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Abstract

Although the visual cortex receives information at multiple temporal patterns, much of the

research in the field has focused only on intervals shorter than 1 second. Consequently,

there is almost no information on what happens at longer temporal intervals. We have tried

to address this question recording neuronal populations of the primary visual cortex during

visual stimulation with repetitive grating stimuli and intervals ranging from 1 to 7 seconds.

Our results showed that firing rate and response stability were dependent of interval dura-

tion. In addition, there were collective oscillations with different properties in response to

changes in intervals duration. These results suggest that visual cortex could encode visual

information at several time scales using oscillations at multiple frequencies.

Introduction

Despite the increasing interest in how visual cortex neurons encode visual information [1–4],

there are still many open questions concerning the temporal integration at long (seconds)

scale. While the encoding of sensory information at sub seconds scale has been extensively

studied [5–8], the processing of longer time intervals has traditionally been less studied[9–12],

and it has usually been addressed via pharmacological studies [13]. An exception to this is the

study of reward timing in visual cortex; during the last years it has been discovered that reward

timing [10] and visually cued action timing [12] are represented in visual cortex in experi-

ments on which the delay between the cue and the reward lasted up to 3 s.

How the brain encodes temporal information is indeed an open field of research [14–16].

Thereby, some models propose that time is encoded in populations of pacemaker neurons that

are the only responsible of temporal coding in the brain via oscillating at different frequencies

[17], while others propose that time is encoded by arrays of neurons with different time con-

stants that respond to different intervals. Furthermore, there is evidence showing that in-vitro
cortical networks can reflect specific temporal patterns [18].

On the other hand, many theories of perception are based on cortical oscillations [19]

which have been well characterized in response to visual stimulation [20,21], attention [22],

speech recognition [23], motor function [24] or reward expectation in visual cortex [25,26].

Furthermore, our sensory environment is full of regularities, for example, repetitive stimuli,
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which we use to predict future events. In this framework, the main goal of this study was to get

insights about if neuronal populations of deep layers of visual cortex can convey and process

interval information at seconds scale using spikes. To answer this question, we recorded neu-

ronal populations from rat visual cortex while visually stimulated with a unique type of stimu-

lus and different interstimulus intervals (ISI), ranging from 1 to 7 seconds.

To obtain a high-resolution picture of population oscillations we decomposed the signals

obtained averaging all the electrodes using a Noise Assisted Multivariate Empirical Mode

Decomposition (NA-MEMD) [27] and computed the Huang-Hilbert Spectrum (HHS) for

nonlinear and non-stationary time series analysis. This procedure was chosen because it allows

to analyze the recordings with instantaneous temporal and frequency resolutions [28–30],

which is crucial to depict nonlinear properties of the responses [31–33] and moreover it is

robust against signal intermittency in the data [27,34][35]. Our results showed that the

responses of visual cortex neuronal populations to an unchanged grating stimulus had differ-

ent Time-Frequency (T-F) dynamical spectra, depending on which ISI was used. Furthermore,

these spectral differences were present at different frequencies and times which fully agrees

with temporal multiplexing theory [36,37].

Materials and methods

Experimental design

Visual cortex multiunit recordings were obtained from Long Evans adult rats (n = 4, Janvier

Labs, France) weighing 450–500 gr. Analgesia was induced by buprenorphine (0.025mg kg-1 s.

c), and surgical anesthesia and sedation were induced by ketamine HCl (40 mg kg-1 i.p). The

anesthesia was continued and maintained with a mix of oxygen and 2.5% of isoflurane during

the surgery and afterward reduced to 1.5% during the electrophysiological recordings. The

blinking and the toe pinch reflexes were continuously checked along the experiment to guar-

antee a proper level of anesthesia for the animal. The body temperature was maintained with a

thermal pad and the heart rate and O2 concentration in blood were monitored throughout the

experiment. Animals were pre-treated with dexamethasone (1 mg kg-1 i.p) 24 hours and 20

minutes prior to surgery in order to avoid brain edema caused by the electrode insertion.

A craniotomy was drilled on top of the visual cortex and a customized 6x6 Utah Electrode

Array (UEA) covering a brain surface of 2 mm x 2 was inserted 2 mm lateral to the midline

and 0.5 mm anterior to lambda. The UEA was inserted in the deep layers of the visual cortex

(>600 μm) through the duramatter with the help of a Blackrock pneumatically-actuated

inserter device (Blackrock Microsystems, Salt Lake City, USA). After the insertion, the ipsilat-

eral eyelid to the craniotomy site was closed with cyanoacrylate and atropine sulphate 1% was

used to dilate the pupil of the contralateral eye.

In vivo neural activity from visual cortex was recorded simultaneously from 16 individual

electrodes. The UEA array was connected to a MPA32I amplifier (Multichannel Systems,

MCS) and the extracellular recordings were digitized with an MCS analog-to-digital board.

