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Abstract

The mammalian spinal cord and medulla oblongata harbor unique neurons that remain in contact with the cerebrospinal
fluid (CSF-cNs). These neurons were shown recently to express a polycystin member of the TRP channels family (PKD2L1)
that potentially acts as a chemo- or mechanoreceptor. Recent studies carried out in young rodents indicate that spinal CSF-
cNs express immature neuronal markers that appear to persist even in adult cells. Nevertheless, little is known about the
phenotype and morphological properties of medullar CSF-cNs. Using immunohistochemistry and confocal microscopy
techniques on tissues obtained from three-month old PKD2L1:EGFP transgenic mice, we analyzed the morphology,
distribution, localization and phenotype of PKD2L1+ CSF-cNs around the brainstem and cervical spinal cord central canal.
We show that PKD2L1+ CSF-cNs are GABAergic neurons with a subependymal localization, projecting a dendrite towards
the central canal and an axon-like process running through the parenchyma. These neurons display a primary cilium on the
soma and the dendritic process appears to bear ciliary-like structures in contact with the CSF. PKD2L1+ CSF-cNs present a
conserved morphology along the length of the medullospinal central canal with a change in their density, localization and
dendritic length according to the rostro-caudal axis. At adult stages, PKD2L1+ medullar CSF-cNs appear to remain in an
intermediate state of maturation since they still exhibit characteristics of neuronal immaturity (DCX positive, neurofilament
160 kDa negative) along with the expression of a marker representative of neuronal maturation (NeuN). In addition,
PKD2L1+ CSF-cNs express Nkx6.1, a homeodomain protein that enables the differentiation of ventral progenitors into
somatic motoneurons and interneurons. The present study provides valuable information on the cellular properties of this
peculiar neuronal population that will be crucial for understanding the physiological role of CSF-cNs in mammals and their
link with the stem cells contained in the region surrounding the medullospinal central canal.
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Introduction

Medullospinal cerebrospinal fluid contacting neurons (CSF-cNs)

are part of the circumventricular organs found in the central

nervous system (CNS). Some of these organs form a bridge

between the CSF, the bloodstream, and neurons in the paren-

chyma and are also believed to be involved in neuronal volume

transmission [1–3]. These cells are present in the wall of the

ventricular cavities and around the cc and, depending on the

position of their soma, they represent intra-, subependymal and

distal CSF-cNs. The network of the medullospinal CSF-cNs might

represent the simplest circumventricular organ and are dispersed

along the entire length of the central canal (cc) of the spinal cord

from its terminal filum at the caudal level to the medulla oblongata at

more rostral levels [3,4]. CSF-cNs are present in all chordates

from the lancelet to the human but despite this strong evolutionary

conservation and morphological descriptions in numerous species,

their functions remain largely unknown [4,5].

In mammals, most of our knowledge concerning the medul-

lospinal CSF-cN system comes from studies conducted at the

spinal cord level [6–11]. These cells have a soma, more or less

inserted in the ependymal layer lining the cc, from which emerges

an extension terminated by a typical bulb-like structure (bud) that

comes into contact with the CSF [6–12]. Depending on the

species, this bud carries a sensory primary cilium, a kinocilium or

stereocilia [4,5]. The presence of these organelles has led to the

accepted view that CSF-cNs may have sensory functions.

Specifically, these neurons might sense modifications in the

composition of surrounding CSF (chemical hypothesis) or in the

pressure/flow of CSF (mechanical hypothesis) [4,5]. They were

also suggested to be in contact with the Reissner fiber that

originates from the subcommisural organ and extends to the

terminal filum [4,5].

The chemical hypothesis is supported by the presence of various

bioactive molecules such as hormones and neurotransmitters
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circulating in the CSF that are thought to come in contact with

CSF-cNs [2,13–15]. In addition, spinal CSF-cNs have been shown

to express ionic channels of the polycystin (TRPP or polycystin

kidney disease 2-like 1, PKD2L1) transient receptor potential

subtype; these channels are sensitive to extracellular pH and

osmolarity variation [12,16]. We showed in a previous study [12]

that PKD2L1+ CSF-cNs are also present in the dorsal vagal

complex (DVC), a hindbrain region dedicated to the regulation of

important autonomic functions [17,18]. Our work indicated that

CSF-cNs close to the cc are PKD2L1+ and sensitive to changes in

pH and osmolarity of the extracellular fluid. These neurons

displayed robust action potential discharge activity as well as

GABA and glycinergic synaptic currents. However, their pheno-

type and their degree of maturity have not yet been determined.

A renewed interest in these particular neurons emerged from

the demonstration that the region surrounding the spinal cc, where

CSF-cNs are found, represents a stem cell niche and may generate

both neurons and/or glial cells in lower vertebrates [19,20] as well

as in mammals [21,22]. Within this spinal niche, however

neurogenesis appeared very limited or inexistent in adult

mammals [23–26]. Interestingly, the DVC, where we previously

reported the presence of CSF-cNs, has also been shown to contain

neural stem cells [27,28]. CSF-cNs are generated during

embryogenesis, and have been shown to remain in a ‘‘stand-by

mode’’ in young rodents: they display a certain degree of

immaturity in terms of excitability [8,11] and still express several

markers of young immature neurons such as growth associated

protein 43 (GAP43) [11], doublecortin (DCX), polysialylated-

neural cell adhesion molecule (PSA-NCAM), as well as HuC/D

[8,11]. Recent studies have suggested that some spinal CSF-cNs

retain expression of such markers even in adults and that this

‘‘stand-by mode’’ might be conserved at later stages [8,29]. In

addition, in both young and young-adult rats, CSF-cNs were not

found to express the neuronal nuclei protein (NeuN) [8], a marker

of neuronal maturity [30].

Our first aim was therefore to carry out an in-depth analysis of

the morphology, distribution and localization of PKD2L1+ CSF-

cNs in the cervical spinal cord and brainstem of adult mice.

Secondly, we sought to quantitatively characterize the degree of

cellular maturity of these cells by measuring markers of immature

and mature neurons, and by doing so to additionally compare the

phenotype of medullar S-CSF-cNs to that of cervical spinal CSF-

cNs.

We show that S-CSF-cNs are present, with a conserved

morphology, along the entire length of the medullospinal cc and

bear a primary cilium on the soma, not on the bud. These cells are

mainly GABAergic and strongly express PKD2L1 proteins on the

somatodendritic compartment. Our findings confirm that this

channel represents a specific marker for medullospinal CSF-cNs.

In addition, we demonstrate that, at adult stages, CSF-cNs remain

in an intermediate stage of maturity, as they continue to express

DCX, Hu/CD and Nkx6.1 in the presence of NeuN.

Materials and Methods

Ethics Statement
This study was carried out in strict conformity with the

recommendations and rules set by the EC Council Directive

(2010/63/UE) and the French ‘‘Direction Départementale de la

Protection des Populations des Bouches-du-Rhône’’. Prior to any

experimental procedure, animals were anaesthetized using a

mixture of Xylazine/Ketamine and euthanized (see below). All

efforts were made to insure animal well-being and minimize

animal suffering and the number of animals used. The experi-

mental procedures have been approved by our local Animal Care

Ethical Committee (Comité Ethique de Provence Nu14) (licence

Nu13.435 held by JT and Nu13.430 by NW). Animals were housed

at constant temperature (21uC) under a standard 12 h light-12 h

dark cycle, with food (pellet AO4, UAR, Villemoisson-sur-Orge,

France) and water provided ad libitum.

Animals
We used PKD2L1:EGFP positive and negative transgenic mice

obtained by crossing PKD2L1-IRES-Cre with Z/EG reporter

transgenic mice. Thus, in PKD2L1+ cells, EGFP expression was

selectively induced by CRE recombinase activity [16]. PKD2L1-

IRES-Cre mice were a generous gift from Dr CS Zuker (Howard

Hughes Medical Institute, University of California, La Jolla, USA)

and Z/EG reporter lines were kindly provided by Dr P Durbec

(IBDML, Aix-Marseille Université, France). To assess EGFP

expression in PKD2L1+ animals, we carried out PCR on tail

genomic DNA. CRE transgene was detected using the forward

primer 59-CGT ACT GAC GGT GGG AGA AT-39 and the

reverse primer 59-CCC GGC AAA ACA GGT AGT TA-39, with

the following PCR conditions: 7 min at 95uC, 35 cycles at 95uC
for 40 sec, 62uC for 40 sec and 72uC for 40 sec, followed by a final

step at 72uC for 6 min. The amplicon size was 166 bp. EGFP was

detected using the forward primer 59-GCC ACA AGT TCA GCG

TGT CC-39 and the reverse primer 59-GCT TCT CGT TGG

GGT CTT TGC-39, with the following PCR conditions: 5 min at

95uC, 36 cycles at 95uC for 30 sec, 64uC for 30 sec and 72uC for

40 sec, followed by a final step at 72uC for 7 min. The amplicon

size was 573 bp.

