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Recent technological advances have allowed us to map chromatin conformation and
uncover the genome’s spatial organization of the genome inside the nucleus. These
experiments have revealed the complexities of genome folding, characterized by the
presence of loops and domains at different scales, which can change across development
and in different cell types. There is strong evidence for a relationship between the
topological properties of chromatin contacts and cellular phenotype. Chromatin can be
represented as a network, in which genomic fragments are the nodes and connections
represent experimentally observed spatial proximity of two genomically distant regions in a
specific cell type or biological condition. With this approach we can consider a variety of
chromatin features in association with the 3D structure, investigating how nuclear
chromatin organization can be related to gene regulation, replication, malignancy,
phenotypic variability and plasticity. We briefly review the results obtained on genome
architecture through network theoretic approaches. As previously observed in protein-
protein interaction networks and many types of non-biological networks, external
conditions could shape network topology through a yet unidentified structure-function
relationship. Similar to scientists studying the brain, we are confronted with a duality
between a spatially embedded network of physical contacts, a related network of
correlation in the dynamics of network nodes and, finally, an abstract definition of
function of this network, related to phenotype. We summarise major developments in
the study of networks in other fields, which we think can suggest a path towards better
understanding how 3D genome configuration can impact biological function and
adaptation to the environment.
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INTRODUCTION

The 4D Nucleome: Features and Dynamics of Chromatin Contacts
For just over 10 years we have had the tools to explore chromosome conformation inside the nucleus
with Hi-C (Lieberman-Aiden et al., 2009) and related techniques. Understanding the organization of
the overall dynamic 3D structure of DNA in the nucleus with associated proteins and nucleic acids
[the nucleome (Dekker et al., 2017)] remains an important step towards better understanding the
connection between genome and phenotype. Beside the variations of Hi-C [ChIA-PET (Fullwood
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et al., 2009), HiChIP (Mumbach et al., 2016), micro-C (Hsieh
et al., 2015)], alternative approaches provide an independent
picture of nuclear organization. For example, microscopy
based techniques allow us to visualize previously tagged
chromatin regions for inference of 3D interactions [DNA
FISH Oligopaints (Beliveau et al., 2014), Hi-M (Gizzi et al.,
2019)]. Moreover, methods that infer 3D proximity by
segregating genomic fragments in different locations in the
nucleus permit the inference of 3D contact maps independent
of proximity ligation [GAM (Beagrie et al., 2017), SPRITE
(Quinodoz et al., 2018; Quinodoz et al., 2020)], which is the
traditional process to identify chromatin contacts by most Hi-C
and derived methods. Finally, imaging integrated approaches
including RNA and chromatin mark quantification in single
cells (Takei et al., 2021) are shedding an unprecedented light
on single cell nucleome organization.

Given the large regions of the genome that do not contain
genes, which are often the focus of our attention, variations of
Hi-C that allow us to study interactions involving a specific
subset of chromosomal regions such as Capture Hi-C have been
particularly useful. In particular promoter capture Hi-C (PCHi-C)
(Schoenfelder et al., 2015a; Mifsud et al., 2015) confirmed the
existence and importance of long-range chromatin interactions
and identified the role of important regulators of developmental
genes, such as the Polycomb complex, in creating a highly
interconnected core of genes in mouse embryonic stem cells
(Schoenfelder et al., 2015b). Importantly, PCHi-C allows us to
study long-range interactions that can only be captured by Hi-C
using extremely deep sequencing.

The increased availability of chromatin conformation data has
enabled detailed analysis of chromatin rearrangements during
differentiation (Bonev et al., 2017), progression to malignancy
(Malod-Dognin et al., 2020; Vilarrasa-Blasi et al., 2021),
senescence (Chandra et al., 2015; Sati et al., 2020) and even
during the cell cycle (Nagano et al., 2017; Zhang et al., 2019).
Many results have been achieved with extensive use of
mathematical models including polymer models, which
assume DNA to be a polymer with specific properties that can
be related to epigenomic modifications. As summarised in a
recent review (Di Stefano et al., 2021), mainly two modelling
approaches, a data-driven one and a bottom-up one starting from
principles of polymer behaviour, have enabled exploration of
dynamics at different scales. Single locus-scale dynamics was
modelled in great detail, describing specific processes involved in
gene activation and related chromatin changes. On the other
hand, coarser models can describe large-scale chromatin
rearrangements, compaction and decompaction events and
movements to or from the nuclear lamina.