The data were sampled at a frequency of 20 kHz and slow waves were digitally filtered out

(100–3000 Hz, 2nd order Butterworth type IIR digital filter) from the raw data. Neural spike

events were extracted with a free-tool application for offline spike sorting analysis (Neural

Sorter, http://sourceforge.net/projects/neuralsorter/) and the resulting multiunit information

obtained from each electrode was stored for further analysis.

Visual stimulation consisted on a vertical drifting square-wave grating (90˚, light and

dark bars, 100% contrast, 6 Hz, 0.6 cycles/degree) of 500 ms duration interspersed with a dark

(uniform) stimulus of variable duration. The stimulus was displayed on an LCD monitor

(refresh rate 60 Hz) and a luminance of�100 cd/m2, placed 25 cm in front of the right eye,
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approximately at 30˚ from the midline covering a visual field spanning of�100˚ (Fig 1A) and

repeated 15 times for each ISI. We used 1, 3, 5 and 7 seconds ISI protocols in separated experi-

ments. The stimuli were generated using the Vision Egg library and customized python scripts.

The room was kept in darkness all along the visual stimulation experiments. Euthanasia of the

animals was performed once the recording protocols were ended.

Ethical approval

All the experimental procedures performed in this study conform to the directive 2010/63/EU

of the European Parliament and of the Council, and the RD 53/2013 Spanish regulation on the

protection of animals use for scientific purposes and were approved by the Miguel Hernandez

University Committee for Animal use in Laboratory.

Data analysis

Neural activity analysis was performed in Matlab (MathWorks). Single or multiunit spiking

activity was isolated from the background. We observed multiunit activity in the majority of

the electrodes through the whole recording sessions, then, only those electrodes with neural

activity higher than 0.5 spikes/s were considered in the analysis. (Fig 1B).

We constructed time-dependent population activity vectors by temporally binding the

activity of each electrode with 1 ms resolution. We considered one second before and one sec-

ond after each stimulus presentation for each ISI. The first stimulus of each recording was not

considered for the analysis. Possible anticipation dynamics were not subject to analysis, as they

exceeded the aim of this paper.

NA-MEMD

We used an extension of the EMD algorithm[38] to study the T-F properties of the neural

response. It has recently described [30,39] that the result of using EMD family of algorithms to

study the oscillatory properties of spike trains improves the results obtained by means of using

other traditional T-F techniques due to the presence of nonlinearities and nonstationarities in

the signal [30–32,40].

Fig 1. Experimental paradigm and representative trial. A) Schematic representation of the experimental stimulus-

recording design. B) Example raster plot of a single trial and all electrodes. Stimulus displayed as black line.

https://doi.org/10.1371/journal.pone.0208822.g001
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To overcome the problems associated to univariate EMD analysis, we used the Multivariate

Empirical Mode Decomposition (MEMD) [41], which is a multivariate extension of EMD

algorithm [38], where analysis of simultaneous dimensions is performed simultaneously

to obtain a meaningful decomposition of the whole multidimensional signal in a subset of vec-

tors called Intrinsic Mode Functions (IMFs). Furthermore, we added White Gaussian Noise

(WGN) to the MEMD, which increases its performance via reducing mode mixing produced

by signal intermittency [34]. This procedure acts as a filter bank that enhances time-frequency

resolution [41, 42]. Briefly, WGN is added in additional dimensions:

d ¼ nþ k;

Where d is the final number of dimensions, n the dimensions of the original data (electrodes,

trials. . .) and k the number of additional dimensions including WGN [41].

In order to apply this Noise Assisted Multivariate Empirical Mode Decomposition

(NA-MEMD) to our data, we adapted the MEMD Matlab package (http://www.commsp.ee.ic.

ac.uk/~mandic/research/emd.htm). We used the low-discrepancy Hammersley sequence to

generate a set of 300 direction vectors for computing signal projections and 4 WGN channels.

Standard stopping criterion was described elsewhere [43].

Since in our study, we seek for depicting features present in the whole recorded population,

we averaged the activity of all electrodes for the presentations of the moving grating for each

ISI in each animal and then added 4 additional dimensions with WGN.

Hilbert transform

We measured present frequencies in our data as the instantaneous frequency (IF) using Hil-

bert Transform (HT) (Huang et al. 1998). For a given time series x(t), its Hilbert Transform

H(x)(t) is defined as:

H xð Þ tð Þ ¼
1

p
C
Z 1

� 1

xðt0Þ
t � t0

dt0;

Where C indicates the Cauchy principal value. Hilbert Transform results in a complex

sequence with a real part which is the original data and an imaginary part which is a version of

the original data with a 90˚ phase shift. This analytic signal is useful to calculate instantaneous

amplitude and frequency, thereby instantaneous amplitude is the amplitude of H(x)(t), and

the instantaneous frequency is the time rate of change of the instantaneous phase angle.

