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Improved TGIRT-seq methods for 
comprehensive transcriptome 
profiling with decreased adapter 
dimer formation and bias correction
Hengyi Xu1,2, Jun Yao1,2, Douglas C. Wu1,2 & Alan M. Lambowitz1,2

Thermostable group II intron reverse transcriptases (TGIRTs) with high fidelity and processivity have 
been used for a variety of RNA sequencing (RNA-seq) applications, including comprehensive profiling 
of whole-cell, exosomal, and human plasma RNAs; quantitative tRNA-seq based on the ability of 
TGIRT enzymes to give full-length reads of tRNAs and other structured small ncRNAs; high-throughput 
mapping of post-transcriptional modifications; and RNA structure mapping. Here, we improved TGIRT-
seq methods for comprehensive transcriptome profiling by rationally designing RNA-seq adapters 
that minimize adapter dimer formation. Additionally, we developed biochemical and computational 
methods for remediating 5′- and 3′-end biases, the latter based on a random forest regression model 
that provides insight into the contribution of different factors to these biases. These improvements, 
some of which may be applicable to other RNA-seq methods, increase the efficiency of TGIRT-seq library 
construction and improve coverage of very small RNAs, such as miRNAs. Our findings provide insight 
into the biochemical basis of 5′- and 3′-end biases in RNA-seq and suggest general approaches for 
remediating biases and decreasing adapter dimer formation.

High-throughput RNA sequencing (RNA-seq) has revolutionized biology and will become ever more powerful as 
new methods that address weaknesses and expand capabilities of current methods are developed1–3. A weakness 
of most current RNA-seq methods is their use of a retroviral reverse transcriptase (RT) to copy target RNAs into 
cDNAs for sequencing on various high-throughput DNA sequencing platforms4. Retroviral RTs have inherently 
low fidelity and processivity, and the extent to which these properties can be improved by protein engineering or 
in vitro evolution is limited by the retroviral RT structural framework5.

To address this weakness, we have been developing RNA-seq methods using the RTs encoded by mobile group 
II introns, bacterial retrotransposons that are evolutionary ancestors of introns and retroelements in eukary-
otes6–9. Unlike retroviral RTs, which evolved to help retroviruses evade host defenses by introducing and prop-
agating mutational variations5, group II intron RTs evolved to function in retrohoming, a retrotranposition 
mechanism that requires faithful synthesis of a full-length cDNA of a long, highly structured group II intron 
RNA10. Their beneficial properties for RNA-seq include high fidelity, processivity, and strand displacement activ-
ity, along with a proficient template-switching activity that is minimally dependent upon base pairing and enables 
the seamless attachment of RNA-seq adapters to target RNAs without RNA tailing or ligation6,11. Thermostable 
group II intron RTs (TGIRTs) from bacterial thermophiles combine these beneficial properties with the ability to 
function at high temperatures (60–65° C), which help melt out stable RNA secondary structures that can impede 
reverse transcription6. A recent crystal structure of a full-length TGIRT enzyme (GsI-IIC RT, a form of which 
is sold commercially as TGIRT-III; InGex) in active conformation with bound substrates revealed that group II 
intron RTs are closely related to RNA-dependent RNA polymerases, as expected for an ancestral RT, and identi-
fied a series of novel structural features that may contribute to their high fidelity and processivity12. These features 
include more constrained binding pockets than retroviral RTs for the templating RNA base, 3′ end of the DNA 
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primer, and the incoming dNTP, as well as a larger fingers region that enables more extensive contact with the 
template-primer substrate than is possible for retroviral RTs12.

GsI-IIC RT (TGIRT-III) has been used for a variety of applications, including the comprehensive profiling of 
whole-cell, exosomal and plasma RNAs7,8,13,14; quantitative tRNA-seq based on the ability of the TGIRT enzyme to 
give full-length end-to-end reads of tRNAs with or without demethylase treatment8,15,16; determination of tRNA 
aminoacylation levels17; high-throughput mapping of post-transcriptional modifications by distinctive patterns 
of misincorporation13,15,16,18–20; identification of protein-bound RNAs by RIP-Seq or CLIP18,21; and RNA-structure 
mapping by DMS-MaPseq22,23 or SHAPE24. A study comparing TGIRT-seq to benchmark TruSeq v3 datasets 
of rRNA depleted (ribo-depleted) fragmented Universal Human Reference RNA (UHRR) with External RNA 
Control Consortium (ERCC) spike-ins showed that TGIRT-seq: (i) better recapitulates the relative abundance 
of mRNAs and ERCC spike-ins; (ii) is more strand-specific; (iii) gives more uniform 5′- to 3′-gene coverage and 
detects more splice junctions, particularly near the 5′ ends of genes, even from fragmented RNAs; and (iv) elimi-
nates sequence biases due to random hexamer priming, which are inherent in TruSeq7. Other recent studies have 
shown that TGIRT-seq more accurately depicts the quantitative relationship between mRNAs and structured 
small ncRNAs than other tested methods14 and eliminates artifacts due to RT mispriming in RNA-seq reactions25.