Immunohistochemistry
Three-month-old adult mice were anaesthetized with an

intraperitoneal injection of ketamine (Carros, France) and xylazine

(Puteau, France) mixture (100 and 15 mg/kg, respectively) and

transcardially perfused with phosphate buffer solution (PBS at 0.1

M). Subsequently the animals were perfused with 4% PFA in PBS.

For the experiments where GABA immunoreactivity was tested,

PKD2L1:EGFP positive animals were transcardially perfused with

a fixation medium containing 4% PFA and 0.2% glutaraldehyde.

Brains and spinal cords were immediately removed, post-fixed one

hour in 4% PFA at 4uC, rinsed in PBS (at 4uC overnight, ON),

cryoprotected for 24 to 48 hours in 30% sucrose at 4uC and frozen

in isopentane (240uC).

Brainstem and cervical spinal cord coronal or sagittal thin

sections (40 mm) were obtained using a cryostat (Leika CM3050)

and collected serially in twelve-well plates containing 0.1 M PBS.

In the analysis carried out in our study, we distinguished the

cervical spinal cord region (level 1, antero-posterior stereotaxic

coordinates of regions more caudal than 28.50 mm from Bregma;

Paxinos Mouse Atlas and see fig. 1D) and three regions for the

brainstem: level 2 (from 28.20 to 27.90 mm), level 3 (from 27.90

to 27.65 mm) and level 4 (from 27.65 to 27.35 mm). Following

one hour incubation in the blocking solution with a composition

optimized for a specific labeling experiment (see Table 1), sections

were incubated ON or for 48 hours at 4uC with the primary

antibody (see description in Table 1). Typically in double

immunohistochemical labeling experiments, the two primary

antibodies (see Table 1) were applied sequentially. Sections were

then washed in PBS and incubated for two hours with the

secondary antibody conjugated either to AlexaFluor 488 or 594

(1:400; all secondary antibodies were purchased from Life

Technologies). To determine whether S-CSF-cNs were choliner-

gic, we labeled brainstem sections obtained from choline

acetyltransferase (ChAT)-EGFP adult mice (gift from Dr M
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Cordero-Erausquin, INCI, Strasbourg, France) with a primary

antibody against PKDL21. After several washes in PBS, sections

were mounted on 4% gelatin coated slides and coverslipped with

Mowiol mounting medium for fluorescence microscope prepara-

tion. To asses for the selectively of the observed immunolabeling,

in each set of experiments, sections were treated in the absence of

primary antibodies (negative control) and regions known to

express the analyzed marker were visualized (positive control).

Typically, experiments were performed on tissues obtained from

three different 3-month-old animals and each set conducted on

non consecutive sections for each level.

Image Acquisition
Sections were observed on a confocal laser scanning microscope

(CLSM; Zeiss LSM700) equipped with solid state fiber optic lasers

and single plane images or stacks of images were acquired with a

2x digital zoom using either a 20x objective (numerical aperture,

NA: 0.8 for an optical thickness of ,2 mm) or a 63x oil immersion

objective (NA: 1.4 for an optical thickness of ,0.8 mm). Images

have been acquired at optimal resolution between 5126512 and

102461024 pixels. To insure the continuity of the image

acquisition, each plane acquired for a stack overlapped with the

next plane. When using two fluorochromes with different

excitation/emission spectra, images were acquired sequentially

for each channel (488 nm, green and 555 nm, red) and the filters

and photomultiplier tubes settings chosen to optimize images and

avoid signal crosstalk. The prepared images were obtained from a

maximum intensity Z-projection. In all images illustrating coronal

or sagittal sections, the limits of the central canal (cc) or 4th

ventricle (4V) are represented with white dashed lines. Low

resolution images of full sections (20x objective; generally 466

images/mosaic) were also acquired to allow identification of the

section’s position in the rostro-caudal axis using specific anatom-

ical landmarks and to orient each section in the dorsal-ventral axis.

Morphology Analyses and Cell Counting
All analyses, cell counting and determination of markers co-

expression were carried out on single images from stacks with cell

to cell identification. The analyses were performed on non

consecutive sections. Images were analyzed and prepared using

ZEN 2009 light Edition (Zeiss software), ImageJ 1.45 (NIH),

Adobe Illustrator and Photoshop. No correction was applied to the

images and for a better visualization, especially for thin structures

like fibers, only contrast and brightness were adjusted in the

images used for the figures. When images of a same set of

experiments are illustrated, the same adjustments were applied to

allow comparison.

Cell density, distribution and morphology. At each medullosp-

inal level of interest (see above and fig. 1D), the analysis was

typically repeated in 3 animals and carried out for each animal

and each of the 4 levels in 3 different sections (i.e. a total of 9

sections per level). For each section, PKD2L1+ cells were counted

manually in every image within the corresponding image stack (14

to 24 images/stack and 15 to 26 mm stack depth) using the ‘cell

counter’ ImageJ plug-in. Subsequently, the total number of cells

counted was divided by the thickness of the analyzed stack and cell

density expressed per 10 mm of tissue depth. To analyze the

distribution of PKD2L1+ cells around the cc, each stack of images

was oriented in the dorsal-ventral axis using the corresponding low

resolution image. The images were then subdivided in 4 quarters

centered on the cc as illustrated in Figure 2A, and for each image

through the stack, cells were counted in each quarter using the ‘cell

counter’ ImageJ plug-in. In all analyses, we refer to lateral

orientation relative to the central canal, and did not distinguish

between the animal’s left and right side. This procedure was

carried out for each section and level and the average percentage

of the cells distribution calculated for each quarter. The position of

somas relative to the cc was measured as the distance between the

soma of PKD2L1+ S-CSF-cNs and the border of the cc (straight

line). To determine the neurite length of S-CSF-cNs depending on

their position in a specific quarter and a specific level (see above

for details), a segmented line (ImageJ) was used to follow over

several optical slices the path of the neurite from the soma to the

bud.

Cell counting in double labeling experiments. In experiments

where we quantified the co-expression of selected cytoplasmic

markers in PKD2L1+/EGFP+ S-CSF-cNs (GAD67, GABA, DCX

and HuC/D), we manually counted the number of cells expressing

PKD2L1/EGFP and the number of cells expressing the marker of

interest. Subsequently, we calculated the percentage of PKD2L1+

cells co-expressing both markers. In experiments where the

investigated marker was nuclear (NeuN except Nkx6.1), we first

created a ROI at the size of a S-CSF-cN nucleus using ImageJ.

This ROI was then used to measure in each image of a stack both

the background average intensity (average of the pixel intensity for

the ROI area; range 0–255) in a region without cell bodies or

fibers (12.160.6 and 8.260.6 for NeuN experiments, in 9 sections

in total) and the nuclear average intensity in all PKD2L1+ cells

(27.761.5, 673 cells; P,0.001against the background signal for

NeuN experiments). Out of the values obtained for each image in

a determined stack, we then calculated the mean background

intensity and only PKD2L1+ cells with an average nuclear labeling

intensity greater than 30% of the background value were

considered positive for NeuN.

Statistics
All data are expressed as mean 6 S.E.M and the statistical

significance was tested using a Kruskal-Wallis test (non-paramet-

ric) combined with a Dunn’s multiple comparison tests. Data were

considered to be significantly different given a P value below 0.05.

Analyses were carried out using Excel 2007 (Microsoft) and Prism

(Graphpad).

Results

Characterization of S-CSF-cNs Along the Central Canal of
Adult Mice

Morphology and distribution of PKD2L1+ S-CSF-cNs along the

central canal. Using an immunohistochemical approach with

primary antibodies directed against PKD2L1, we first specified the

morphology of PKD2L1+ CSF-cNs and compared it along the

length of the medullospinal cc on coronal sections from cervical

spinal cord and brainstem. Figure 1A illustrates representative

coronal sections at the level of the cervical spinal cord (level 1,

fig. 1A, Left and see Methods Section) and caudal brainstem (level

2, fig. 1A, Right) where PKD2L1+ cells can be observed around

the cc. Typically, the large majority of PKD2L1+cells (93.260.8%

with 1549 out of 1703 PKD2L1+ cells analyzed) presented the

classical morphology described in mammals for CSF-cNs around

the cc (fig. A1 arrowheads and B) [5,8,11,12,31]. Thus, PKD2L1+

cells had a small soma with an average diameter of 8.060.1 mm

(336 cells) and projected a thick neurite (see below) to the cc that

ended with a protrusion or bud (average diameter of 3.160.1 mm;

315 cells). We further noticed that PKD2L1+ CSF-cNs regularly

exhibited an enlargement along the thick neurite (figs. 1B and

3A1, open arrows) that was most visible on sagittal sections (see

figs. 3C1 and 4). In some instances, we also observed PKD2L1+

cells presenting a bipolar morphology with thin processes that did
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not clearly appear to be directed at and/or in contact with the cc

(fig. 1A, arrows and C). Since in the present study we aimed at

determining and analyzing the distribution and phenotype of CSF-

cNs expressing PKD2L1, we excluded this latter population of

PKD2L1+ cells from our analysis to focus on cells exhibiting the

classical morphology of CSF-cNs.