Phase space

We created a low dimensional phase space considering mean population firing rate as well as

two IMFs that statistically carried ISI information with different temporal dynamics and were

consistent with multiplexed theory, IMF 8 (5.93 +/- 0.37 Hz) and IMF 6 (18.37 ± 1.29) [36,37].

To compare the Euclidean distance of the mean population trajectories in this phase space

we normalized all axes to prevent from any biasing and computed the center of all trajectories.

A 200 ms duration window of time ranging from 400 ms to 200 ms before stimulus onset was

used to localize the fixed point representing the population resting state before stimulation.

Statistical analysis

All experimental comparisons were tested using Wilcoxon rank-sum test. P values for multiple

comparisons were corrected ad hoc using Storey method [44].
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Results

Our procedures allow studying whether visual cortex neurons synchronized oscillations do

carry information about interstimulus intervals (ISIs) at the level of instant frequency (IF). Fig

2A shows the mean firing rate of all electrodes and presentations during and after stimulation

for each recorded ISI. We appreciated an overall increase in the normalized mean firing rate

when 3 and 5 seconds ISI were used with respect to 1s ISI (Fig 2B, Wilcoxon test, corrected p

value <0.03). These differences were persistent during the whole stimulation window when 5

seconds ISI was used, and restricted to a 300 ms window starting 100 ms after stimulus onset

when a 3 second ISI was used (Fig 2A). At last, in the case of 7 versus 1 second ISI, a transient

peak of discrimination was found 150–200 ms after stimulus onset (Fig 2A).

We next tried to determine if the responses to visual stimulation with longer ISIs were

more stable. As it is known that stimulation quenches neural variability[45], we asked whether

changes in the ISI could drive to more or less stable responses for different time lengths. There-

fore, we computed the Coefficient of variance (C.V.) during the stimulation window across

different presentations in each animal independently to analyze the reliability of the popula-

tion firing rate in the response to stimulation with different ISI (Fig 2C). We found that C.V.

was significantly reduced for ISIs longer than 1s (corrected p value <0.05).

Then, we studied whether neurons modulated their oscillatory dynamics at the population

levels to process ISI length. To do so, we compared the instantaneous amplitude of each IMF

Fig 2. Mean firing rate. A) Mean firing rate dynamics depending on ISI used. Stimulus shown as a black line. B) Normalized mean firing rate during

the stimulation window. 3 and 5 s ISIs display significant increases when compared with 1 s ISI. C) C.V. across trials was statistically reduced for longer

than 1s ISIs.

https://doi.org/10.1371/journal.pone.0208822.g002
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across time of 1second ISI with longer intervals (S1 Fig). Thus, we created a “discriminability

spectrum” (Fig 3) were the differences in amplitude at each IMF and time point were repre-

sented as the p value We appreciated significant differences (white color) in multiple IMFs for

3 and 5 seconds, mainly during and shortly after stimulations (Fig 3A and 3B), but little differ-

ences were seen against the 7 seconds ISI (Fig 3C). This suggests that ISI information was

encoded simultaneously at different timescales along the response, ranging from [1.87±0.18 to

159.34 ±37.53 Hz], consistent with multiplex theory [36,37].

To further study how ISI can be encoded at different frequencies during stimulation we

extended our analysis to particular IMFs. We found that IMFs carrying information about low

frequencies (Fig 3D), IMFs 7–9 (3.37±0.28 to 10.56±0.43 Hz), were statistically significant or

statistically relevant (corrected p value < 0.1) from those at 1 seconds ISI stimulation during

almost the whole stimulation window (i.e. IMF 8, Fig 4). Thus, slow frequencies seem to be

able to encode information about longer ISIs only until a certain time interval. IMF 8 was of

particular interest, since it carried out the responses in the frequency band of the used gratings.

We found that this particular phenomenon was reinforced when 3 or 5 seconds ISI were used

and was inexistent when we used a 7 seconds ISI. Moreover, the IMF 7 (10.56±0.43 Hz), was

Fig 3. Comparative HHSs IMFs shown in y axis, higher frequencies at the bottom of the HHS. A) P values comparing the obtained HHSs using

1s and 3s ISI. B) P values comparing the obtained HHSs using 1s and 5s ISI. C) P values comparing the obtained HHSs using 1s and 7s ISI. D)

Frequency range of each IMF. Wilcoxon P value displayed as color code; unique color bar for the 3 comparisons; significant values displayed in

white color. Stimulus displayed as black line.

https://doi.org/10.1371/journal.pone.0208822.g003
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also different for each ISI against 1seconds (Fig 5), which suggest that low frequency properties

were modified for ISIs longer than 1seconds.