RELATING CHROMATIN STRUCTURE TO
TRANSCRIPTION AND REPLICATION

There is some evidence of a tight connection between chromatin
contacts and transcription. More specifically, changes in the 3D
looping structures of chromatin in neurons following their
activation have been shown to affect gene expression on

different time scales (Beagan et al., 2020). Also during
reprogramming of mouse B cells into pluripotency, specific
open chromatin 3D enhancer structures (network hubs)
around active genes were shown to form in association to
gene expression activation and disappear during gene silencing
(Di Stefano et al., 2020). Interestingly, microscopy based
techniques have also investigated chromatin dynamics and
showed a caging effect that restricts chromatin motion in the
proximity of a transcribed gene (Germier et al., 2017), suggesting
that chromatin dynamics at various scales is closely associated
with transcriptional regulation (Shaban et al., 2020). Whether
structure drives the activation of transcription in gene assemblies
(transcription factories) (Iborra et al., 1996), or mRNA
production reshapes chromatin structure (Hilbert et al., 2021),
it is clear that structure and transcription are tightly intertwined.
Nevertheless a lack of a clear relation between transcription
activation and 3D contacts, at least at single-cell level
(Espinola et al., 2021; Ing-Simmons et al., 2021) leaves us with
open questions.

On a larger scale, the role of typical structural features, such as
Topologically Associating Domains (TADs), in gene expression
remains hotly debated (Cavalheiro et al., 2021), with evidence
that in some specific loci, perturbing TAD structure can lead to
substantial changes in expression patterns, even related to
pathology and morphological aberrations (Lupiáñez et al.,
2015), while at the genome wide level, expression programs
can be resilient to drastic chromosomal rearrangements
(Ghavi-Helm et al., 2019).

At a whole nucleome scale, the formation of TAD cliques
(highly interconnected groups of TADs) towards the nuclear
lamina has been associated with differentiation (Paulsen et al.,
2019) and large TAD-level rearrangements have been observed
also during reprogramming towards pluripotency (Di Stefano
et al., 2020).

Topological analysis of the chromatin network has also led to
the identification of drastic rearrangements involved in the
progression from healthy to malignant cells. Despite the added
complications of considering genomic alterations that are
characteristics of cancer cells, clear 3D rearrangements have
been observed to accompany oncogenic transformation in
B cells, beyond those encountered in normal B cell
differentiation (Malod-Dognin et al., 2020; Vilarrasa-Blasi
et al., 2021). Exploring nucleome dynamics in differentiation
of T cells, it was proposed that some of these rearrangements can
ensure the irreversibility and stability of the differentiation status
(Hu et al., 2018). Recent results mapping chromatin architecture
in neurons suggest the importance of modifications in the TAD
structure in neuronal function. More specifically, specific TAD
melting events involving particularly long genes important for
neuronal functions are up-regulated by local chromatin
decompaction (Winick-Ng et al., 2020).