Figure 1. PKD2L1+ S-CSF-cNs are present with a different density along the central canal. A. Representative coronal sections at level 1
(Left) and level 2 (Right) showing the presence of PKD2L1+ cells sitting outside the ependymal layer around the cc. The majority of the cells
immunolabeled with antibodies against PKD2L1 exhibited the classical morphology of CSF-cNs with a thick projection ended by a bud (arrowheads).
Fewer PKD2L1+ cells had a bipolar morphology, thin processes and did not contact the cc (arrows). Examples, at a higher magnification, of PKD2L1+

cells that contacted (B) or did not contact (C) the cc. Note that cells from the latter type were excluded from our analysis. D. Sagittal scheme of the
mouse brain and cervical spinal cord showing the regions selected for the morphological and phenotypical analysis from level 1 to 4 (dark to white
boxes). Scale on top: stereotaxic coordinates in the antero-posterior axis from Bregma (0 mm; Paxinos Mouse Brain Atlas). E. Summary bar graph of
the average number of PKD2L1+ CSF-cNs present per 10 mm of tissue depth at levels 1 to 4. ns: not significant; *, P,0.05; ***, P,0.001 and
****P,0.0001. Level number and the corresponding analyzed cells number (n) are indicated below the graph. F. Representative sagittal section of
the medullospinal region showing the distribution of PKD2L1+ cells around the cc from the lower brainstem to the 4V. The brackets below the image
delimit the 3 levels of the brainstem (from 2 to 4) analyzed in the present study with the mention of the stereotaxic coordinates (in mm). Double
arrows: left and top for dorsal-ventral (V-D) and postero-anterior (P-A) orientation of the section, respectively. Central canal (cc) and 4th ventricle (4V)
are delineated with white dash lines.
doi:10.1371/journal.pone.0087748.g001
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We next examined the localization and distribution of

PKD2L1+ CSF-cNs around the cc in the cervical spinal cord

(level 1) and through the brainstem (levels 2 to 4; fig. 1D and see

Methods Section). As shown on the representative sagittal section

illustrated in Figure 1F, PKD2L1+ CSF-cNs were present along

the length of the cc but their density progressively decreased from

level 1 (most caudal) to 4 (most rostral). Indeed, when counting

PKD2L1+ CSF-cNs per 10 mm of tissue depth on images obtained

from coronal sections, we found: 1061 cells at level 1, 861 and

761 at levels 2 and 3, respectively and only 361 at level 4 (fig. 1E;

P,0.05). Our data also indicated that PKD2L1+ CSF-cNs

presented a homogeneous morphology with a subependymal

localization at all analyzed levels and that no PKD2L1+ cells were

observed in the ependymal layer (i.e. no intraependymal CSF-cNs;

see below and figs. 3A and 4). Further, the average distance

between their soma and the cc was 23.360.2 mm (fig. 2B,

n = 1407). In the rest of the study, we therefore refer to PK2DL1+

cells as subependymal CSF-cNs or S-CSF-cNs.

When analyzing the localization of S-CSF-cNs around the cc

depending on the level (1 to 4) along the rostro-caudal axis, we

noticed that PKD2L1+ S-CSF-cNs were differentially organized in

the dorsal-ventral axis (i.e. lateral; see Methods Section and fig. 2A,

C and D; P,0.05). Thus at level 1, PKD2L1+ S-CSF-cNs were

principally present in a ventral (on average 3562%) and dorsal (on

average 3362%) position with less cells present laterally (on

average 1661%; fig. 2C and D). Figure 2D (from Left to Right)

indicates that this organization progressively changed with a shift

to a lateral position at the more rostral levels (on average from

4666% to 4764% laterally and only 462% and 362% ventrally

and dorsally, respectively at level 4; fig. 2C and D; P,0.05). Our

data also indicated that S-CSF-cNs with a ventral localization at

level 1 and 2 and with a lateral one at level 3 and 4 had the longest

neurites (fig. 2C and D). Indeed at level 1, the neurites of ventral S-

CSF-cNs was 31.761.3 mm long (n = 81) while it was only around

20 mm in the other regions around the cc (dorsal: 23.060.4,

n = 107; lateral: 20.360.6, n = 114; P,0.0001; fig. 2E, Left).

Along the rostro-caudal axis (from Left to Right; fig. 2E) the

neurite length of ventrally located PKD2L1+ S-CSF-cNs progres-

sively decreased down to 2360.4 mm (n = 15) and in parallel the

neurite length of lateral S-CSF-cNs increased to 32.562.3 mm

(n = 22) at level 4 (dorsal: 24.561.0, n = 14; P,0.01; fig. 2E,

Right).

Table 1. List of primary, secondary antibodies and experimental procedures used to label medullospinal CSF-cNs.

Antigen Host
Primary antibodies/
Dilution Serum (in PBS) Distributor Cat. Nr.

Incubation at
4uC Secondary antibodies

Ac-aTub Mouse Monoclonal 1:400 Triton (0.3%),
BSA (4%), NGS (2%)

Sigma T6793 ON Goat anti mouse 594

AC3 Rabbit Polyclonal 1:500 Triton (0.3%),
BSA (1%), NGS (3%)

Santa Cruz sc-588 ON Goat anti rabbit 594

DCX Goat Polyclonal 1:100 Triton (0.1%),
HS (5%)

Santa Cruz sc-8066 48 h Donkey anti goat 594

GABA Rabbit Polyclonal 1:250 Triton (0.3%),
HS (5%)

Immunostar 20094 48 h Goat anti rabbit 594

GAD67 Mouse Monoclonal 1:500 NGS (3%) Millipore MAB5406 48 h Goat anti mouse 594

GFP Mouse Monoclonal 1:500 Triton (0.1%),
HS (3%)

ABCAM ab38689 48 h Goat anti mouse 488

Rabbit Polyclonal 1:7500 Triton (0.05%),
HS (5%)

* Gift from Dr. T DOAN ON Goat anti rabbit 488

HuC/D Mouse Monoclonal 1:1000 Triton (0.1%),
NGS (5%)

Molecular Probes A-21271 ON Goat anti mouse 594

MAP2 Mouse Monoclonal 1:600 Triton (0.3%),
HS (3%), BSA (1%)

Sigma M-1406 48 h Goat anti mouse 594

NeuN Mouse Monoclonal 1:800 Triton (0.3%),
BSA (4%), NGS (2%)

Millipore MAB377 ON Goat anti mouse 594

NF-160 Mouse Monoclonal 1:80 Triton (0.3%),
HS (3%), BSA (1%)

Sigma N5264 ON Goat anti mouse 594

Nkx6.1 Mouse Monoclonal 1:100 Triton (0.1%),
BSA (1%), NGS (3%)

# Dev.Stud. Hybrid.Bank F55A10 ON Goat anti mouse 594

PSA-NCAM Mouse IgM Monoclonal 1:250 Triton (0.3%),
BSA (1%), HS (3%)

Millipore MAB5324 ON Goat anti mouse IgM 594

PKD2L1 Rabbit Polyclonal 1:700 Triton (0.3%),
BSA (1%), HS (3%)

Millipore AB9084 ON Donkey anti-rabbit 488
or Goat anti rabbit 488

TH Mouse Monoclonal 1:1000 Triton (0.3%),
NGS (3%)

Millipore MAB318 ON Goat anti mouse 594

5-HT Goat Polyclonal 1:400 Triton (0.3%),
HS (5%)

Immunostar 20079 ON Donkey anti goat 594

List of the primary antibodies with the experimental conditions (dilution, blocking medium and incubation time) for the different sets of experiment carried out to label
S-scNs. The supplier name and catalog number is also mentioned along with the nature of the secondary antibody and associated fluorochrome.
*Rabbit anti-GFP antibody purified as described by Rudner and Losick [66] is a gift from Dr T Doan (Laboratoire de Chimie Bactérienne – CNRS, Marseille, France) [66]. #