When we extended our analysis to higher frequency components of the response (33.43

±2.73 to 159.34±37.53 Hz), the discriminability spectrum became more intermittent (Fig 3A–

3C). Statistically significant differences remained present with different temporal profile, espe-

cially when 1 second ISI was compared with 3 and 5 seconds intervals. A brief discrimination

window emerged ± 200 ms after stimulus onset when 3, 5 and 7 seconds ISI were used against

1 second ISI across several high frequency IMFs, indicating a common high frequency peak

in population response for longer ISIs. On the other hand, high frequency components were

present in the second half of the stimulation when 3 or 5 seconds ISI were used.

Fig 4. 6 Hz population dynamics. IMF 8 (5.93±0.37 Hz). 1s ISI is compared with 3s (top), 5s (middle) and 7 s

(bottom) along stimulation using Wilcoxon test and Storey correction. Significance level shown as grey line, stimulus

displayed as a black line.

https://doi.org/10.1371/journal.pone.0208822.g004

Fig 5. 10 Hz population dynamics. IMF 7 (10.56±0.43 Hz). Different temporal discrimination profiles were obtained

when 1 s ISI was compared with 3s (top), 5s (middle) or 7 s (bottom). Significance level shown as grey line, stimulus

displayed as a black line.

https://doi.org/10.1371/journal.pone.0208822.g005
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In summary, in our work, we show how the response of neuronal populations of the visual

cortex to a grating stimulus is sensitive to the length of the ISI at seconds scale. We described

how these differences were present at the level of firing rate, the variability of the response, and

in the oscillatory properties of the population response.

Discussion

Even though the capability of neurons to discriminate temporal patterns is known since the

60’s [46], we are far from understanding how cortical circuits encode time. This statement is

particularly true when we refer to times in seconds scale. In this work, we studied how visual

cortex neuronal populations of adult rats were responsive to ISI variations in the seconds scale.

We found that population firing rate and spiking oscillatory dynamics were sensitive to the ISI

we used, suggesting that visual cortex activity encodes temporal information up to several sec-

onds. Furthermore, these range of frequencies were consistent with classical works of neuronal

oscillations during visual stimulation [20,21].

The differences were present in the signal amplitude at different frequencies and temporal

profiles. Thus we found significant differences at the level of firing rate and low frequency

components, including the temporal frequency of the grating. These differences were present

throughout the whole stimulating window when 3 or 5 seconds ISI were used and vanished for

longer times (7 seconds). Furthermore, there were differences in high frequency components

when intervals longer than 1 second were used. These high frequency features appeared 100–

120 ms before stimulus offset when 3 or 5 seconds were used, but were not found when 7 sec-

onds ISI were used. In addition, the variability of individual presentations response was

reduced when longer than 1-second trails were used, which suggests that longer temporal pat-

terns increase the reliability of the responses. In addition, as it had been previously described

[30], the population responses were intermittent and strongly nonlinear, as intrawave modula-

tions were present during the response.

Considering the presented results, we propose a low dimensional phase space for ISI dis-

crimination considering three relevant parameters of the response: firing rate, low frequency

(6 Hz) and high frequency (18 Hz) dynamics (Fig 6A), in which visual cortex neuronal popu-

lations would be able to discriminate among ISIs depending on the elicited dynamics. In this

space, population dynamics are constricted to a fixed point (dotted line, Fig 6A) upon stimu-

lation, when different trajectories are evoked depending on the ISI used during the stimula-

tion. In order to compare the dynamics of the response to different ISIs, we computed the

Euclidean distance to the centroid given by the mean point of all trajectories from 400 to 200

ms prior to stimulation (Fig 6B). We can see different temporal dynamics depending on the

ISI that we used in this low dimensional space that may lead to ISI discrimination. When 1

second ISI is used, the population trajectory does not move away from the fixed point, as it

happens when using longer ISIs. In these series, the evoked trajectories temporal dynamics

diverge depending on whether 3/5 seconds ISI or a 7 second ISI was used. In the first case,

population dynamics are projected distally to this low-dimensional space during the whole

stimulation window. On the other hand, 7 second ISI leads to transient dynamics where the

population activity leaves the fixed point for a brief period (±200 ms) and then returns to the

previous subspace. Hence, we could easily outline a boundary which would be able to dis-

criminate a certain window of ISIs (3–5 seconds) during stimulation from longer or shorter

times. Similar results were seen using IMFs containing oscillations up to 57.98 ± 6.26 Hz in

the high frequency axes. These results support the idea of a multiscale response, in which

neuronal populations encode ISI information using multiple frequencies and firing rates in

their spiking dynamics.
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Recent works address the multiscale response in different sensory cortices [47,48], where

slow cortical rhythms were proposed to stabilize sensory representation. A different study [49]

suggested that different information was carried in the low frequency components of LFP and

spikes. Our results show a similar behavior for spiking oscillatory activity in primary visual

cortex and support the point of view of multiplexed dynamics for ISI encoding at seconds

scale [36,37].

Previous work in the seconds scale on visual cortex was focused on reward timing [12,26].