The TGIRT-seq method currently used for comprehensive transcriptome profiling (also referred to as TGIRT 
Total RNA-seq method) is outlined in Fig. 1. This method uses the ability of TGIRT enzymes to template-switch 
directly from an artificial RNA template/DNA primer substrate containing an RNA-seq adapter sequence to the 
3′ end of an RNA template, thereby coupling RNA-seq adapter addition to the initiation of cDNA synthesis6. For 
Illumina RNA-seq, the initial RNA template/DNA primer consists of a 34-nt RNA oligonucleotide containing 
an Illumina Read 2 sequence (R2 RNA) with a 3′ blocking group (C3 Spacer, 3SpC3) annealed to a 35-nt DNA 
primer (R2R DNA) that leaves a single nucleotide 3′-DNA overhang. The latter can base pair to the 3′ end of the 
target RNA, serving as a springboard for TGIRT template-switching and the initiation of cDNA synthesis6. To 
capture heterogeneous 3′ ends in a pool of RNAs, this single nucleotide 3′ overhang is an equimolar mixture of A, 
C, G, and T (denoted N) and is added in excess to the target RNA. After reverse transcription, a second RNA-seq 
adapter (R1R DNA; containing the reverse complement of an Illumina Read 1 sequence) is ligated to the opposite 
end of the cDNA by a single-stranded DNA ligation with thermostable 5′ App RNA/DNA ligase (New England 
Biolabs), and this is followed by minimal PCR amplification with primers that add Illumina capture sites and 
sequencing indices. By avoiding gel-purification steps, TGIRT-seq libraries can be generated rapidly from small 
amounts of starting material (1–2 ng input RNA).

Unlike retroviral RTs, which have been studied extensively and optimized for biotechnological applications for 
decades, the recently introduced TGIRT enzymes and TGIRT-seq methods are potentially subject to substantial 
improvement. In this regard, a weakness of the TGIRT Total RNA-seq method is the thermostable 5′ App RNA/
DNA ligase used to attach the R1R adapter to the 3′ end of the cDNA, which introduces sampling biases for cDNA 
ends and produces unwanted adapter dimers by ligating the R1R adapter to residual R2R adapter carried over 
from previous steps. To avoid wasting reads, these adapter dimers are removed by AMPure beads clean-up of 
the library prior to sequencing (Fig. 1A), a step that can result in the differential loss of sequences corresponding 
to miRNAs and other very small RNAs, whose library products are close in size to adapter dimers (146 and 124 
nt, respectively)14. This problem is particularly acute for low abundance RNA samples where multiple rounds of 
AMPure beads clean-up may be required to sufficiently decrease the ratio of adapter dimers to a small amount 
of library products8. Due in part to this limitation, miRNAs and other very small RNAs have been analyzed by 
an alternative TGIRT-seq method (the TGIRT CircLigase method), which was patterned after the method used 
for ribosome profiling with retroviral RTs26,27. In the TGIRT-based version of this method, template-switching 
rather than RNA ligation is used to add an adapter containing both R1R and R2R sequences, and the resulting 
cDNAs with the linked R1R/R2R adapter are gel-purified and circularized with CircLigase for RNA-seq library 
construction6,18.

Here, we used the previously determined ligation biases of the thermostable 5′ App RNA/DNA ligase7,28,29 
to design an R2/R2R adapter with just a single nucleotide change that dramatically decreases the formation 
of adapter dimers, thereby improving the recovery of miRNA sequences and enabling the construction of 
TGIRT-seq libraries from even smaller amounts of starting material. Additionally, using a miRNA reference set 
containing an equimolar mixture of 962 human miRNAs, we systematically analyzed 5′- and 3′-end biases in 
TGIRT-seq, and developed biochemical and computational methods for ameliorating these biases. We found that 
the 5′-sequence biases introduced mainly by the thermostable 5′ App RNA/DNA ligase could be computationally 
corrected and that 3′-biases introduced by TGIRT template-switching could be corrected either computationally 
or by employing an altered ratio of 3′-overhang nucleotides in the R2 RNA/R2R DNA primer mix.

Results
A single nucleotide change in the R2R adapter strongly decreases adapter dimer formation.  
Analysis of TGIRT-seq datasets obtained for fragmented UHRR or plasma DNA suggested that a major source of 
sequence bias is the DNA ligation step using the thermostable 5′ App DNA/RNA ligase, which has a preference 
for A or C and against U/T at position −3 from the 3′ end of the acceptor nucleic acid7,28,29. We noticed that the 
R2R adapter used previously for TGIRT-seq (denoted NTC based on its 3′ end sequence) has a C-residue at posi-
tion −3 from its 3′ end, which favors the formation of R1R-R2R adapter dimers during the ligation step (Fig. 1B).