Whereas the concept of a relationship between 3D genome
structure and transcription has been controversial and has not
been elucidated in the details, it has been known for decades that
loops of chromatin are involved in replication and in the
formation of replicons, held together by cohesin (Edenberg
and Huberman 1975; Guillou et al., 2010). It has also been
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clear for years that TADs can be seen as units of replication
timing (RT), and replication timing domains are clearly
connected to phenotypic states and cell types (Ryba et al.,
2011; Pope et al., 2014; Boulos et al., 2015), suggesting a
strong connection between 3D structure and replication acting
on larger scales than those of replicons. Recent work featuring the
integration of replication datasets with chromatin contact maps
reinforces these findings (Jodkowska et al., 2019; Marchal et al.,
2019) and suggests that chromatin might be predominantly
organised in structures that ensure specific replication
programs, which might become the substrate of transcriptional
organization. More specifically, we have found that regions with
similar replication timing are close to each other linearly but also
in 3D through long range (tens of megabase) interactions
(Madrid-Mencía et al., 2020) and we have also observed
clustering or chromatin regions containing origins with the
same efficiency of activation (effectively the number of cells
that use specific origins at any division) across large distances
(Jodkowska et al., 2019). Recent reports of the effect of knocking
out a main replication regulator, Rif1, have highlighted its
possible impact in shaping RT in the entire genome and even
an effect on epigenetic marks and organization (Klein et al.,
2021). These results have started shedding light on the
mechanistic connection between replication, 3D structure and
the epigenomic state of the cell.

VARIABILITY, CELLULAR ENVIRONMENT
AND EPIGENOMIC REARRANGEMENTS

Genes that are variable (across single cells) are also more strongly
regulated (along time-courses) and more evolvable (across
species) (Ciliberti et al., 2007; Lehner 2008; Tirosh et al., 2009;
Sigalova et al., 2020). Inter-individual non-genetic variability is of
fundamental relevance in medicine and recent studies have
highlighted its importance also in healthy individuals (Chen
et al., 2016; Ecker et al., 2017). Chromatin is the common
substrate that unifies these three different biological processes
and we have proposed that the chromatin context, including local
and global conformation, could be considered as one of the
important factors affecting variability in methylation, gene
expression and ultimately phenotype (Ecker et al., 2018). At a
local level, it has been shown that the chromatin state can impact
gene expression variability. For example, genes repressed by
binding of the Polycomb complex, were shown to have more
variable expression levels across single cells (Kar et al., 2017).
Moreover, promoter features defining specific genomic
characteristics of transcriptional start sites (promoter
architecture) were identified to be the main determinants of
expression variability across single drosophila embryos and
across individuals in specific human tissues (Sigalova et al.,
2020). Indeed expression variability across individuals was also
predictive of differential expression after genetic perturbations or
changes in environmental conditions. Promoter features that
were found to be important in determining variability include
the narrow or broad transcription initiation region, Transcription
Factor (TF) occupancy or increased regulatory complexity. Since

chromatin properties and TF binding patterns are highly
correlated with 3D chromatin interactions, it can be
speculated that groups of genes that have similar values for
these features would be forming preferential contacts in 3D.

Regions of the genome bound by Polycomb were found to
cluster in 3D (Schoenfelder et al., 2015b; Pancaldi et al., 2016), as
well as super-enhancer regions (data not shown), suggesting that
the folding of chromatin in the nucleus might generate “areas” of
higher or lower gene expression variability. This tendency for
specific genomic regions to form clusters in 3D can be quantified
using Chromatin Assortativity, which measures the significance
of correlation between values of a feature on a chromatin region
and other regions that interact with it (Pancaldi et al., 2016;
Madrid-Mencía et al., 2020) against random expectation.
Chromatin assortativity of the promoter features from Sigalova
et al. (2020) projected onto a promoter interaction network for
human cells derived from chromosome capture experiments
indeed shows clustering of promoters of genes with similar
sequence and transcriptional features in the 3D genome
(Figure 1).

So far, we have described how specific regions of the genome
can potentially be identified in 3D as having particular
characteristic profiles of expression variability. Therefore we can
wonder if changes in the external conditions of the cell might affect
these nuclear organization patterns to promote adaptation. For
example, strong evidence exists for an increase of overall expression
and phenotypic variability when cells are grown under stressful
environments (López-Maury et al., 2008) or in cancer (Brock et al.,
2009) which involves strong regulation of response genes. Looking
at a more global level, the mechanisms that control cellular
variability in adaptation to external conditions could be
reflected as rearrangements in chromatin organization. Indeed,
the external environment impacts the organization of chromatin in
the nucleus in space and its dynamics in time (the 4D nucleome).
This is true across species and contexts, starting from changes of
polycomb occupancy during heat-shock in drosophila (Li et al.,
2015), to activation of transposable elements associated to
chromatin decompaction in heat-stressed plants (Sun et al.,
2020), to chromatin architecture rearrangements after osmotic
stress in yeast (Amat et al., 2019) and during quiescence (Guidi
et al., 2015).