Nkx6.1 antibody is a generous gift from Dr JP Hugnot, (INM, Montpellier, France) and was obtained from the Developmental Studies Hybridoma Bank (Dev. Stud. Hybrid.
Bank, University of Iowa).
doi:10.1371/journal.pone.0087748.t001
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Figure 2. S-CSF-cNs are differentially distributed and organized along the central canal. A. Drawing of a brainstem coronal section at
level 3 with the template of the 4 quarters (dashed cross and circle) used to analyze the distribution of PKD2L1+ cells around the cc (black dot). Inset
shows PKD2L1+ cells distributed in the 4 quarters (black cross). B. Frequency histogram for the number of PKD2L1+ CSF-cNs according to the distance
in mm between the soma and the border of the cc. Data are presented in 2 mm bins and the mean distance and number of cells are indicated on top
of the graph. C. Representative coronal sections at level 1 to 4 illustrating the density and distribution of PKD2L1+ cells around the cc. D. Average
percentage of PKD2L1+ cells distributed in the ventral, lateral and dorsal quarters around the cc (see panel A). E. Summary bar graphs of the average
neurite length for S-CSF-cNs located in the ventral (V), dorsal (D) or lateral (L) regions and according to the medullospinal level (from left to right: level
1 to 4, respectively; ns: not significant; **, P,0.01 and ****P,0.0001). Data from both lateral regions were pooled together.
doi:10.1371/journal.pone.0087748.g002
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PKD2L1 is expressed on the somatodendritic compartment of

S-CSF-cNs. In order to assess the cellular localization of PKD2L1

proteins, we first determined the cell polarity of PKD2L1+ S-CSF-

cNs and identified the somatodendritic versus axonal compart-

ments using subcompartment-specific antibodies (figs. 3 and 4).

Using anti-MAP2 antibodies, we showed that the thick neurite

projecting towards the cc was MAP2+ and thus of dendritic nature

(fig. 3A2 and A3). This dendrite strongly co-expressed PKD2L1

with the highest level of immunoreactivity on the terminal bud

(fig. 3A1 and A3). Interestingly, these data also indicated a

complete absence of MAP2+ cells in the ependymal layer and

suggested that all MAP2+ cells projecting to the cc were PKD2L1+

S-CSF-cNs (see figs. 3–5). The dendritic nature of this thick

neurite was further confirmed by the absence of immunolabeling

against the subtype of neurofilaments with a molecular weight of

160,000 (NF-160), a selective marker for axons (fig. 3B, arrows).

These results also showed the presence of numerous labeled

axonal fibers in brainstem coronal sections around the cc and over

S-CSF-cNs, but we could not identify axon-like NF-160+ fibers

arising from the soma of S-CSF-cNs that were also PKD2L1+

(fig. 3B1 and B3). We therefore looked for axons in sagittal sections

obtained from PKD2L1:EGFP+ mice where EGFP would fill the

cytoplasm of S-CSF-cNs thus enabling the visualization of their

axon. After labeling cytoplasmic EGFP with a selective antibody

against GFP, we did indeed observe the typical morphology of S-

CSF-cNs with thick dendrites projecting to the cc (fig. 3C and

arrows in fig. 4) and a thin axon-like process running through the

parenchyma (open arrowheads in figs. 3C and 4). The compar-

ative analysis of PKD2L1+ immunoreactivity on EGFP+ S-CSF-

cNs showed that PKD2L1 was expressed on the soma and

Figure 3. S-CSF-cNs are polarized and express PKD2L1 on dendrite and soma but not on the axon. A1 and B1. Immunolabeling of S-
CSF-cNs in medial brainstem coronal sections with antibodies against PKD2L1 (green) and either MAP2 (A2, red) or NF-160 (B2, red) to illustrate the
polarity of PKD2L1+ neurons. These cells project a thick neurite (arrows) to the cc with a cytoplasmic enlargement (open arrows) and terminated by a
PKD2L1+ terminal protrusion or bud. A3. The merged image shows the superimposition of PKD2L1 (green) and MAP2 (red) immunoreactivity and
indicates that S-CSF-cNs project a dendrite (MAP2+) to the cc. Note that no MAP2 positive and PKD2L1 negative projections or cells are observed in
the ependymal layer. B3. The merged image of the PKD2L1 (green) and NF-160 (red) immunoreactivity indicates the presence of numerous NF-160+

axon-like fibers in the section, around the cc and over S-CSF-cNs and show that the thick projection to the cc is not NF-160 positive (arrows). However
it is difficult to visualize axons leaving the somata of PKD2L1+ S-CSF-cNs. C. Immunohistochemistry against GFP (C1) and PKD2L1 (C2) in a sagittal
brainstem section obtained from a PKD2L1:EGFP+ mouse to visualize axonal projections and the PKD2L1 distribution in CSF-cNs. C3. The
superimposed image of anti-GFP (green) and anti-PKD2L1 (red) immunoreactivity shows that CSF-cNs do present a thin axon-like structure leaving
the soma towards the parenchyma (open arrowheads in C) but PKD2L1 is exclusively expressed on the somatodendritic compartment.
doi:10.1371/journal.pone.0087748.g003
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dendrite of S-CSF-cNs (fig. 3C2) but not on their axon-like process

(fig. 3C2 and C3, open arrowheads).

To examine further the polarity of S-CSF-cNs, we repeated

immunolabeling experiments against either MAP2 (fig. 4A) or NF-

160 (fig. 4B) on similar brainstem sagittal sections obtained from

PKD2L1:EGFP+ mice. Our results confirmed that the thick

neurites were positively labeled against MAP2 (fig. 4A, arrows) but

not against NF-160 (fig. 4B, arrows) and that the thin processes

running ventrally through the parenchyma were MAP2 negative

(fig. 4A, open arrowheads). Although antibodies against MAP2

failed to label the thin GFP+ processes in the parenchyma (fig. 4A,

open arrowheads), neither were these structures labeled by

antibodies against NF-160 (fig. 4B, open arrowheads). While we

thus did not immunohistochemically confirm the axonal identity of

these fibers, based on their morphology we chose to refer to these

structures as axon-like processes (and see below).

Medullar S-CSF-cNs possess a primary cilia on their soma. In

spinal cord, the presence of cilia on the bud of CSF-cNs has been

reported in several vertebrate species [4,8,11,32] but to our

knowledge the nature of this cilium, primary versus motile cilium,

has not been demonstrated. We first carried out double labeling

experiments in cervical spinal cord and brainstem coronal sections

using primary antibodies against PKD2L1 and acetylated a-

tubuline (Ac-aTub), a marker for microtubule-based cilia (fig. 5).

Figure 5A shows that Ac-aTub strongly labeled not only

PKD2L1+ S-CSF-cNs (stars) revealing their classical morphology

but also numerous ciliary structures around the cc (fig. 5A).

Interestingly, at higher magnification, we could visualize thin cilia

in the cc arising from the edge of the cavity and most certainly

corresponding to the motile cilia of ependymocytes (fig. 5Aa and

c). A closer examination of PKD2L1+ S-CSF-cNs suggested the

presence of Ac-aTub+ ciliary-like structures on their bud (fig. 5Ab

and d, arrowheads) that appeared to be PKD2L1 negative. This

result was further supported by the data obtained following

immunolabeling against GFP, as illustrated in Figure 5B (arrow-

heads), where ciliary-like structures could be observed on top of

the bud (see also figs. 3C1 and 4). Since adenylate cyclase 3 (AC3)

is a prominent marker of primary cilia in the brain [33], we

carried out AC3/GFP double-labeling on cervical spinal cord and

brainstem coronal sections obtained from PKD2L1:EGFP+ mice

to determine whether the structures observed on the bud were

primary cilia (fig. 5C and D). We did observe clear AC3 labeling of

Figure 4. S-CSF-cNs project a dendrite towards the central canal and an axon-like fiber through the parenchyma. A1 and 2.
Immunolabeling of S-CSF-cNs with antibodies against GFP (green) and MAP2 (red) in two different brainstem sagittal sections obtained from
PKD2L1:EGFP+ mice. Immunostaining against EGFP (Left in A1 and 2 and see also B1 and 2) reveals the whole S-CSF-cNs cell morphology with, on one
side, a thick neurite projecting to the cc and ending with a bud and, on the other side, the presence of thin fiber structures leaving the soma through
the parenchyma. The merged images (Right) show that the thick neurite sent to the cc is labeled by antibodies against MAP2 while the thin fibers in
the parenchyma are not. Note the presence of cilia-like structure on top of the bud in A1, B1 and B2. B1 and 2. Immunolabeling of S-CSF-cNs in two
different brainstem sagittal sections obtained from PKD2L1:EGFP+ mice with antibodies against GFP (green) and NF-160 (red). Immunostaining
against NF-160 (Middle) show that the thick MAP2+ neurites are not labeled by NF-160 antibodies and thus confirmed the dendritic nature of this
projection. NF-160 immunolabeling is observed in the parenchyma with the presence of numerous fibers. However, the merged images (Right) shows
that the thin fibers emerging from the soma of S-CSF-cNs are not NF-160+. Arrows: point to thick dendrite; open arrowheads: point to thin axon-like
fibers.
doi:10.1371/journal.pone.0087748.g004
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small rods all over the parenchyma and around the cc in coronal

sections at all levels (fig. 5C). Figure 5D illustrates representative

GFP+ S-CSF-cNs exhibiting AC3 labeled cilia on their soma

(White open arrowheads) but not on the bud (White arrowheads).