In these papers, the authors already described a role for oscillatory activity in visual cortex in

a different type of timing behavior. Bearing in mind the differences among our study of the

interval between visual stimulation and previous work in reward timing, it results interesting

that different experiments which involve timing in the seconds scale evoke oscillatory activity

in the visual cortex. Nevertheless, oscillations during reward timing were never present before

at least 50 correct trials [26], while we describe the oscillatory activity in the response to

visual stimulation that was repeated 15 times. Hence, we cannot discuss that the underlying

Fig 6. Low dimensional dynamics for ISI discrimination. A) Phase space created using Raw signal mean firing rate, IMF 8 (5.93 ± 0.37

Hz) and IMF 6 (18.37 ± 1.29) as axes where trajectories for all ISIs are plotted ranging from -350 ms to 1500ms after stimulus onset.

Trajectories during stimulation shown as whole lines starting as a thick dot during a 300 ms window, starting on stimulus offset as

discontinuous line. B) Euclidean distance to the resting state centroid of mean trajectories for the different ISIs. C) Hierarchical tree based

on Euclidean distances between trajectories during the stimulation window.

https://doi.org/10.1371/journal.pone.0208822.g006
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mechanism is the same for the oscillations in the activity of visual cortex that are modulated by

the interval in visual stimulation and reward timing.

Given that temporal coding at seconds scale has been reported to be crucial for behavior

[50,51], the presence of an optimal temporal window of response to stimuli is an important

question that should be assessed in future studies (Fig 6A). Our results suggest that neuronal

population response dynamics strongly differ when 1 vs 3 seconds and 5 second ISI are used

for a vertical grating stimulus (Fig 6C). These differences are softened when a longer ISI (7

seconds) was used. Therefore, we may consider facilitation at certain frequencies for interme-

diate times in the temporal scale of seconds. No clear differences between 3 and 5 seconds ISIs

were seen during stimulation. Thus, it might reflect a window of time in which visual cortex

response to stimulation is strengthened.

An important question remaining to answer is the source of these oscillatory dynamics.

Although in this work we describe temporal discrimination in visual cortex, this kind of

computational studies has been classically studied in prefrontal cortex [52–54] but, at present,

it is still unclear how prefrontal and sensory cortices interact during interval timing at seconds

scales. Future studies will be required to assess the communication and hierarchical organiza-

tion of these areas during the estimation of interval time, as well as the probable effect of dopa-

mine via the frontostriatal circuit [13,55].

Supporting information

S1 Fig. Representative examples of individual stimulation. Evoked population response to

single stimulation using A) 1s ISI B) 3s ISI C) 5s ISI D) 7s ISI. Top, PSTH summing the activity

in all the electrodes in response to stimulation; Bottom, HHS spectrum of the signal above.

Stimulus displayed as a black line.

(TIF)

Acknowledgments

We thank Dr. Lawrence Humphreys for his help with the English revision.

Author Contributions

Conceptualization: J. Alegre-Cortés, C. Soto-Sánchez, E. Fernandez.

Data curation: J. Alegre-Cortés, C. Soto-Sánchez.

Formal analysis: J. Alegre-Cortés.

Funding acquisition: E. Fernandez.

Investigation: J. Alegre-Cortés, C. Soto-Sánchez, E. Fernandez.

Methodology: J. Alegre-Cortés, C. Soto-Sánchez.

Project administration: E. Fernandez.

Resources: E. Fernandez.

Software: J. Alegre-Cortés.

Supervision: J. Alegre-Cortés, C. Soto-Sánchez, E. Fernandez.

Visualization: J. Alegre-Cortés, C. Soto-Sánchez.

Writing – original draft: J. Alegre-Cortés, C. Soto-Sánchez, E. Fernandez.

Interval timing integration in visual cortex

PLOS ONE | https://doi.org/10.1371/journal.pone.0208822 December 17, 2018 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208822.s001
https://doi.org/10.1371/journal.pone.0208822


Writing – review & editing: J. Alegre-Cortés, C. Soto-Sánchez, E. Fernandez.

References
1. Okun M, Steinmetz N., Cossell L, Iacaruso MF, Ko H, Barthó P, et al. Diverse coupling of neurons to
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19. Buzsáki G, Draguhn A. Neuronal Oscillations in Cortical Networks. 2014; 1926: 1926–1930. https://doi.

org/10.1126/science.1099745 PMID: 15218136

20. Gray CM, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex.

Proc Natl Acad Sci U S A. 1989; 86: 1698–1702. https://doi.org/10.1073/pnas.86.5.1698 PMID:

2922407

21. Engel AK, König P, Gray CM, Singer W. Stimulus-dependent neuronal oscillations in cat visual cortex:

inter-columnar interactions as determined by cross-correlation analysis. Eur J Neurosci. 1990; 2: 588–

