1074/jbc.M116.716399 PMID: 26921322

22. Hickey CM, Wilson NR, Hochstrasser M. Function and regulation of SUMO proteases. Nat Rev Mol Cell

Biol. 2012; 13: 755–766. https://doi.org/10.1038/nrm3478 PMID: 23175280

23. Lewicki MC, Srikumar T, Johnson E, Raught B. The S. cerevisiae SUMO stress response is a conjuga-

tion-deconjugation cycle that targets the transcription machinery. J Proteomics. 2015; 118: 39–48.

https://doi.org/10.1016/j.jprot.2014.11.012 PMID: 25434491

24. Srikumar T, Lewicki MC, Costanzo M, Tkach JM, van Bakel H, Tsui K, et al. Global analysis of SUMO

chain function reveals multiple roles in chromatin regulation. J Cell Biol. 2013; 201: 145–163. https://doi.

org/10.1083/jcb.201210019 PMID: 23547032

25. Seifert A, Schofield P, Barton GJ, Hay RT. Proteotoxic stress reprograms the chromatin landscape of

SUMO modification. Sci Signal. 2015; 8: rs7–rs7. https://doi.org/10.1126/scisignal.aaa2213 PMID:

26152697

26. Schwartz DC, Felberbaum R, Hochstrasser M. The Ulp2 SUMO protease is required for cell division fol-

lowing termination of the DNA damage checkpoint. Mol Cell Biol. 2007; 27: 6948–6961. https://doi.org/

10.1128/MCB.00774-07 PMID: 17664284

27. Sydorskyy Y, Srikumar T, Jeram SM, Wheaton S, Vizeacoumar FJ, Makhnevych T, et al. A novel mech-

anism for SUMO system control: regulated Ulp1 nucleolar sequestration. Mol Cell Biol. 2010; 30: 4452–

4462. https://doi.org/10.1128/MCB.00335-10 PMID: 20647537

28. Xu Z, Lam LSM, Lam LH, Chau SF, Ng TB, Au SWN. Molecular basis of the redox regulation of SUMO

proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxi-

dation. FASEB J. 2008; 22: 127–137. https://doi.org/10.1096/fj.06-7871com PMID: 17704192

29. Westerbeck JW, Pasupala N, Guillotte M, Szymanski E, Matson BC, Esteban C, et al. A SUMO-tar-

geted ubiquitin ligase is involved in the degradation of the nuclear pool of the SUMO E3 ligase Siz1. Mol

Biol Cell. 2014; 25: 1–16. https://doi.org/10.1091/mbc.E13-05-0291 PMID: 24196836

30. Rojas-Fernandez A, Plechanovová A, Hattersley N, Jaffray E, Tatham MH, Hay RT. SUMO chain-

induced dimerization activates RNF4. Mol Cell. 2014; 53: 880–892. https://doi.org/10.1016/j.molcel.

2014.02.031 PMID: 24656128

31. Mukhopadhyay D, Dasso M. Modification in reverse: the SUMO proteases. Trends Biochem Sci. 2007;

32: 286–295. https://doi.org/10.1016/j.tibs.2007.05.002 PMID: 17499995

32. Nayak A, Müller S. SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biology.

2014; 15: 422–422. https://doi.org/10.1186/s13059-014-0422-2 PMID: 25315341

SUMO targeting under stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0191391 January 19, 2018 21 / 23

https://doi.org/10.1038/18457
http://www.ncbi.nlm.nih.gov/pubmed/10094048
http://www.ncbi.nlm.nih.gov/pubmed/10713161
https://doi.org/10.1038/ncb893
https://doi.org/10.1038/ncb893
http://www.ncbi.nlm.nih.gov/pubmed/12471376
https://doi.org/10.1091/mbc.E08-10-1090
http://www.ncbi.nlm.nih.gov/pubmed/19225149
https://doi.org/10.1074/jbc.M114.622217
http://www.ncbi.nlm.nih.gov/pubmed/25833950
https://doi.org/10.1074/jbc.M308357200
http://www.ncbi.nlm.nih.gov/pubmed/12941945
https://doi.org/10.1083/jcb.200608066
http://www.ncbi.nlm.nih.gov/pubmed/17403926
https://doi.org/10.1186/1741-7007-9-74
https://doi.org/10.1186/1741-7007-9-74
http://www.ncbi.nlm.nih.gov/pubmed/22034919
https://doi.org/10.1038/sj.embor.7400980
http://www.ncbi.nlm.nih.gov/pubmed/17545995
https://doi.org/10.1074/jbc.M116.716399
http://www.ncbi.nlm.nih.gov/pubmed/26921322
https://doi.org/10.1038/nrm3478
http://www.ncbi.nlm.nih.gov/pubmed/23175280
https://doi.org/10.1016/j.jprot.2014.11.012
http://www.ncbi.nlm.nih.gov/pubmed/25434491
https://doi.org/10.1083/jcb.201210019
https://doi.org/10.1083/jcb.201210019
http://www.ncbi.nlm.nih.gov/pubmed/23547032
https://doi.org/10.1126/scisignal.aaa2213
http://www.ncbi.nlm.nih.gov/pubmed/26152697
https://doi.org/10.1128/MCB.00774-07
https://doi.org/10.1128/MCB.00774-07
http://www.ncbi.nlm.nih.gov/pubmed/17664284
https://doi.org/10.1128/MCB.00335-10
http://www.ncbi.nlm.nih.gov/pubmed/20647537
https://doi.org/10.1096/fj.06-7871com
http://www.ncbi.nlm.nih.gov/pubmed/17704192
https://doi.org/10.1091/mbc.E13-05-0291
http://www.ncbi.nlm.nih.gov/pubmed/24196836
https://doi.org/10.1016/j.molcel.2014.02.031
https://doi.org/10.1016/j.molcel.2014.02.031
http://www.ncbi.nlm.nih.gov/pubmed/24656128
https://doi.org/10.1016/j.tibs.2007.05.002
http://www.ncbi.nlm.nih.gov/pubmed/17499995
https://doi.org/10.1186/s13059-014-0422-2
http://www.ncbi.nlm.nih.gov/pubmed/25315341
https://doi.org/10.1371/journal.pone.0191391