To address this difficulty, we designed a new R2R adapter (denoted NTT) in which a single T residue was 
inserted at position −3, thereby replacing the favored C at this position with a disfavored T, but leaving the 
remainder of the R2R sequence unchanged (Fig. 1B). This internal nucleotide insertion required a complemen-
tary insertion in the R2 RNA oligonucleotide to maintain base pairing in the R2 RNA/R2R DNA heteroduplex. 
In a test reaction in which either the NTC or NTT R2R DNAs were ligated to R1R DNA followed by PCR with 
primers that add Illumina indices and capture sites as per the TGIRT-seq protocol (Fig. 1A), this single nucleotide 
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Figure 1.  TGIRT-seq workflow and design of an improved R2R adapter that decreases adapter-dimer formation. 
(A) TGIRT-seq workflow. In the first step, TGIRT enzyme binds to an artificial template-primer substrate comprised 
of an RNA oligonucleotide containing an Illumina R2 sequence with a 3′-end blocking group (3SpC3) annealed to a 
complementary DNA oligonucleotide (R2R) that leaves a single nucleotide 3′ overhang, which can direct template-
switching by base pairing to the 3′ end of an RNA template. For the preparation of TGIRT-seq libraries from pools 
of RNAs, the DNA primer consists of a mixture of DNA oligonucleotides that leave A, C, G, and T 3′ overhangs 
(denoted N). After pre-incubation of the TGIRT enzyme with the target RNAs and template-primer (see Methods), 
template-switching and reverse transcription of an RNA template are initiated by adding dNTPs. The resulting cDNA 
with an R2R adapter attached to its 5′ end is incubated with NaOH to degrade the RNA template and neutralized with 
HCl, followed by two rounds of MinElute clean-up using the same MinElute column (Qiagen). A pre-adenylated 
oligonucleotide containing the reverse complement of an Illumina R1 sequence (R1R) is then ligated to the 3′ end of 
the cDNA by using thermostable 5′ App DNA/RNA ligase (New England Biolabs), followed by MinElute clean-up 
and 12 cycles of PCR amplification with primers that add indices and capture sites for Illumina sequencing. Unused 
R2R adapters that are carried over from previous steps are also ligated to the R1R adapter by the 5′ App DNA/RNA 
ligase (New England Biolabs), resulting in the formation of adapter dimers (pathway at right), which are removed 
by AMPure beads clean-up prior to sequencing. (B) Taking into account known biases of the 5′ App DNA/RNA 
ligase7,28,29, the R2R adapter used previously in TGIRT-seq (denoted NTC) was modified by inserting a single 
T-residue at position −3, creating a modified R2R adapter (denoted NTT), which decreases adapter-dimer formation. 
(C) Bioanalyzer traces comparing adapter-dimer formation using the previous NTC and improved NTT R2R 
adapters. 2 pmole of the NTC or NTC R2R adapter was ligated to 40 pmole of adenylated R1R adapter followed by 
12 cycles of PCR according to the TGIRT-seq protocol and 1 round of clean-up with 1.4X AMPure beads to remove 
salt, PCR primers, and adapter dimers. The products were analyzed by using a 2100 Bioanalyzer (Agilent) with a high 
sensitivity DNA chip. M: internal markers in the NTC (red) or NTT (blue) traces.
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change decreased the recovery of the R1R-R2R adapter dimers by 82–89% (n = 3; Fig. 1C). The lower level of 
adapter dimer formation enabled the construction of TGIRT-seq libraries with fewer rounds of AMPure beads 
clean-up and better recovery of library products corresponding to miRNAs and other very small RNAs. These 
improvements in turn enabled the construction of TGIRT-seq libraries from smaller amounts of starting material 
than with the NTC adapter (0.05 pmole of a 40-nt RNA and 0.5 pmole of a 20-nt RNA with 96–98% and 88–99% 
lower levels of adapter dimers, respectively, than the NTC adapter after 1 round of 1.4X AMPure beads clean-up; 
n = 3; Fig. 2).

TGIRT-seq of ribo-depleted, fragmented UHRR with ERCC spike-ins using the modified R2R adapter.  
To assess the performance of the NTT R2R adapter, we used it for TGIRT-seq of ribo-depleted fragmented 
UHRR with ERCC spike-ins, as done previously for TGIRT-seq with the NTC adapter7. The TGIRT-seq librar-
ies were constructed in triplicate with one round of 1.4X AMPure beads clean-up to remove adapter dimers 
and sequenced on an Illumina NextSeq 500 to obtain 61–105 million 75-nt paired-end reads (Supplementary 
Table S1). The read-pairs were mapped to a human genome reference sequence (Ensembl GRCh38 modified to 
include additional rRNA repeats) by using an updated TGIRT-seq mapping pipeline (see Methods). For compar-
ison, raw sequencing reads from published TGIRT-seq datasets generated from similarly prepared fragmented 
UHRR samples using the NTC adapter7 were downloaded (NCBI SRA accession number SRP066009) and pro-
cessed using the same bioinformatic pipeline.

The datasets obtained using the NTT adapter had mapping rates similar to those for the NTC adapter (84–
86% and 84–89%, respectively), with similar proportions of the mapped reads mapping concordantly in the 
correct orientation to annotated genomic features (92–94%; Supplementary Table S1). Scatter plots comparing 
the representation of RNAs in technical replicates obtained using the NTT and NTC adapters gave Spearman’s 
correlation coefficients (ρ) of 0.95–0.96 (Supplementary Fig. S1), and a histogram of the coefficients of variation 
of normalized counts from the replicates confirmed their similarly high reproducibility (94% and 92% of the 
protein-coding gene transcripts and spike-ins with normalized read count >10 have a coefficient of variation 
≤25% for the NTT and NTC adapters, respectively, compared to 87% for TruSeq v3 in the benchmark datasets30 
(Supplementary Fig. S2). Likewise, the normalized abundances (transcripts-per-million; TPM) of ERCC spike-ins 
from the TGIRT-seq datasets correlated well with the expected spike-ins inputs (ρ = 0.98; Supplementary Fig. S3). 
The datasets obtained using the NTT and NTC adapters showed no substantial differences in the profiles of 
reads mapping to different genomic features (Fig. 3A,B), the distribution of reads between the sense and anti-
sense strands of protein-coding genes (Fig. 3C), or the proportions of bases mapping to different regions of 
protein-coding genes (Fig. 3D).