Fibroblasts at late passages also showed telomeres shortening
and shifting towards the nuclear center (Bridger et al., 2000),
while differentiation, pluripotency and senescence also lead to
widespread chromosomal rearrangements and drastic
epigenomic changes (Bonev et al., 2017; Sati et al., 2020;
Chovanec et al., 2021). These findings reinforce the concept
that chromosomal organization is tightly related to cellular
phenotype and function, which are strongly connected to the
cell’s environment, opening the interesting question of which one
between chromatin structure and phenotype is the cause or
consequence.

We can therefore hypothesize the existence of a relationship
between the global epigenomic characteristics of a cell
population, especially 3D chromatin structure, and its
plasticity in responding to changing environments or
stimulation. To reveal this connection we are in need of a
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unified framework to represent the epigenome in an integrated
fashion and with multiscale resolution.

One of the main challenges in modelling the epigenome is the
lack of a complete understanding of the physics of chromatin
(intended as DNA and all associated proteins, RNAs and
modifications) and the reconciliation of different techniques to
generate experimental data which are all affected by specific
biases (for example, sequencing biases for Hi-C related
techniques, proximity/contact detection in microscopy based
techniques) (Fiorillo et al., 2021). Moreover, we lack tools
proposing integrated models covering different time and space
scales. Network approaches to chromatin structure can provide a
unified multi-scale picture of genome organization, while offering
metrics for the overall characteristics of the 3D epigenome, to
potentially relate them to phenotypes.

CHROMATIN NETWORK APPROACHES

The concept of using network theory to interpret chromatin
structure datasets has been around for a decade. As soon as Hi-C
contact maps were generated, they were interpreted as distance
matrices and easily transformed into adjacency matrices of
chromatin networks (Botta et al., 2010; Boulos et al., 2013;
Boulos, 2014; Babaei et al., 2015; Morlot et al., 2016; Boulos

et al., 2017). With increasing resolution and new chromosome
capture techniques more chromatin network approaches were
proposed (Pancaldi et al., 2016; Thibodeau et al., 2017; Norton
et al., 2018; Huang et al., 2019; Malod-Dognin et al., 2020;
Chovanec et al., 2021). The increasing interest in this
framework has also prompted the development of 3D genome
network visualizers, which allow users to explore the topology
(contact patterns) of genomes in a non-linear fashion (Thibodeau
et al., 2016; Madrid-Mencía et al., 2020; Ramirez et al., 2020;
Chovanec et al., 2021) as well as to visualize other chromatin
datasets in a 3D context. This approach can be considered
complementary to 3D visualization of constraint based and
polymer models of chromatin (Dekker et al., 2013; Lesne
et al., 2014; Paulsen et al., 2017; Fiorillo et al., 2021).

In 2012 a pioneering paper by Sandhu et al. (2012) proposed
an interesting analysis of the chromatin networks evinced by
RNA Polymerase 2 ChIA-PET, a technique which provides 3D
contacts between chromatin fragments mediated by polymerase.
Despite the incompleteness of the obtained network, they merged
different chromosome fragments within specific genomic regions
to recover a connected network of promoters from the data set.
Detailed analysis of this network’s topology highlighted
communities related to specific biological functions and the
presence of rich club nodes (highly connected nodes with
other high degree nodes), representing important cellular