We observed these primary cilia on the soma of all

PKD2L1:EGFP+ S-CSF-cNs with an average length of

3.460.2 mm (n = 153) and a diameter in the sub-micrometer scale.

Taken together, the results presented above indicated that

PKD2L1+ CSF-cNs are present along the length of the cc with an

exclusive subependymal position (S-CSF-cNs). They exhibit a

conserved morphology with a dendrite projecting to the cc that

ends with a protrusion that appears to present a ciliary structure;

they also exhibit a primary cilium on their soma. Furthermore,

these cells strongly express PKD2L1 only on their somatodendritic

compartment and this protein appeared to be a specific maker for

this cell population. Finally, the analysis of their distribution from

spinal cord to brainstem indicates that their density decreases and

Figure 5. S-CSF-cNs present ciliary structures on the bud and primary cilia arising from the soma. A. Sections obtained from level 1 and
2, are immunolabeled with antibodies against PKD2L1 (Green) to reveal S-CSF-cNs and with acetylated a tubuline (Ac-aTub, Red), a selective marker
of the cytoskeleton and ciliary structures. The merged images indicate that the soma (stars), the dendrite and the bud of PKD2L1+ S-CSF-cNs are
positively labeled by Ac-aTub and also reveal the presence of numerous cilia in the lumen of the cc most certainly arising from ependymocytes. Aa
to d. At higher magnification, Ac-aTub+ cilia can be observed in the lumen of the cc (a, level 1 and c, level 2) but small cilia-like appendices are also
visualized on the bud of S-CSF-cNs (b, level 1 and d, level 2; arrowheads). B. High magnification images of buds from S-CSF-cNs in sections obtained
from PKD2L1:EGFP+ adult mice and immunolabeled against GFP indicate the presence of a cilia-like structure or tuft of cilia at the end of the bud
(arrowheads; see also figs. 3 and 4). C. Coronal sections from levels 1 to 3 obtained from a PKD2L1:EGFP+ adult mice showing the results of
immunostaining with antibodies against GFP (green) and AC3 (red). Note the presence of AC3+ labeling on GFP+ S-CSF-cNs but also throughout the
parenchyma (thin red rods). D. High magnification images showing the presence of AC3+ cilium (open arrowheads) on the soma of GFP+ S-CSF-cNs.
Note that no AC3+ immunoreactivity is observed on the bud although some GFP+ ciliary structures can be observed (arrowheads).
doi:10.1371/journal.pone.0087748.g005
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that both their position around the cc and the length of their

dendrite changes along the rostro-caudal axis.

Phenotype of Brainstem PKD2L1+ S-CSF-cNs
Earlier studies have indicated that spinal CSF-cNs were

GABAergic in rodents [6,11]. To demonstrate the phenotype of

medullar S-CSF-cNs in mice, we carried out GABA/GFP double

labeling on sections obtained from PKD2L1:EGFP+ mice. The

selectivity of the GABA/GAD67 immunolabeling was confirmed

by the presence of GABA+/GAD67+ cells in brain regions known

to contain GABAergic neurons: the spinal cord dorsal horn, the

nucleus tractus solitari and the cerebellum (Data not shown). As

visualized in Figure 6A1, a large proportion of medullar GFP+ S-

CSF-cNs were also GABA+ (8663% of GABA and PKD2L1+

positive cells; 124 GABA+ cells out of 140 GFP+ S-CSF-cNs;

fig. 6A1, arrowheads). Similar results were observed at level 1

where 9062% of GFP+ S-CSF-cNs were also GABA+ (118

GABA+ cells out of 131 GFP+ S-CSF-cNs; fig. 6A2, arrowheads).

Moreover, when considering all analyzed levels, we found that

8862% of GFP+ S-CSF-cNs were also GABA+ (242 GABA+ cells

out of 271 GFP+ S-CSF-cNs).

We further confirmed the GABAergic phenotype for S-CSF-

cNs, by carrying out a double immunolabeling analysis against

GAD67 and PKD2L1. And indeed, as illustrated in Figure 6B, our

results indicated that 7863% of PKD2L1+ medullar S-CSF-cNs

coexpressed GAD67 (286 GAD+ cells out of 356 PKD2L1+ S-

CSF-cNs; fig. 6B1 for level 3). The same analysis showed that at

level 1 (fig. 6B2) 8662% of spinal PKD2L1+ S-CSF-cNs were also

GAD67+ (210 GAD+ cells out of 250 PKD2L1+ S-CSF-cNs) and

that overall 7962% of S-CSF-cNs were PKD2L1+/GAD67+ (level

1–4:577 GAD+ cells out of 733 PKD2L1+ S-CSF-cNs). In these

cells we primarily observed GAD67+ staining delineating the soma

and the bud of PKD2L1+ S-CSF-cNs (arrowheads in fig. 6B).

Additionally, numerous GAD67+ dots were present all over the

analyzed sections with some of them sitting close to or on the soma

of PKD2L1+ S-CSF-cNs (fig. 6B). Although S-CSF-cNs thus

appeared largely GABAergic, around 15% were GABA/GAD67

negative. We therefore tried to identify the phenotype of the

remaining S-CSF-cNs. However, none of the PKD2L1+ S-CSF-

cNs were serotoninergic (5-HT; fig. 6C) or catecholaminergic (TH;

fig. 6D). The remaining PKD2L1+ S-CSF-cNs were not cholin-

ergic either as no coexpression of PKD2L1 and EGFP was

observed in brainstem sections prepared from ChAT:EGFP mice

(fig. 6E).

Our results indicated that medullar S-CSF-cNs, like their spinal

counterparts, are mostly GABAergic. Furthermore, they appeared

to be surrounded by GAD67 positive terminals and to be in close

contact or apposition with cholinergic and monoaminergic fibers

(arrows in fig. 6C to E).

Medullar PKD2L1+ CSF-cNs Express Immature Neuronal
Markers and Nkx6.1

In young animals, CSF-cNs around the cc were shown to

express markers of immature neurons and to be NeuN negative

[8]. In adult animals, most available information regarding the

maturity of the peri-canal region of the spinal cord concerns cells

located within the ependymal layer [22,23,26,31] and little is

known about the medullar CSF-cNs population. We therefore

carried out a set of experiments to quantitatively assess the degree

of maturity of PKD2L1+ S-CSF-cNs in the brainstem and

compared it to the situation observed in the cervical spinal cord.

We first looked for the expression of NeuN, a classical marker

for mature neurons, in PKD2L1+ S-CSF-cNs of 3-month-old

animals. In the caudal brainstem (level 2), we found that on

average 6663% of PKD2L1+ S-CSF-cNs expressed NeuN (262

NeuN+ cells out of 361 PKD2L1+ S-CSF-cNs; figs. 7A and 8)

although with a ,4 times lower apparent intensity of labeling than

that of the PKD2L1 negative neighboring neurons (cell body

average NeuN+ labeling intensity: 10065, 100 cells in the

parenchyma and 2862 in 262 PKD2L1+ S-CSF-cNs;

P,0.0001). Further, our results indicated that the proportion of

PKD2L1+ S-CSF-cNs expressing NeuN progressively increased

from 5464% at level 1 to 100% in the most rostral region of the cc

(level 4; fig. 8, P,0.001). Interestingly, the apparent intensity of

the immunolabeling in S-CSF-cNs also appeared to progressively

increase following the rostro-caudal axis (fig. 8B).