To assess sequence biases in the TGIRT-seq libraries, we plotted aggregate nucleotide frequencies as a function 
of position from the beginning of Read 1 and Read 2, respectively (Fig. 3E). The plots showed that the 5′- and 
3′-end sequence biases are similar for the NTT and NTC adapters, with the 5′-RNA end bias for G or U and against 

Figure 2.  Bioanalyzer traces of TGIRT-seq libraries constructed from varying amounts of different-sized RNA 
oligonucleotides using either the NTC or NTT adapter. TGIRT-seq libraries were prepared from (A) 40-nt or 
(B) 20-nt RNA oligonucleotides using the workflow of Fig. 1A. After PCR for 12 cycles and one round of 1.4X 
AMPure beads clean-up, the libraries were analyzed on a 2100 Bioanalyzer (Agilent) using a high sensitivity 
DNA chip. M: internal markers.
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A at position +3 being the reciprocal of the sequence preferences of the thermostable 5′ App DNA/RNA ligase for 
the 3′ end of the cDNA (see above), and the 3′-RNA end bias against U and for G at position −1 including a con-
tribution from TGIRT template-switching. The apparent 5′ bias for U at position +1 at the 5′-RNA end includes 
a contribution from non-templated addition of an A residue to the 3′ end of cDNAs by the TGIRT enzyme. 

Figure 3.  TGIRT-seq of ribo-depleted fragmented UHRR with ERCC spike-ins using the NTT and NTC adapters. 
TGIRT-seq libraries were prepared in triplicate for each adapter and sequenced on an Illumina NextSeq 500 to 
obtain 58–105 million 75-nt paired-end reads, which were mapped to a human reference genomic (Ensembl 
GRCh38) modified to include additional rRNA repeats (Methods and Supplementary Table S1). The datasets were 
used to generate stacked bar graphs showing the percentages of: (A) read-pairs that mapped concordantly in the 
annotated orientation to different categories of genomic features; (B) small ncRNA reads that mapped to different 
classes of small ncRNAs; (C) protein-coding gene reads that mapped to the sense or antisense strand; (D) bases 
in protein-coding gene reads that mapped to coding sequences (CDS), introns, 5′- and 3′-untranslated regions 
(UTRs), and intergenic regions. The name of the dataset is indicated below. (E) Aggregate nucleotide frequencies 
at the beginning of Read 1 (5′-RNA end; positions 1 to 14) and Read 2 (3′-RNA end; positions −1 to −14) in 
combined datasets for technical replicates obtained by TGIRT-seq of fragmented UHRR plus ERCC spike-ins with 
either the NTC or NTT adapter (datasets NTC-F1 to F3 and NTT-F1 to F3, respectively).
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Figure 4.  TGIRT-seq of the Miltenyi miRXplore miRNA reference set using the NTT or NTC adapters and 
comparison of different methods for mitigating 5′- and 3′-end biases. TGIRT-seq libraries were prepared from 
the Miltenyi miRXplore miRNA reference set containing 962 equimolar human miRNAs (Supplementary 
Table S2 and Methods). Datasets for each method (three combined datasets for NTC, NTT, MTT, and NTT and 
a single dataset for NTT/6N) were used to plot both the empirical cumulative distribution function (ECDF) of 
the log2 median-normalized counts for each miRNA ranked from least to most abundant (left panels), and the 
abundance-adjusted nucleotide frequencies at the 5′ end (positions +1 to +6) and 3′ end (positions −1 to −6) 
of the miRNA sequences in the dataset relative to those in the miRNA reference set (middle and right panels). 
Only uniquely mapped reads were counted. The numbers within the ECDF plots for each method indicate the 
root-mean-square error (RMSE) for over-represented miRNAs (top right), under-represented miRNAs (bottom 
left), and all miRNAs (top left). The curve plotted as a dashed line at the bottom of the ECDF plots indicates 
the distribution density of the 962 miRNAs in the dataset. (A) Miltenyi miRXplore reference set showing 
the ECDF plot layout (left panel) and the aggregate 5′- and 3′-nucleotide frequencies for all miRNAs in the 
Miltenyi miRXplore reference set assuming equimolar concentrations of the 962 miRNAs. (B–G) ECDF plots 
(left panels) and plots of the abundance-adjusted nucleotide frequencies at the 5′- and 3′- ends of miRNAs in 
TGIRT-seq datasets relative to those in the miRNA reference set (middle and right panels) for datasets obtained 
using (B) the NTC adapter; (C) the NTT adapter; (D) a modified NTT adapter mix in which the 3′ A overhang 

https://doi.org/10.1038/s41598-019-44457-z


Unco
rre

ct
ed

 p
ro

of

Unco
rre

ct
ed

 p
ro

of

7Scientific Reports |          (2019) 9:7953  | https://doi.org/10.1038/s41598-019-44457-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Additionally, both the 5′- and 3′-biases may include a contribution from the RNA fragmentation process31.  
Whatever the cause, nearly all of the sequence biases in TGIRT-seq libraries prepared from the fragmented 
UHRR were confined to the first 3 positions from the 5′ and 3′ ends of the RNA fragments, in contrast to Illumina 
TruSeq protocols, which also include substantial internal biases due to random hexamer priming7,32. Together, 
these results showed that the NTT adapter performs similarly to the previous NTC adapter for the analysis of 
ribo-depleted fragmented whole-cell RNAs, but requires fewer rounds of AMPure beads clean-up to remove 
adapter dimers (1 round for the NTT adapter compared to 3 rounds in the previous libraries obtained with the 
NTC adapter; Supplementary Table S1).