FIGURE 1 | A chromatin assortativity analysis performed on the chromatin network shows preferential interactions of genes that have similar promoter
characteristics. (A) Schematic describing the chromatin network approach in which nodes are chromatin fragments and edges describe experimentally identified 3D
contacts between chromatin fragments, (B) Projection of promoter width from Sigalova et al. (2020) averaged acrossmany tissues onto the combined Promoter Capture
Hi-C network for haematopoietic cells (Javierre et al., 2016). In this network nodes are gene promoters and node colour represents values of “promoter width”with
increasing width shown as darker purple. (C) Chromatin assortativity analysis here measures whether promoters with similar values of the promoter features detailed in
Sigalova et al. interact preferentially in the network from (A). For each feature a ChAs value is calculated and the values obtained in 100 randomized networks is used to
estimate a Z-score, shown on the barplot for each feature. The ChAs calculation is performed using distance preserving randomizations with the ChAseR package
(Madrid-Mencía et al., 2020). High values of the Z-score denote preferential 3D distal interactions of promoters with similar values for these features.
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processes, and less connected nodes (spokes), with specific
developmental functions and which are enriched for genomic
mutations and genetic polymorphisms. These results suggested
that evolution has shaped the 3D genome structure.

More recently, similar network topology analyses applied to
Hi-C data targeted at investigating smaller regions within the
genome (meso-scale) have identified the presence of core-
periphery structures in certain TADs and suggest that the
location of single nucleotide variants within these two regions
of the TAD can determine the impact the variants have on
diseases (Huang et al., 2019).

Network representations are particularly useful when using
PCHi-C datasets. As we have previously shown, promoter
capture Hi-C datasets in mESCs can be easily represented as
networks involving promoters and other genomic regions (Other
ends or Promoter Interacting Regions) generating networks
which feature a main large connected component and various
other smaller ones (Pancaldi et al., 2016). Despite not having
time-resolved or single-cell chromatin contact networks, we used
two statistical network properties (betweenness centrality and
bridgeness) to estimate whether nodes with different chromatin
marks were highly connected simultaneously with all their
partners or with one at a time, akin to the definition of date
and party hubs in PPIs (Han et al., 2004). Using these and other
network statistics, we established that Polycomb mediated
interactions are to some extent more stable and fixed, across
cells or time (party hub). On the contrary, RNAPII was predicted
to have more variable interactions, changing its partners across
cells or time (date hub). The tools that we have produced (the
ChAseR package and GARDEN-NET website) allow seamless
integration and analysis of any property defined along the
genome (gene properties such as transcriptional levels or
variability, functional categories or evolutionary characteristics,
chromatin features, or any user-defined data) onto the chromatin
structures defined by any experimental chromatin contact
datasets (Madrid-Mencía et al., 2020).

Importantly, networks allow us to visualize chromatin at
different scales. Since TADs are defined similarly to network
modules, namely as domains that have more interactions within
them than with other domains, we can imagine grouping
chromatin fragments within a TAD into a single node and
investigating a network of TADs, leading to a hierarchical
representation of the genome (Jodkowska et al., 2019). At the
same time we can combine different datasets (for example Hi-C
and PCHi-C) in a single network, to preserve a high number of
long-range contacts while also considering the linear proximity of
regions along the genome (Malod-Dognin et al., 2020).

Chovanec et al. (2021) presented a network approach to
visualize and study the difference in 3D chromatin
conformation between naive and primed human pluripotent
stem cells (PSCs) using Canvas, a tool to represent chromatin
fragment interaction networks in a multi-scale framework. They
identified cell type specific clusters displaying coordinated gene
expression and corresponding in some cases to functional units.
Interestingly, they showed that TAD border insulation
(separation between TADs) is stronger in primed compared to
naive PSC, suggesting a coupling between phenotype and

structure that would see naive cells with a “weaker” TAD
structure. They suggested that smaller communities would
come together into larger domains during the priming process,
which is compatible with the formation of more functionally
constrained units relying on long-range (>1 MB) polycomb
enriched interactions between developmentally related genes.

Interestingly, the application of network theory analyses to
chromatin allows us to peer into the organizing principles that
underlie the nucleome in search for a structure-function
relationship in chromatin networks.