33. Zhang H, Kuai X, Ji Z, Li Z, Shi R. Over-expression of small ubiquitin-related modifier-1 and sumoylated

p53 in colon cancer. Cell Biochem Biophys. 2013; 67: 1081–1087. https://doi.org/10.1007/s12013-013-

9612-x PMID: 23640307

34. Wang Q, Xia N, Li T, Xu Y, Zou Y, Zuo Y, et al. SUMO-specific protease 1 promotes prostate cancer

progression and metastasis. Oncogene. 2013; 32: 2493–2498. https://doi.org/10.1038/onc.2012.250

PMID: 22733136

35. Fu J, Yu H-MI, Chiu S-Y, Mirando AJ, Maruyama EO, Cheng J-G, et al. Disruption of SUMO-specific

protease 2 induces mitochondria mediated neurodegeneration. PLoS Genet. 2014; 10: e1004579–

e1004579. https://doi.org/10.1371/journal.pgen.1004579 PMID: 25299344

36. Zhang Q-S, Zhang M, Huang X-J, Liu X-J, Li W-P. Downregulation of SENP1 inhibits cell proliferation,

migration and promotes apoptosis in human glioma cells. Oncol Lett. 2016; 12: 217–221. https://doi.

org/10.3892/ol.2016.4558 PMID: 27347128

37. Mossessova E, Lima CD. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interac-

tions and a regulatory element essential for cell growth in yeast. Mol Cell. 2000; 5: 865–876. PMID:

10882122

38. Alegre KO, Reverter D. Swapping small ubiquitin-like modifier (SUMO) isoform specificity of SUMO pro-

teases SENP6 and SENP7. J Biol Chem. 2011; 286: 36142–36151. https://doi.org/10.1074/jbc.M111.

268847 PMID: 21878624

39. Yamamoto H, Shima T, Yamaguchi M, Mochizuki Y, Hoshida H, Kakuta S, et al. The Thermotolerant

Yeast Kluyveromyces marxianus Is a Useful Organism for Structural and Biochemical Studies of Autop-

hagy. J Biol Chem. 2015; 290: 29506–29518. https://doi.org/10.1074/jbc.M115.684233 PMID:

26442587

40. Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, et al. GPS-SUMO: a tool for the prediction of sumoyla-

tion sites and SUMO-interaction motifs. Nucleic Acids Res. 2014; 42: W325–30. https://doi.org/10.

1093/nar/gku383 PMID: 24880689

41. Bailey D, O’Hare P. Characterization of the localization and proteolytic activity of the SUMO-specific

protease, SENP1. J Biol Chem. 2004; 279: 692–703. https://doi.org/10.1074/jbc.M306195200 PMID:

14563852

42. Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M, et al. Genetic

basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcrip-

tome analyses. Biotechnol Biofuels. 2015; 8: 47. https://doi.org/10.1186/s13068-015-0227-x PMID:

25834639

43. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, et al. FoldIndex: a

simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics. 2005;

21: 3435–3438. https://doi.org/10.1093/bioinformatics/bti537 PMID: 15955783

44. Pinheiro R, Belo I, Mota M. Oxidative stress response of Kluyveromyces marxianus to hydrogen perox-

ide, paraquat and pressure. Appl Microbiol Biotechnol. 2002; 58: 842–847. https://doi.org/10.1007/

s00253-001-0927-y PMID: 12021807

45. Pinto MP, Carvalho AF, Grou CP, Rodrı́guez-Borges JE, Sá-Miranda C, Azevedo JE. Heat shock
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