TGIRT-seq of a miRNA reference set and analysis of 5′- of 3′-end biases.  To evaluate the per-
formance of the NTT adapter in miRNA sequencing, we used it to construct TGIRT-seq libraries of a miRNA 
reference set containing an equimolar mixture of 962 human miRNA sequences (miRXplore Universal Reference; 
Miltenyi Biotech) and compared its performance to that of the NTC adapter tested in parallel. Libraries prepared 
using each adapter were constructed in triplicate, with the libraries constructed using the NTT adapter requiring 
1 round of 1.4X AMPure beads clean-up prior to sequencing compared to 4 rounds for those constructed using 
the NTC adapter (Supplementary Table S2). The libraries were sequenced on an Illumina NextSeq 500 to obtain 
10–16 million 2 × 75-nt paired-end reads, which were mapped to the 962 reference miRNA sequences. The pro-
portion of uniquely mapped reads was higher for the NTT adapter than the NTC adapter (86–88% and 63–74%, 
respectively), possibly reflecting that the multiple rounds of AMPure bead clean-up required for the NTC adapter 
resulted in differential loss of miRNA-sized products, whose sequences map uniquely to the miRNA reference 
sequences, compared to larger aberrant products resulting from multiple template switches, whose sequences 
map to multiple loci. Scatter plots comparing datasets for technical replicates gave ρ values of 1.00 between repli-
cates with the same adapter and 0.94 between replicates with different adapters (Supplementary Fig. S4).

To assess sampling biases of the miRNAs in the TGIRT-seq datasets, we combined the 3 technical replicates 
for each adapter and compared the representation of miRNAs in the combined datasets to that in the miRNA 
reference set (Fig. 4A–C). Plots of the empirical cumulative distribution function (ECDF) of the log2 normalized 
count for each miRNA in the reference set showed that the NTC and NTT adapters give similar representations 
of different miRNA species (RMSE = 2.57 and 2.72, respectively; Fig. 4A–C, left panels). Further, plots of either 
the abundance-adjusted nucleotide frequency as a function of position from the 5′ and 3′ ends of the miRNAs in 
the dataset relative to those in the reference set (Fig. 4A–C) or of the aggregate nucleotide frequency as a function 
of position from the beginning of Reads 1 and 2 (Supplementary Fig. S5; cf., with Fig. 3E for UHRR) showed that 
sequence bias is similar for the two adapters and largely confined to the first 3 nucleotides from the 5′ and 3′ ends 
of the miRNAs (Fig. 4A–C, middle and left panels).

Because the miRNAs in the reference set have known sequences, we could now more accurately assess the 
degree and cause of the sampling bias introduced by TGIRT-seq than could be done with fragmented whole-cell 
RNAs. The 5′ bias includes but is not limited to the known sequence preferences of the 5′ App DNA/RNA ligase 
(e.g., over-representation of G at position +3 of the RNA sequence compared to the reference set RNAs), while 
the 3′ bias due primarily to template-switching favors reference set miRNAs with a 3′ G residue and strongly dis-
favors miRNAs with a 3′ U residue (Fig. 4A–C, middle and right panels).

Contribution of TGIRT-seq 5′- and 3′-end biases to miRNAs measurement errors.  To quantify 
the contributions of TGIRT-seq 5′- and 3′-end biases to measurement errors for the miRNA reference set, we 
correlated the representations of each miRNA in the combined datasets obtained with the NTT adapter with its 
5′- and 3′-end sequences. As our findings for both the fragmented UHRR (Fig. 3E) and the miRNA reference 
set (Fig. 4B,C middle and right panels and Supplementary Fig. S5) showed that much of the bias is confined to 
the first 3 nucleotides from each end of the RNA, we focused on these positions. For this analysis, we defined 
over- and under-represented miRNAs as those whose log10 Counts-Per-Million (CPM) values were ≥1 standard 
deviation higher and lower, respectively, than the mean log10 CPM for all of the miRNAs in the reference set 
(Supplementary Fig. S6). Principal component analysis (PCA) based on the first 3 nucleotides from the 5′ and 3′ 
ends of the miRNA showed that the over- and under-represented miRNAs were almost linearly separable along 
the first principal component (PC1) of the PCA biplot (Fig. 5A).