Next, using sections obtained from the same animals, we

assessed the expression level and pattern of markers indicative of

neuronal immaturity. In the spinal cord of young rodents, cells

with the typical morphology of CSF-cNs were shown to express

Nkx6.1, a homeodomain protein present in differentiating neurons

of the ventral spinal cord, and several other classical markers of

neuronal immaturity [8,11,22,31]. As illustrated in Figure 7B,

medullar PKD2L1+ S-CSF-cNs of 3-month-old mice strongly

expressed Nkx6.1 (9861%; 52 Nkx6.1+ out of 53 PKD2L1+ S-

CSF-cNs at level 2). The entire population of PKD2L1+ S-CSF-

cNs from the cervical spinal cord up to the rostral part of the

brainstem also strongly expressed Nkx6.1 (9961% of cells

coexpressed Nkx6.1 and PKD2L1 when considering all 4 levels;

111 Nkx6.1+ cells out of 112 PKD2L1+ cells). Further, using a

selective antibody against DCX, we also demonstrated that

9061% of medullar PKD2L1+ S-CSF-cNs (level 2) coexpressed

DCX (277 DCX+ cells out of 294 PKD2L1+ S-CSF-cNs; figs. 7C

and 8A) and that a similar level of DCX expression was found at

all analyzed regions of the cc (9462%; 468 DCX cells out of 524

PKD2L1+ S-CSF-cNs; fig. 8A). We also reported that 6364% of

medullar PKD2L1+ S-CSF-cNs (level 2) expressed HuC/D

(159 HuC/D+ cells out of 262 PKD2L1+ S-CSF-cNs; figs. 7D

and 8A). In young rats, immunoreactivity against PSA-NCAM

was reported in the region surrounding the central canal [8,31,34].

We therefore tested, using selective antibodies, for the presence of

PSA-NCAM expression in PKD2L1+ S-CSF-cNs of adult mice.

Although, we did observe positive labeling for PSA-NCAM in the

subventricular zone or the dentate gyrus of the hippocampus, in

the same experimental conditions, we were unable to detect any

labeling against PSA-NCAM (Data not shown). Finally, although

the number of PKD2L1+ S-CSF-cNs expressing DCX appeared

similar at all 4 levels, there was a tendency for a decrease in the

number of S-CSF-cNs that expressed HuC/D along the rostro-

caudal axis (fig. 8A).

The analysis presented above demonstrates that PKD2L1+ S-

CSF-cNs express NeuN and HuC/D as well as DCX and Nkx6.1,

two markers indicative of neuronal immaturity. Furthermore,

following the rostro-caudal axis of the cc, it appears that the

number of S-CSF-cNs expressing DCX is constant while the

number of PKD2L1+/NeuN+ and that of PKD2L1+/HuC/D+ S-

CSF-cNs appeared to increase and decrease, respectively.

Discussion

Morphology and Distribution of S-CSF-cNs Around the
Central Canal

The aim of the present study was first to determine the

morphology, distribution and localization of PKD2L1 expressing

CSF-cNs along and around the cc of the cervical spinal cord (level

1) and the brainstem (level 2–4) in adult animals. Furthermore, we

carried out a quantitative and comparative analysis of protein

expression levels within these cells.
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Using an immunohistochemical approach with antibodies

against PKD2L1, we observed two groups of PKD2L1+ cells

around the cc: one predominant population with the previously

reported morphology for CSF-cNs [6–11] and a second, less

numerous populations, comprised of cells presenting multiple thin

processes with no clear projection towards the cc. We excluded

this latter cell population to focus our analysis on cells presenting a

clear morphology of medullospinal CSF-cNs [6,7,9]. We found

MAP2 immunoreactivity along the entire length of the cc, but we

observed no MAP2+ cells in the medullospinal ependymal layer of

mice tissue, indicating the absence of intraependymal CSF-cNs.

Secondly, we observed that all MAP2+ CSF-cNs coexpressed

PKD2L1. We therefore concluded that, in mice, PKD2L1

represents a selective marker for medullospinal CSF-cNs and that

these neurons have an exclusively subependymal localization.

We showed that along the length of the medullospinal cc, these

cells represent a homogenous neuronal population exhibiting a

simple morphology with a small round soma (,10 mm) extending

a single thick dendrite (MAP2+ and NF-160 negative) through the

ependymal layer. This dendrite ends in the CSF cavity with a bud

of conserved diameter (,3 mm) on top of which, we observed, in

some instances, a cilia-like structure (see below). Our data are in

Figure 6. PKD2L1+ CSF-cN are GABAergic and in close contact with GABAergic, cholinergic and aminergic fibers. A1. Immunolabeling
of S-CSF-cNs with GFP (Left) and GABA (Middle) antibodies in a brainstem coronal section (level 2). The merged image (Right) shows superimposition
of the immunoreactivity against GFP (green) and GABA (red) and indicates that most medullar GFP+ S-CSF-cNs are also positive for GABA
(arrowheads). A2. Similar results are visualized in a section at level 1 where spinal GFP+ S-CSF-cNs (Left, green) are also positive for GABA (Middle, red
and Left, merged). B1. Immunolabeling of S-CSF-cNs with PKDL1 (Left) and GAD67 (Middle) antibodies in a brainstem coronal section (level 3). The
merged image (Right) indicates that most medullar PKD2L1+ S-CSF-cNs are also GAD67+ (arrowheads). B2. Again, similar results are visualized in a
section at level 1 where spinal S-CSF-cNs coexpress PKD2L1 with GAD67. Note that the GAD67 immunolabeling is present in the cytoplasm of S-CSF-
cNs (arrowheads in B1 and 2) as well as in the parenchyma (red punctae). The immunolabeling against 5-HT (C, red) and TH (D, red) shows that
PKD2L1+ S-CSF-cNs (green) in the brainstem are neither serotoninergic nor catecholaminergic. In E, labeling with anti-PKD2L1 antibodies in a
brainstem coronal section prepared from choline-acetyltransferase (ChAT):EGFP adult mice indicates that PKD2L1+ S-CSF-cNs (red) are not cholinergic
(green). Note that PKD2L1+ S-CSF-cNs appear to be in close contact with serotoninergic (C), catecholaminergic (D) and cholinergic (E) fibers (arrows).
doi:10.1371/journal.pone.0087748.g006
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Figure 7. In adult mice S-CSF-cNs express NeuN along with classical markers of neuronal immaturity. A1 to D1. Immunolabeling of S-
CSF-cNs in medial brainstem section (level 2) prepared from the same animal with antibodies against PKD2L1 (green) and either NeuN (A2, red),
Nkx6.1 (B2, red), DCX (C2, red) or HuC/D (D2, red). A3. The merged image shows that out of 4 PKD2L1+ S-CSF-cNs only one is NeuN negative
(arrowheads in A1 to 3). B3. The merged image shows that all PKD2L1+ S-CSF-cNs are also positive for Nkx6.1. Note the strong immunolabeling of
nuclei in S-CSF-cNs. In C3, the merged image of PKD2L1 and DCX immunoreactivity shows that all PKD2L1+ S-CSF-cNs are DCX+. The superimposed
image in D3 shows that only one PKD2L1+ S-CSF-cN is negative for HuC/D (arrowheads in D1 to 3).
doi:10.1371/journal.pone.0087748.g007
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agreement with previous reports obtained in the mouse spinal cord

[6,9,10]. However, they contrast with the results obtained from

rats [8,11] or lower vertebrates [20,35,36] where CSF-cNs were

shown to be mainly intraependymal and to exhibit a pear-shaped

soma extending throughout the whole width of the ependymocytes

layer. We hypothesize that this result might be explained by

differences between species or in the stage of development as

suggested by a recent study carried out in rats [29]. We also

regularly observed an enlargement along the thick dendrite that

exhibited a strong immunoreactivity against PKD2L1. In the

hypothalamus and the pineal gland, where CSF-cNs can also be

found (not in the spinal cord or brainstem) a similar structure had

been reported and was suggested to correspond to a lipid droplet

[37,38]. We do not have any evidence to support this hypothesis

and further investigations would be necessary to determine the

nature and role of this enlargement.

Furthermore, medullospinal CSF-cNs appear to be polarized, as

they also send a thin axon-like process through the parenchyma

that was best seen in sagittal sections using labeling against GFP.

Note that PKD2L1, being an ion channel, is localized to specific

parts of the membrane, while EGFP is classically cytosolic and

therefore free to diffuse throughout the whole cell. These

differences would explain why global cell morphology is best

resolved following labeling against EGFP. Our data suggest that

the thin processes are not dendrites, as they were MAP2 negative,

but we were not able to confirm that they were axons, because

they were also negative for NF-160, a selective marker for

intermediate filaments of mature axons [39,40] (see also below). In

rat spinal cord, Stoeckel and colleagues [11] suggested that axons

of CSF-cNs would form ventral fiber tracts that would run

longitudinally at the level of the median fissure. Correspondingly,

the thin axon-like projection that we observed appear to run

ventrally but they were difficult to visualize in all S-CSF-cNs and

we did not determine their destination. We know very little about

the targets of these axon-like processes [11], but identifying the

regions that are innervated by S-CSF-cNs and the physiological

role of these projections is an important future step.