CHROMATIN STRUCTURE-FUNCTION
RELATIONSHIPS: MULTI-DISCIPLINARY
CONCEPTS TOWARDS AN
EPIGENOME-PHENOTYPE CONNECTION

Applying network theory approaches to biological networks has
provided insight on different aspects of biological processes, from
evolution and the structure of protein-protein interaction
networks, all the way to mechanistic hypotheses on mode of
action of drugs from looking at drug-disease-symptom
interaction networks (Sonawane et al., 2019). The common
theme through these approaches is the realization that a
structure-function relationship exists between the topology and
structural characteristics of a given network and the behaviour of
the entity represented by that network.

To better examine the concept of structure-function
relationships, we can turn to another biological entity that
rivals the genome in complexity and mystery: the brain. Two
separate approaches can be used to describe and study brain
networks (Lynn and Bassett 2019). First, through imaging and
tracing of water molecules along white matter, we can define a
spatially embedded structural network connecting different
regions of the brain. This approach is so far limited to a
meso-scale level, involving the grouping of different neurons,
but the latest technology can currently capture the dynamics of
these meso-scale contacts in humans and primates. Second, we
can take into account the functional relationship between
different neurons, according to the principle that neural
connections are strengthened when the two connected neurons
fire together and that the emergence of collective firing behaviour
of multiple neurons can give rise to cognitive functions. This
approach, which relies on functional Magnetic Resonance
Imaging (fMRI) allows us to identify correlation of activities
between different nodes of the structural network (normally only
possible at the brain region level including tens of thousands of
neurons). A certain correlation between structural brain networks
and functional brain networks is expected and identified, but the
relation is certainly not trivial and the dynamics of the functional
correlation might have to be considered (Suárez et al., 2020).
These two networks and their relationship are specific to
particular developmental stages and altered in mental disease.

A correspondence between genome and brain networks
becomes evident, with a parallelism between chromatin and
brain structural networks versus co-expression and functional
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brain networks (Figure 2). Whereas in brain networks the clear
connection between the two networks is represented by the
signals exchanged between neurons, we are still discovering
how the numerous molecular processes taking place inside a
cell could provide a connection between 3D genome and
phenotype. We could imagine the chromatin structure
network and the gene/protein regulatory interaction or co-
expression network as two components of a multilayer
network (Kivelä et al., 2014), with phenotypes defined as an
emergent collective behaviour on the gene co-expression
network. A multilayer network has been successfully applied
to the C. elegans connectome, showing the potential of such
an approach in epigenomics (Bentley et al., 2016). A further
important point of convergence between these two network types
is their spatial character. More and more we are able to study
chromatin structure throughmicroscopy in single cells, providing
us with spatial coordinates of genomic fragments. These new
approaches allow us to go beyond the topology of the structure
and create real maps of the genome inside each nucleus. A spatial
perspective on chromatin could suggest exploiting a range of
techniques that have been applied to other kinds of spatial
networks, which normally focus on spreading phenomena,
including mobility, epidemiology and power-grid networks,
among many others (Barthélemy 2011). Such an approach in
epigenomics would open new perspectives while requiring
thorough considerations of the physics of the nucleus. To
what extent an equivalence between spatial distance in
chromatin and geographical distance is appropriate, together
with the importance of transport on the chromatin network
[information flow (Juan et al., 2016) or physical flow of

molecules (Cortini and Filion 2018)] are likely to become
topics of interest. A related issue that could have interesting
repercussions in the epigenomics of diseases is the study of
failures in these spatial networks and how resilient these
networks are to attack (Schneider et al., 2011).