To identify the contribution of different nucleotides to the miRNA recovery rate, we inspected the factor 
loadings on PC1 (Fig. 5B). This showed that 3 of the top 4 contributing factors for over-represented miRNAs were 
from 5′ positions with the most favored bases being 5′ +1U; +3G and +2G (Fig. 5B, right side of plot). Moreover, 
3 out of the top 4 contributing factors for under-represented miRNAs were also from the 5′ positions with the 
most disfavored bases being 5′ +1A, +2A and +3A (Fig. 5B, left side of plot). However, the largest contributor 
for under-represented miRNAs and second largest for over-represented miRNAs was the 3′ terminal nucleotide 
(position −1), which favored a G residue and disfavored a U residue (Fig. 5B). By fitting the data to a random 
forest regression model, we found that the position-specific nucleotide preferences at the first three nucleotides 
from the 5′ and 3′ ends of the miRNA account for 81% (R2 = 0.81) of the measurement errors (Fig. 5C). A k-fold 
cross-validation test of the random forest regression model in which the 962 miRNAs were divided into 8 sub-
groups, each of which was tested with a model trained on the remaining subgroup, gave R2 values of 0.46 to 0.66 

was replaced with a 3′ diaminopurine (denoted MTT); (E) a modified NTT adapter mix with an altered ratio 
of 3′ overhangs (A:C:G:T = 6.6:0.4:1:1; denoted NTTR); (F) the NTT adapter used in combination with an 
R1R adapter with six randomized nucleotides at its 5′ end (denoted NTT/6N); and (G) the NTT adapter after 
computational correction of 5′- and 3′-end biases (denoted NTTc).
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(Supplementary Fig. S7A). By contrast, a model trained similarly using internal positions +4 to +6 and −4 to 
−6 performed poorly (R2 = −0.06 to 0.06; Supplementary Fig. S7B), confirming the importance of the first three 
5′- and 3′-end positions compared to the internal positions.

As the random forest regression model predicts the full spectrum of miRNA measurement errors, we could 
use it to quantitatively assess the contributions of each of the first three 5′- and 3′-end positions to the measure-
ment errors (Fig. 5D). The results were generally consistent with the PCA, which identified nucleotide combi-
nations that separate over- and under-represented miRNAs. Thus, the −1 position was identified as having the 
greatest contribution to the bias, followed by the +2, +1 and +3 positions (Fig. 5D and Supplementary Fig. S7). 
A simple calculation summing the relative importance of the positions suggested that the 5′- and 3′-end biases 
contributed 40% and 60%, respectively, of the measurement errors due to end biases. However, we also found 
that nucleotides at some 5′- and 3′-end positions of the miRNAs in the reference set are correlated, in some cases 
with χ2-test -log10 p-values > 10 (e.g., 42% of the miRNAs with a disfavored A at position +3 have a disfavored 
U at position −1; Supplementary Fig. S8). This correlation raises the possibility that some of the apparent bias 
at 3′-end position −1 may reflect the 5′-adapter-ligation bias rather than the template-switching bias, consistent 

Figure 5.  Effect of 5′- and 3′-end sequences on the representation of miRNAs in TGIRT-seq datasets. (A) 
Principal component analysis biplot for over- and under-represented miRNAs in TGIRT-seq of the Miltenyi 
miRXplore miRNA reference set in combined datasets for the three technical replicates obtained using the NTT 
adapter. The first three bases from the 5′- and 3′ ends of over- and under-represented miRNAs (defined as those 
whose log2CPM was at least one standard deviation higher or lower, respectively, than the mean log2CPM for all 
miRNAs in the reference set; Supplementary Fig. S6) were subject to principal component analysis. The first two 
principal components are shown. Each point indicates a miRNA, with over- and under-represented miRNAs 
colored as indicated in the Figure. (B) Relative importance of features of the first principal component. The 
fitted values from the first principal component are plotted for each base at each nucleotide position (feature) 
in ascending order. 5′- and 3′-end nucleotides are color coded as indicated in the Figure. (C) Random forest 
regression modeling of miRNA-seq quantification errors. A random forest regression model (R2 = 0.81) based on 
the first three 5′- and 3′-end positions was trained on the 962 miRNAs in the combined datasets for the 3 technical 
replicates obtained using the NTT adapter, and the predicted measurement errors (∆log10CPM predicted by the 
model) were plotted against the observed measurement errors (∆log10CPM obtained directly from sequencing 
data) for each miRNA. The blue line shows the fitted linear regression between the observed and predicted 
measurement errors, and the red line indicates hypothetical perfect prediction with slope = 1 and y-intercept = 0. 
(D) Relative importance of the position-specific preferences in TGIRT-seq. The relative importance of the 5′- and 
3′-end positions from the random forest regression model were plotted in descending order. Each bar represents 
the relative importance of the indicated position color coded as indicated in the figure.
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with the lower 3′-end bias seen previously in TGIRT-seq of a miRNA reference set using CircLigase instead of the 
5′ App DNA/RNA ligase6 (and see below).

Biochemical and computational methods for remediating 5′- and 3′-biases in TGIRT-seq.  
Having investigated the sources of the 5′- and 3′-end bias in the TGIRT-seq protocol, we next explored bio-
chemical and computational approaches for mitigating these biases. For the 3′ bias, we first thought that the 
preference for a G residue and against a U residue at position −1 might reflect the strength of the base-pairing 
interaction between that nucleotide and the 3′-overhang nucleotide of the DNA primer that is used to direct 
TGIRT template-switching, with a strong rG/dC base pair favored over a weak rU/dA pair. However, changing 
the 3′-A overhang in the NTT primer mix to a diaminopurine (denoted MTT) to enable a stronger base pair with 
3 instead of 2 H-bonds to a 3′ U only slightly ameliorated this bias (RMSE decreased from 2.72 to 2.45; Fig. 4C,D). 
Although using a locked nucleic acid for the 3′-overhang A might further ameliorate this bias, it would also 
increase cost, and the lack of bias for the reciprocal combinations (rA/dU) and (rC/dG) (Fig. 4C) suggests that the 
3′ biases against U and for G are due largely to nucleotide preferences of the TGIRT enzyme.