606. PMID: 12106294

22. Fries P, Schröder J-H, Roelfsema PR, Singer W, Engel AK. Oscillatory neuronal synchronization in pri-

mary visual cortex as a correlate of stimulus selection. J Neurosci. 2002; 22: 3739–3754. PMID:

11978850

Interval timing integration in visual cortex

PLOS ONE | https://doi.org/10.1371/journal.pone.0208822 December 17, 2018 11 / 13

https://doi.org/10.1038/nature14273
http://www.ncbi.nlm.nih.gov/pubmed/25849776
https://doi.org/10.1523/JNEUROSCI.6689-10.2011
https://doi.org/10.1523/JNEUROSCI.6689-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21813694
https://doi.org/10.1371/journal.pbio.0020264
http://www.ncbi.nlm.nih.gov/pubmed/15328535
https://doi.org/10.1038/nature12015
http://www.ncbi.nlm.nih.gov/pubmed/23552948
https://doi.org/10.1038/nn1874
http://www.ncbi.nlm.nih.gov/pubmed/17369824
https://doi.org/10.1038/nature01057
http://www.ncbi.nlm.nih.gov/pubmed/12374979
https://doi.org/10.1016/j.cub.2006.01.032
http://www.ncbi.nlm.nih.gov/pubmed/16527741
https://doi.org/10.1371/journal.pbio.1000260
http://www.ncbi.nlm.nih.gov/pubmed/20027205
https://doi.org/10.1038/nn.3683
http://www.ncbi.nlm.nih.gov/pubmed/24657967
https://doi.org/10.1126/science.1123513
http://www.ncbi.nlm.nih.gov/pubmed/16543459
https://doi.org/10.1016/j.neuron.2012.12.039
http://www.ncbi.nlm.nih.gov/pubmed/23439124
https://doi.org/10.1016/j.neuron.2015.02.043
http://www.ncbi.nlm.nih.gov/pubmed/25819611
https://doi.org/10.1016/0926-6410(96)00009-2
https://doi.org/10.1523/JNEUROSCI.2654-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26468192
https://doi.org/10.1146/annurev.neuro.27.070203.144247
http://www.ncbi.nlm.nih.gov/pubmed/15217335
https://doi.org/10.1016/j.tics.2010.09.002
http://www.ncbi.nlm.nih.gov/pubmed/20889368
https://doi.org/10.1162/neco.1989.1.3.359
https://doi.org/10.1038/nn.2579
http://www.ncbi.nlm.nih.gov/pubmed/20543842
https://doi.org/10.1126/science.1099745
https://doi.org/10.1126/science.1099745
http://www.ncbi.nlm.nih.gov/pubmed/15218136
https://doi.org/10.1073/pnas.86.5.1698
http://www.ncbi.nlm.nih.gov/pubmed/2922407
http://www.ncbi.nlm.nih.gov/pubmed/12106294
http://www.ncbi.nlm.nih.gov/pubmed/11978850
https://doi.org/10.1371/journal.pone.0208822


23. Schroeder CE, Lakatos P, Kajikawa Y, Partan S, Puce A. Neuronal oscillations and visual amplification

of speech. Trends Cogn Sci. 2008; 12: 106–113. https://doi.org/10.1016/j.tics.2008.01.002 PMID:

18280772

24. Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and

motor function. Trends Neurosci. 2011; 34: 611–618. https://doi.org/10.1016/j.tins.2011.09.003 PMID:

22018805

25. Levy JM, Zold CL, Namboodiri VMK, Hussain Shuler MG. The Timing of Reward-Seeking Action Tracks

Visually-Cued Theta Oscillations in Primary Visual Cortex. J Neurosci. 2017; 37(43): 10408–10420.

https://doi.org/10.1523/JNEUROSCI.0923-17.2017 PMID: 28947572

26. Zold CL, Hussain Shuler MG. Theta Oscillations in Visual Cortex Emerge with Experience to Convey

Expected Reward Time and Experienced Reward Rate. J Neurosci. 2015; 35: 9603–9614. https://doi.

org/10.1523/JNEUROSCI.0296-15.2015 PMID: 26134643

27. Ur Rehman N, Mandic DP. Filter bank property of multivariate empirical mode decomposition. IEEE

Trans Signal Process. 2011; 59: 2421–2426. https://doi.org/10.1109/TSP.2011.2106779

28. Mandic DP, Ur Rehman N, Wu Z, Huang NE. Empirical mode decomposition-based time-frequency

analysis of multivariate signals: The power of adaptive data analysis. IEEE Signal Process Mag. 2013;

30: 74–86. https://doi.org/10.1109/MSP.2013.2267931

29. Hu M, Liang H. Search for information-bearing components in neural data. PLoS One. 2014; 9: e99793.

https://doi.org/10.1371/journal.pone.0099793 PMID: 24932596

30. Alegre-Cortés J, Soto-Sanchez C, Piza AG, Albarracin AL, Farfan FD, Felice CJ, et al. Time-frequency

analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate

empirical mode decomposition. J Neurosci Methods. 2016; 267: 35–44. https://doi.org/10.1016/j.