We demonstrated that PKD2L1+ S-CSF-cNs are present at a

high density (5–10 cells/10 mm of tissue) around the cc. We found

the largest density at the cervical level of the spinal cord with a

progressive decrease as we moved rostrally; fewer PKD2L1+ S-

CSF-cNs were observed around the 4V. We also found that the

localization of PKD2L1+ S-CSF-cNs around the cc changed from

a predominantly dorsal-ventral localization at the cervical spinal

cord level to an almost exclusively lateral one at more rostral

levels. Moreover, we showed that the dendritic length of S-CSF-

cNs also changed along the medullospinal axis in an orientation-

dependent manner. At the level of the cervical spinal cord S-CSF-

cNs with a ventral localization had the longest dendrites while in

the brainstem S-CSF-cNs with lateral localizations had the longer

dendrites. Although we do not have, so far, any data regarding the

functional consequences of such an organization, one might

suggest that this specific distribution and organization along the cc

could lead to specific projection pathways as well as innervations of

specific territories. Answering this question might give us insights

into the specific function of S-CSF-cNs at different levels of the

medullospinal cc.

PKD2L1 as a Specific Marker for Medullospinal S-CSF-cNs:
Functional Implication

PKD2L1 is a member of the polycystin TRP channel subfamily

and was first described in the kidney [41,42] and subsequently in

taste buds [16,43] where it was suggested to play a role in the

detection of the sour taste [16,44]. More recently, the presence of

PKD2L1 was reported in medullospinal S-CSF-cNs [12,16]. Our

data confirm that PKD2L1 is a reliable marker for these cells, and

we demonstrated here that PKD2L1 is exclusively expressed on

the soma and the dendrite of S-CSF-cNs with an apparent strong

level of expression on the bud and none on the axon-like process.

This localization on a structure in direct contact with the CSF

would therefore support a role for PKD2L1 channels as sensors for

changes in the composition of CSF and interstitial medium. This

Figure 8. Expression pattern for maturity and immaturity
markers in S-CSF-cNs along the central canal. A. Summary bar
graph of the average co-expression percentage of NeuN (black bars),
DCX (white bars) and HuC/D (gray bars) in PKD2L1+ S-CSF-cNs along the
rostro-caudal axis of the cc (level 1 to 4; see Methods Section and Text
for details). The data indicate that NeuN expression increased in S-CSF-
cNs along the rostro-caudal axis while DCX expression pattern remained
similar at all levels. HuC/D expression showed a tendency for a decrease
along the rostro-caudal axis. Total number of analyzed PKD2L1+ S-CSF-
cNs for each markers: NeuN, 296 cells at level 1; 208 cells at level 2; 153
cells at level 3 and 16 cells at level 4. DCX: 213 cells at level 1; 156 cells
at level 2; 138 cells at level 3 and 17 cells at level 4. HuC/D: 173 cells at
level 1; 144 cells at level 2; 118 cells at level 3 and 26 cells at level 4. ns:
not significant; **, P,0.01 and ***P,0.001. B. Merged images showing
the superimposition of PKD2L1 (green) and NeuN (red) immunoreac-
tivity in sections from level 1 to 4 and illustrating the increase in the
percentage of PKD2L1+ S-CSF-cNs expressing NeuN. PKD2L1+ S-CSF-cNs
that are negative for NeuN are indicated by arrowheads.
doi:10.1371/journal.pone.0087748.g008
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particular subcellular localization also supports the idea of a

‘‘functional polarization’’ of S-CSF-cNs. Through PKD2L1

activity, the bud, dendrite and soma might represent sites of

integration of signals from bioactive molecules and/or of change

in the composition of the CSF and/or the interstitial medium. Due

to the cationic nature of the current flowing through PKD2L1

[12], activation of this channel would have a direct effect on the

excitability of S-CSF-cNs and the collected information could be

relayed through the axon via sodium action potentials to distal

partners.

S-CSF-cNs are Ciliated Neurones
Generally, one distinguishes motile from non-motile/primary

cilia on the basis of protein composition and organization [45].

Ependymocytes form a single cell layer that constitutes the wall of

the CSF cavities and possess motile cilia involved in the motion of

the CSF. Primary cilia are present on the soma of most cells,

including neurons, and although little is known about their

physiological role, they have been proposed to act as chemo- and/

or mechanosensors of fluid composition and/or motion [46] and

are also thought to play a role in the development of the neural

tube [47]. In lower vertebrates and, to some extent, in mammals,

cilia in contact with the CSF were reported on the apical side of

CSF-cNs [4,8,11,32,36]. So far, there is no identified function for

these cilia but because of their contact with the CSF they were

proposed to act as sensors of CSF composition and motion. These

studies based on electron microscopic data did not, however

demonstrate the nature of these structures.

In the present study, using classical immunohistochemical

techniques with antibodies against cytosolic EGFP, we were able

to detect some Ac-aTub+ cilia-like structures of a few micrometers

of length (1–3 mm) emerging from the bud. Nevertheless, when

testing for AC3 immunoreactivity, a selective marker of primary

cilia [33], we observed numerous AC3+ structures in our sections

but in S-CSF-cNs AC3+ cilia where present only on their somata.

This is the first demonstration of a primary cilium on the soma of

identified medullospinal S-CSF-cNs, and fits well with one recent

study using transmission and scanning electron microscopy in

mouse spinal cord. There, cells around the spinal cord cc with a

morphology of CSF-cNs exhibited on their soma a single cilium of

indeterminate identity [32]. Primary cilia have been suggested to

play a role in developmental processes [48] and to have

chemoreceptive functions including detection of peptides, hor-

mones or neurotransmitters diffusing from the CSF into the

interstitial liquid [46]. One could therefore suggest that due to the

primary cilia on their soma, PKD2L1+ S-CSF-cNs would be

capable of sensing modifications in the motion or composition of

interstitial medium. Interestingly, the presence of polycystin-2, a

protein of the same family as PKD2L1, in the basal region of the

primary cilium has been described in kidney epithelia and vascular

endothelial cells and shown to confer to these cells a role in

mechanodetection of the flow of primary urine or blood,

respectively [49]. Prior studies examining the morphology of the

dendritic bud in mouse and rat spinal cord reported that the bud

would be round-shaped (3 to 5 mm diameter) and in general

devoid of microtubule-based cilia [50,51]. Our data would need to

be confirmed by a dedicated study of the bud ultrastructure, but as

suggested by previous reports [8,11], we did notice thin short Ac-

aTub+ and AC3 negative cilia-like structures on the PKD2L1+

terminal protrusion; a result that might further support its role as a

CSF sensor.

Phenotype and Synaptic Contacts
Numerous studies carried out on the spinal cord of several low

vertebrates species [35,52,53] as well as mammals [6,8,11] have

shown that CSF-cNs are GABAergic. Nevertheless, to our

knowledge, there is no quantitative and comparative data available

on the phenotype of spinal and medullar CSF-cNs. Here using

immunohistochemical techniques on adult mouse tissue, we

showed that ,80% of medullospinal S-CSF-cNs were immuno-

reactive to GABA and GAD67. Further, our results suggested that

medullar S-CSF-cN would be capable of synthesizing GABA

through GAD67 activity and of releasing it at their axonal

terminals. We were not able to determine the phenotype of the

remaining ,20% of PKD2L1+ S-CSF-cNs. However, we cannot

exclude the possibility that some GABAergic S-CSF-cNs could not

be detected due to low levels of GABA/GAD expression. On the

other hand, these S-CSF-cNs might represent a neuronal

population with a different phenotype as suggested by several

studies [7,9,10,54]. In lower vertebrates, CSF-cNs were shown to

express dopamine or 5-HT [35,36] but our results are in

agreement with previous studies carried out on mice or rat spinal

cord tissues where 5-HT and dopamine expression was not

observed in CSF-cNs [9,10]. Another possibility that we did not

test was that the remaining PKD2L1+ S-CSF-cNs could express

either the aromatic L-amino acid decarboxylase (AADC) to

synthesize monoamines [7,9,54] or leucine- and methionin-

enkephalin [10] as reported for some CSF-cNs in mice.