Thus, we tried an alternate approach based on the previous finding that increasing or decreasing the pro-
portion of a 3′-overhang nucleotide in the primer mix correspondingly increases or decreases the recovery of 
miRNAs having a complementary 3′ end in the TGIRT-seq libraries6. We extended this finding by constructing 
TGIRT-seq libraries from the miRNA reference set with a series of R2 RNA/R2R DNA adapter mixes with higher 
proportions of 3′ A overhangs and lower proportions of 3′ C overhangs (Fig. 6) and found that we could almost 
completely eliminate the 3′ bias in TGIRT-seq of the miRNA reference set by using a primer mix with a ratio of 3′ 
overhang nucleotides A:C:G:T of 6.6:0.4:1:1 (denoted NTTR; RMSE = 1.88; Figs 4E and 6, compare NTTR to bar 
graph on the right showing the proportion of 3′ nucleotides in the miRNA reference set).

For the 5′-ligation bias, we noted that established small RNA-seq methods that employ T4 RNA ligases I and 
II to sequentially ligate adapters to the 5′ and 3′ ends of RNAs or cDNAs benefit from employing DNA adapters 
with four randomized nucleotides at the ligated ends (referred to as 4N protocols), with such adapters giving 
lower bias and better coverage at low sequencing depths than those with invariant sequences at their ends33–36. 
However, miRNA libraries prepared by TGIRT-seq with an R1R adapter containing six randomized nucleotides 
at its 5′ end (denoted NTT/6N) did not decrease the ligation bias (RMSE = 2.89 compared to 2.72 for NTT with 
the R1R adapter without randomized nucleotides; Fig. 4F compared to Fig. 4C). This result may reflect that 
the ligation bias in methods that benefit from 4N adapters results largely from miRNA/adapter base-pairing 

Figure 6.  TGIRT-seq of the Miltenyi miRXplore miRNA reference set using R2 RNA/R2R DNA adapters with 
different ratios of the 3′-DNA overhang nucleotides. The stacked bar graphs show the percentages of miRNAs 
having A, C, G, and U 3′-end nucleotides, color coded as indicated in the Figure, in the datasets obtained with 
different ratios of 3′-overhang nucleotides. The expected ratio in the miRNA reference set is shown by the bar 
graph at the right. Only uniquely mapped reads were counted.
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interactions (referred to as “co-folding”), which can be ameliorated by providing adapters with randomized bases 
at the ligating end34–37. By contrast, because TGIRT-seq employs a thermostable ligase for a single-stranded liga-
tion of a DNA adapter to a cDNA at high temperature, any bias resulting from base-pairing interactions between 
the adapter and acceptor cDNA may already be minimal.

As an alternative for addressing the sampling biases in TGIRT-seq, we built a proof-of-concept bias corrector 
for TGIRT miRNA-seq using the random forest regression model described above (Fig. 5C,D) to correct for the 
measurement errors due to 5′- and 3′-end biases. The bias corrector uses the first and last 3 nucleotides of each 
miRNA to predict the measurement errors, so that a corrected abundance can be computed by subtracting the 
predicted measurement error from the experimentally determined abundance of each miRNA (see Methods). By 
employing this computational correction on the TGIRT-seq datasets obtained using the NTT adapter (denoted 
NTTc), both the 5′- and 3′-end biases were largely corrected, and the aggregate frequencies of miRNA 5′- and 
3′-end nucleotides in the dataset closely approached those of the miRNAs in the reference set (RMSE = 1.17; 
Fig. 4G). An alternative computational approach for 5′- and 3′-end bias correction, using a reweighting scheme 
based on the trinucleotide frequencies at the beginning of Reads 1 and 232, did not ameliorate end biases nearly as 
well as the random forest regression model (Supplementary Fig. S9).

Comparison of TGIRT-seq to other miRNA sequencing methods.  Figure 7 compares TGIRT-seq 
of the miRNA reference set using different methods of bias correction described above with published datasets 
obtained by using established small RNA library preparation methods on RNA samples containing the 962 miR-
NAs in the Miltenyi miRXplore reference set. Because some of the published datasets contain additional miR-
NAs, we created in silico subsamples containing only the 962 reference set miRNAs from each dataset for these 
comparisons. Figure 7A shows saturation curves (i.e., plots of the recovery of miRNAs with a read count of ≥10 
as a function of sequencing depth), and Fig. 7B shows violin plots of the log10CPM values for the reference set 
miRNAs obtained by the different methods. The plots confirmed the previous finding36 that the 4N protocols per-
form better than other small RNA-seq methods both in sampling miRNAs (reaching the plateau at smaller library 
sizes; Fig. 7A) and in obtaining expected log10CPM values (median closest to the red line) with smaller variance 
across the measured miRNA CPM values (shorter distance between the two ends of the violin plot; Fig. 7B). 