jneumeth.2016.03.018 PMID: 27044801

31. Laurent G. Dynamical representation of odors by oscillating and evolving neural assemblies. Trends

Neurosci. 1996; 19: 489–496. https://doi.org/10.1016/S0166-2236(96)10054-0 PMID: 8931275

32. Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nat Rev

Neurosci. 2006; 7: 358–66. https://doi.org/10.1038/nrn1888 PMID: 16760916

33. Shamir M. Nonlinear Population Codes. Neural Comput. 2004; 16(6): 1105–1136. https://doi.org/10.

1162/089976604773717559 PMID: 15130244

34. Zhaohua W and Huang NE. Ensemble Empirical Mode Decomposition : A Noise Assisted Data Analysis

Method. Adv Adapt Data Anal. 2009; 1: 1–41. https://doi.org/10.1142/S1793536909000047

35. Luczak A, McNaughton BL, Harris KD. Packet-based communication in the cortex. Nat Rev Neurosci.

2015; 16: 745–755. https://doi.org/10.1038/nrn4026 PMID: 26507295

36. Panzeri S, Brunel N, Logothetis NK, Kayser C. Sensory neural codes using multiplexed temporal

scales. Trends Neurosci. 2010; 33: 111–20. https://doi.org/10.1016/j.tins.2009.12.001 PMID:

20045201

37. Victor JD. How the brain uses time to represent and process visual information. Brain Res. 2000; 886:

33–46. https://doi.org/10.1016/S0006-8993(00)02751-7 PMID: 11119685

38. Huang N. E., Shen Z., Long S., Wu M., Shih H., Zheng Q., et al. The empirical mode decomposition and

the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc London Ser A

Math Phys Eng Sci. 1998; 454: 903–995. PMID: 26953177

39. Alegre-Cortés J, Soto-Sánchez C, Albarracı́n AL, Farfán FD, Val-Calvo M, Ferrandez JM, et al. Toward

an Improvement of the Analysis of Neural Coding. Front Neuroinform. 2018; 11: 1–6. https://doi.org/10.

3389/fninf.2017.00077 PMID: 29375359

40. Bathellier B, Buhl DL, Accolla R, Carleton A. Dynamic ensemble odor coding in the mammalian olfac-

tory bulb: sensory information at different timescales. Neuron. 2008; 57: 586–98. https://doi.org/10.

1016/j.neuron.2008.02.011 PMID: 18304487

41. Rehman N, Mandic DP. Multivariate empirical mode decomposition. Proc R Soc A Math Phys Eng Sci.

2010; 466: 1291–1302. https://doi.org/10.1098/rspa.2009.0502

42. Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank. IEEE Signal Process

Lett. 2004; 11: 112–114. https://doi.org/10.1109/LSP.2003.821662

43. Rilling G, Flandrin P, Gon P, Lyon D. On Empirical Mode Decomposition and Its Algorithms. IEEEEUR-

ASIP Work Nonlinear Signal Image Process NSIP. 2003; 3: 8–11.

44. Storey JD. The postive fase discovery rate: a bayesian interpretation and the q-value. Ann. Stat 2003;

31:2013–2035.

45. Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, Corrado GS, et al. Stimulus onset

quenches neural variability: a widespread cortical phenomenon. Nat Neurosci. 2010; 13: 369–78.

https://doi.org/10.1038/nn.2501 PMID: 20173745

Interval timing integration in visual cortex

PLOS ONE | https://doi.org/10.1371/journal.pone.0208822 December 17, 2018 12 / 13

https://doi.org/10.1016/j.tics.2008.01.002
http://www.ncbi.nlm.nih.gov/pubmed/18280772
https://doi.org/10.1016/j.tins.2011.09.003
http://www.ncbi.nlm.nih.gov/pubmed/22018805
https://doi.org/10.1523/JNEUROSCI.0923-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/28947572
https://doi.org/10.1523/JNEUROSCI.0296-15.2015
https://doi.org/10.1523/JNEUROSCI.0296-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26134643
https://doi.org/10.1109/TSP.2011.2106779
https://doi.org/10.1109/MSP.2013.2267931
https://doi.org/10.1371/journal.pone.0099793
http://www.ncbi.nlm.nih.gov/pubmed/24932596
https://doi.org/10.1016/j.jneumeth.2016.03.018
https://doi.org/10.1016/j.jneumeth.2016.03.018
http://www.ncbi.nlm.nih.gov/pubmed/27044801
https://doi.org/10.1016/S0166-2236(96)10054-0
http://www.ncbi.nlm.nih.gov/pubmed/8931275
https://doi.org/10.1038/nrn1888
http://www.ncbi.nlm.nih.gov/pubmed/16760916
https://doi.org/10.1162/089976604773717559
https://doi.org/10.1162/089976604773717559
http://www.ncbi.nlm.nih.gov/pubmed/15130244
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1038/nrn4026
http://www.ncbi.nlm.nih.gov/pubmed/26507295
https://doi.org/10.1016/j.tins.2009.12.001
http://www.ncbi.nlm.nih.gov/pubmed/20045201
https://doi.org/10.1016/S0006-8993(00)02751-7
http://www.ncbi.nlm.nih.gov/pubmed/11119685
http://www.ncbi.nlm.nih.gov/pubmed/26953177
https://doi.org/10.3389/fninf.2017.00077
https://doi.org/10.3389/fninf.2017.00077
http://www.ncbi.nlm.nih.gov/pubmed/29375359
https://doi.org/10.1016/j.neuron.2008.02.011
https://doi.org/10.1016/j.neuron.2008.02.011
http://www.ncbi.nlm.nih.gov/pubmed/18304487
https://doi.org/10.1098/rspa.2009.0502
https://doi.org/10.1109/LSP.2003.821662
https://doi.org/10.1038/nn.2501
http://www.ncbi.nlm.nih.gov/pubmed/20173745
https://doi.org/10.1371/journal.pone.0208822