Complementing these results, we found a strong labeling against

GAD67 in the parenchyma and around the cc (fig. 6B). This

GAD67+ staining appeared punctate, in close apposition with the

soma of PKD2L1+ S-CSF-cNs and might correspond to

GABAergic terminals known to accumulate GAD [55]. This

result corresponds to previous electron microscopic data showing

that spinal CSF-cNs are in contact with terminals containing small

clear vesicles characteristic of GABAergic boutons [6]. We also

recently demonstrated at the functional level that medullar S-CSF-

cNs receive strong GABAergic synaptic inputs [12]. Taken

together these results indicate that PKD2L1+ S-CSF-cNs are

modulated by functional GABAergic terminals likely arising from

local interneurons. We also observed fibers positive for TH, 5-HT

and ChAT in close contact with PKD2L1+ S-CSF-cNs suggesting

some catecholaminergic, serotoninergic or cholinergic modulation

of S-CSF-cNs. This is supported on the one hand by the presence

of cholinergic neurons in the dorsal motor nucleus of the vagus

nerve that could project towards S-CSF-cNs and on the other

hand by immunohistochemical studies showing that cells around

the cc with the morphology of CSF-cNs were strongly positive for

type 6 5-HT receptors [56] (see also www.Gensat.org BAC

Address: RP23-65B23). Our results support the idea that S-CSF-

cNs are primarily GABAergic cells, receive GABAergic inputs,

and might be modulated by other neurotransmitters such as

acetylcholine and 5-HT.

PKD2L1+ S-CSF-cNs are in an Intermediate State of
Maturity

Most CNS neurons go through a specified maturation process,

but in regions such as the olfactory bulb or the dentate gyrus of the

hippocampus new neurons are still formed even in adulthood

[57,58]. More recently it was reported that the region surrounding

the cc of the spinal cord might represent a new stem cell niche.

Stem cells present in this region could be capable in vivo of dividing

and generating astrocytes and oligodendrocytes while in vitro they

form neurospheres [24,25,31]. In mammals, this region is also

suggested to take part in reparatory processes following spinal cord

injury [23,25]. Among the cells found around the cc, some CSF-
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cNs were shown to express markers associated with neuronal

immaturity such as DCX or PSA-NCAM in juvenile [8] and adult

rodents [8,11,26].

First, we show that in adult animals the vast majority of S-CSF-

cNs still expressed DCX (,90% of cells) as well as HuC/D

although in a lower proportion of cells (,60% of cells). Since these

markers are found both in young post-mitotic and immature

neurons and in new neurons formed during adult neurogenesis

[58,60] our data suggest that medullospinal PKD2L1+ S-CSF-cNs

have conserved immature characteristics or are young neurons.

Based on several studies indicating that spinal stem cells do not

generate new neurons in adults [24,29] and that CSF-cNs were

not the result of postnatal or adult neurogenesis [8,29], it is

unlikely that S-CSF-cNs represent newly formed neurons.

Interestingly, recent findings described neurons in the layer II of

adult mouse cerebral cortex that were not newly formed yet still

expressed DCX and PSA-NCAM, and thus remained in an

immature state [61]. In adult mice, we were unable to detect any

immunoreactivity in PKD2L1+ S-CSF-cNs against PSA-NCAM.

This is in contrast to previous reports [8,11,31,34]. A potential

explanation for this discrepancy might be the more rostral sections

examined in our analysis (cervical spinal cord and brainstem)

where little or no PSA-NCAM immunoreactivity was observed

[59]. Finally, the lack of mature axonal markers might correspond

to this intermediate state of maturity. Neurofilaments become the

dominant axonal constituent only as neuronal maturation

advances [39,40]. Therefore, the absence in S-CSF-cNs of

immunoreactivity against 160 kDa (this study) and of 200 kDa

neurofilaments [29] along with the reported expression of GAP43

in spinal CSF-cNs and their presumed fibers [11] would further

support the idea that S-CSF-cNs are in an intermediate state of

maturity.

During the embryonic stage, Nkx6.1 homeodomain proteins are

strongly expressed in the ventral region of the caudal neural tube

and enables the differentiation of ventral progenitors into somatic

motoneurons (sMN), ventral (V)2 and V3 neurons [62,63]. The

level of Nkx6.1 expression was shown to progressively decrease

during CNS development, to become restricted to the region

surrounding the cc of the spinal cord by embryonic day 18 [64]

and to remain expressed by some CSF-cNs at adult stages [31].

Here we demonstrated in adult mice first that almost all PKD2L1+

S-CSF-cNs strongly expressed Nkx6.1 and second that this high

level of Nkx6.1 expression was present in PKD2L1+ S-CSF-cNs

from the cervical spinal cord up to the rostral part of the

brainstem. We observed little expression in other cells around the

cc (fig. 7B). These results suggest that PKD2L1+ S-CSF-cNs might

originate from progenitors common with sMN and V2-3 neurons

and reinforce the idea that S-CSF-cNs retain a ‘‘non-mature’’

phenotype even at adult stages. Because of the apparent

incomplete maturation state of most PKD2L1+ S-CSF-cNs in

adult animals, one could suggest that these neurons might have

retained maturation and/or migration capabilities that would be

activated under circumstances and conditions yet to be deter-

mined. One hypothetical trigger for activation of S-CSF-cNs

might be tissue injury and the regenerative processes that follow.

Indeed, it is well established that under those circumstances,

regeneration and tissue repair partially recapitulate morphogenesis

by up-regulating, for instance, transcription factors like Pax6 and

Olig2 [65]. One could therefore suggest that the selective

expression in S-CSF-cNs of Nkx6.1, another transcription factor

for neuronal pattern determination, could prompt these cells to

participate in post-traumatic processes such as axon growth,

rewiring and even neuronal migration.

In young rats, Marichal and colleagues [8] provided evidence

that CSF-cNs were negative for NeuN. This result is in agreement

with the DCX+, PSA-NCAM+ and HuC/D+ phenotype and

confirms the immature state of spinal CSF-cNs. These authors also

suggested that cells present in the spinal ependyma, presumably

CSF-cNs, were negative for NeuN in tissues obtained from 3 week-

old rats (P21). In our study however, we showed that in adult mice

(,P90) S-CSF-cNs did express NeuN along with the immature

markers (see also [29]). Our results also suggested that a rostro-

caudal gradient of maturation might exist for S-CSF-cNs since the

percentage of NeuN+/PKD2L1+ S-CSF-cNs changes along the

rostro-caudal axis. In a sense, these results are unexpected since

during development or neurogenesis NeuN expression is supposed

to increase with neuronal maturation while DCX expression

should decrease and disappear in parallel [58]. However, in the

olfactory bulb and the dentate gyrus a temporary overlap between

DCX/PSA-NCAM and NeuN expression was reported in newly

formed neurons [58]. A similar situation is also observed for the

immature neurons in layer II of the cerebral cortex [61]. All in all,

the level of NeuN expression is much lower in S-CSF-cNs than in

PKD2L1 negative neurons of the same region, indicating once

again that S-CSF-cNs exist in an intermediate degree of neuronal

maturation (fig. 8B).

Conclusion

Our study represents the first in-depth analysis of the

morphology and distribution of PKD2L1+ CSF-cNs in the

brainstem of mammals. We show that CSF-cNs correspond to a

morphologically homogeneous neuronal population that has a

subependymal localization and extends from the cervical spinal

cord up to the rostral brainstem. We also demonstrate that S-CSF-

cNs exhibit a primary cilium on their soma contacting the

interstitial liquid and a protrusion at the end of their dendrite in

contact with the CSF. These two appendices might enable S-CSF-

cNs to sense both the pericellular fluid and the CSF. We further

demonstrate that PKD2L1, selectively expressed on the somato-

dendritic compartment, represents a specific marker for S-CSF-

cNs. Due to modulation of this channel by pH and osmolarity

[12], we suggest that PKD2L1 might confer to S-CSF-cNs their

ability to detect and integrate changes in the composition of the

CSF and the interstitial medium. Our results also indicate that

these neurons are mostly GABAergic, are likely contacted by

GABAergic inputs [12], and potentially by monoaminergic and

cholinergic terminals. Finally, our data indicate that PKD2L1+ S-

CSF-cNs exist in an intermediate stage of maturity. These neurons

display many mature properties: they are polarized cells with an

axon-like projection, display a robust action potential discharge

activity, are integrated in a neuronal network [12], and express

NeuN. On the other hand, NeuN expression is lower in S-CSF-

cNs than in surrounding neurons, they do not express mature

axonal markers, and they continue to concomitantly express

immature markers. Much work remains to characterize the

function of these cells and their synaptic targets in the adult

CNS. Further investigations will be invaluable for determining first

a potential link between S-CSF-cNs and medullospinal stem cells

and second if these neurons can be activated under circumstances

such as regeneration.
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