To further study this structure-function relationship and relate
the cellular network to its environment, we can rely on results
connecting network properties to their environment and
behaviour. Multiple network metrics and topological features
have been employed to describe networks’ response to specific
conditions or perturbations, their resilience or plasticity
(robustness or sensitivity) (Bar-Yam and Epstein 2004;
Schneider et al., 2011; Csermely et al., 2015). Modularity in
protein interaction networks has been attributed to the need
for optimizing multiple tasks at once (Kashtan and Alon 2005)
and was also observed in metabolic networks (Ravasz et al., 2002),
again suggesting that structure in biological networks reflects
environmental pressure. Particularly when looking at the
topology of gene regulatory networks, changes in their
architecture can be related to the cell’s environment
(Luscombe et al., 2004).

In yeast, stress is associated with a differentiation of the
expression programme, which can be reflected into a global
rearrangement of the transcriptome associated with a drastic
change of the protein interaction network. More specifically, heat
stress produces a disaggregation in the interaction network of
budding yeast (Mihalik and Csermely 2011) and we were
ourselves able to show a similar effect in fission yeast (Lehtinen
et al., 2013). We observed a decrease in module interconnectedness
after stress treatment and measured a decrease in the overlap

FIGURE 2 | Proposing a structure-function relationship linking the epigenome to the phenotype. We propose an analogy between the brain and chromatin
represented as multilayer networks. In the brain, a structural network of physical connections between neurons and brain regions can be identified and related to a
functional network describing correlation in firing of distant brain regions, which collectively give rise to cognitive functions. Similarly, the physical interactions of genomic
regions inside the nucleus (left bottom layer: chromatin network, nodes are gene promoters with contacts retrieved by promoter-capture Hi-C) can be related to
gene-coexpression networks (left top layer: nodes are genes and edges represent correlation of expression between them across different conditions) that ultimately
determine cellular phenotypes, which can be interpreted as specific gene expression patterns associated to distinct phenotypes.
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between network modules, representing a clear systemic
disaggregation of the network topology. Interestingly, other
approaches focussed on changes in metabolism before and after
stress treatment arrived at similar conclusions using metabolic
networks (Gopalacharyulu et al., 2009).

Some of these effects are reminiscent of phenomena that have
been observed in social and ecological networks. In complex
systems like social networks of traders in the stock market or
schools of fish in the ocean, specific dynamics of synchronization
have been related to success [prey evasion for fish or large profits
for traders (Saavedra et al., 2011)]. Moreover, the structures of
messaging networks (in which nodes are traders, edges represent
instant messaging interactions across the day) were shown to be
drastically affected by the situation of the stock market (Romero
et al., 2016). In days of relative calm and predictable stock market
fluctuations, traders exchange messages with all other traders,
whereas on the days of strongly unpredictable price shocks the
trader’s networks display a “turtled up” structure, with
predominant connections to the network core. These are clear
examples of relationships between network structure and its
function in response to the environment.

In line with this view, it has been proposed that specific
components in a biological network can have different
functions, namely the core would serve to ensure a prompt
response to known stimuli, while the periphery would contain
elements needed to respond to unexpected situations (Csermely
2018). This interesting perspective implies that, on evolutionary
timescales, repeated stimuli would lead to a change in the
structure of the network corresponding to learning of the new
conditions. Moreover, depending on the level of predictability of
external conditions, the network might need to adapt its structure
according to external conditions. These principles could govern
the chromatin rearrangements that are observed in cells in
response to changes in their external environment.

DISCUSSION

In summary, a large body of literature exists regarding system level
analyses on protein-protein or gene-coexpression networks as well
as networks from other disciplines. The notion that a cell’s

phenotype is somehow encoded in its genome suggests that
looking at the epigenomic networks under this light could also
be relevant. When considering the 3D genome, Csermely’s
hypothesis (Csermely 2018) might suggest that, through
evolution, a core 3D network of highly conserved genes,
involved in basic cellular functions, has been expanded by
addition of new genes involved in new functions, specific to cell
types and tissues. Importantly, changes in chromatin organization
can thus encode changes in the cellular phenotype in response to
varying needs of the cell to adapt to its external context. We
anticipate that a network science perspective on (epi)genomes will
continue to provide insights and new understanding for exploiting
the rich datasets that will be produced across cell types, with
potential applications in cancer and disease in general.
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