46. Segundo JP, Moore GP, Stensaas LJ, Bullock TH. Sensitivity of neurons in Aplysia to temporal patterns

of arriving impulses. J Exp Biol. 1963; 40: 643–667. PMID: 14086809

47. Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S. Phase-of-Firing Coding of Natural

Visual Stimuli in Primary Visual Cortex. Curr Biol. 2008; 18: 375–380. https://doi.org/10.1016/j.cub.

2008.02.023 PMID: 18328702

48. Kayser C, Montemurro MA, Logothetis NK, Panzeri S. Spike-Phase Coding Boosts and Stabilizes Infor-

mation Carried by Spatial and Temporal Spike Patterns. Neuron. 2009; 61: 597–608. https://doi.org/10.

1016/j.neuron.2009.01.008 PMID: 19249279

49. Belitski A, Gretton A, Magri C, Murayama Y, Montemurro M, Logothetis N, et al. Local Field Potentials

and Spiking Activity in Primary Visual Cortex Convey Independent Information about Natural Stimuli. J

Neurosci. 2008; 28: 5696–5709.

50. Buhusi C V., Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat

Rev Neurosci. 2005; 6: 755–765. https://doi.org/10.1038/nrn1764 PMID: 16163383

51. Ivry R. The neural representation of time. Curr Opin Neurobiol. 2004; 14: 225–232. https://doi.org/10.

1016/j.conb.2004.03.013 PMID: 15082329

52. Duncan J. An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci. 2001; 2:

820–829. https://doi.org/10.1038/35097575 PMID: 11715058

53. Xu M, Zhang S-Y, Dan Y, Poo M. Representation of interval timing by temporally scalable firing patterns

in rat prefrontal cortex. Proc Natl Acad Sci. 2014; 111: 480–485. https://doi.org/10.1073/pnas.

1321314111 PMID: 24367075

54. Kim J, Jung AH, Byun J, Jo S, Jung MW. Inactivation of medial prefrontal cortex impairs time interval

discrimination in rats. Front Behav Neurosci. 2009; 3: 1–9.

55. Meck WH. Frontal cortex lesions eliminate the clock speed effect of dopaminergic drugs on interval tim-

ing. Brain Res. 2006; 1108: 157–167. https://doi.org/10.1016/j.brainres.2006.06.046 PMID: 16844101

Interval timing integration in visual cortex

PLOS ONE | https://doi.org/10.1371/journal.pone.0208822 December 17, 2018 13 / 13

http://www.ncbi.nlm.nih.gov/pubmed/14086809
https://doi.org/10.1016/j.cub.2008.02.023
https://doi.org/10.1016/j.cub.2008.02.023
http://www.ncbi.nlm.nih.gov/pubmed/18328702
https://doi.org/10.1016/j.neuron.2009.01.008
https://doi.org/10.1016/j.neuron.2009.01.008
http://www.ncbi.nlm.nih.gov/pubmed/19249279
https://doi.org/10.1038/nrn1764
http://www.ncbi.nlm.nih.gov/pubmed/16163383
https://doi.org/10.1016/j.conb.2004.03.013
https://doi.org/10.1016/j.conb.2004.03.013
http://www.ncbi.nlm.nih.gov/pubmed/15082329
https://doi.org/10.1038/35097575
http://www.ncbi.nlm.nih.gov/pubmed/11715058
https://doi.org/10.1073/pnas.1321314111
https://doi.org/10.1073/pnas.1321314111
http://www.ncbi.nlm.nih.gov/pubmed/24367075
https://doi.org/10.1016/j.brainres.2006.06.046
http://www.ncbi.nlm.nih.gov/pubmed/16844101
https://doi.org/10.1371/journal.pone.0208822