Figure 7.  Saturation curves and differences in coverage for the 962 miRNAs in the Miltenyi miRXplore miRNA 
reference set for TGIRT-seq with or without different bias correction compared to published datasets for 
established small RNA-seq methods. For published datasets containing additional miRNAs, in silico subsamples 
containing only the 962 reference set miRNAs were used for the comparisons. (A) RNA-seq saturation curves. 
The curves show the number of reference set miRNAs with at least 10 reads at bins of 200 reads. As additional 
reads were included, the number of miRNAs with at least 10 reads increased. Curves were truncated at 3 million 
reads. The dotted red line at the top indicates the number of miRNAs in the Miltenyi miRXplore reference 
set. Each curve represents combined datasets, color-coded by the sequencing method as shown in the Figure 
for the best (4N ligation/NEXTflex; n = 24) and worst (NEBNext; n = 12) methods from the comparison of 
Giraldez et al.36, as well as TGIRT-seq (n = 3 for libraries prepared with the NTT, MTT, and NTC adapters), 
TGIRT-seq with the NTTR adapter (n = 3), TGIRT-seq with the NTT adapter and an R1R adapter containing 
six randomized 5′-end positions (NTT/6N; n = 1), and the TGIRT-CircLigase method (n = 1; Mohr et al.6). 
Other library preparation methods (gray lines) include NEBNext, TruSeq and CleanTag. (B) Violin plots of 
miRNA abundance in datasets obtained by different methods. The plots show the distribution of log10CPM for 
each miRNA in the reference set for each library preparation method (miRNA count = 2,886 for NTTc, 2,885 
for NTCc, 23,088 for 4N ligation, 961 for TGIRT-CircLigase, 2,886 for NTTR, 5,522 for NEXTflex, 2,886 for 
MTT, 2,886 for NTC, 2,886 for NTT, 962 for NTT/6N, 30,757 for TruSeq, 3,815 for CleanTag, and 11,452 for 
NEBNext). NTTc and NTCc denote TGIRT-seq datasets obtained using the NTT or NTC adapters that were 
computationally corrected using the random forest regression model trained with the combined NTT datasets 
(Fig. 5C,D). The black horizontal line indicates the expected CPM values (CPM = 1,039.5) for each miRNA for 
a uniform distribution of 1,000,000 reads to 962 miRNAs (i.e., unbiased sampling for each miRNA). The library 
preparation and correction methods are ordered from the lowest to highest deviation between the median 
CPM (white point within the violin) and the expected CPM. The black boxes in the violins indicate the interval 
between first and third quartiles, and the vertical lines indicate the 95% confidence interval for each method.
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TGIRT-seq with NTTR adapter performed almost as well as the 4N protocols and better than TGIRT-seq with 
other adapters in the recovery of miRNA sequences as a function of read depth, reflecting that the altered ratio of 
R2R adapter 3′ overhangs improves the recovery of miRNAs with disfavored 3′-end sequences (Fig. 7A). Further, 
TGIRT-seq with the NTT or NTC adapters with computational correction (denoted NTTc and NTCc, respec-
tively) performed slightly better than the 4N protocols in overall sampling bias and variance, and substantially 
better than commercial small RNA sequencing methods, including NEXTflex, TruSeq, CleanTag, and NEBNext 
(Fig. 7B). Based on a previously published dataset (SRA accession number SRR8337756), the TGIRT CircLigase 
method, employing TGRT template-switching by TeI4c RT instead of GsI-IIC RT and a cDNA gel-purification 
step prior to circularization, performed about as well as the 4N protocols both in miRNA recovery as a function 
of sequencing depth and in overall sample bias and variance (Fig. 7A,B), in agreement with previous findings6.

Factors other than end biases that may contribute to measurement errors in TGIRT-seq.  To 
further investigate sources of bias in miRNA sequencing, we compared the over- and under-represented reference 
set miRNAs in datasets obtained by TGIRT-seq NTT and 4N ligation protocols (Fig. 8). In agreement with the 

Figure 8.  Representation of the Miltenyi miRXplore miRNA reference set in datasets obtained by TGIRT-seq with 
the NTT adapter before and after computational correction compared to representation of the same miRNAs in 
datasets obtained using 4N protocols. (A) miRNA representation for TGIRT-seq NTT versus 4N. Log10CPM values 
for each miRNA in combined TGIRT-seq NTT datasets (n = 3) are plotted against those in combined datasets for 
4N protocols (n = 24; Gilardez et al.36). Each point represents one miRNA. (B) The same comparison as (A) after 
computational correction of the TGIRT-seq NTT dataset using the random forest regression model (Fig. 5C,D). In 
(B), miRNAs are color-coded by their lengths (scale to the right). The purple dotted lines delineate 95% confidence 
intervals (2 standard deviations from the mean) of the miRNAs for 4N (vertical dotted lines) or NTT (horizontal 
dotted lines). The box formed by the intersections of the dotted lines encompasses 892 miRNAs that lie within these 
confidence intervals and were used for comparison with over- and under-represented miRNAs in Fig. 9. The expected 
CPM values (CPM = 1,039.5 for each of the 962 equimolar miRNAs) are indicated by horizontal and vertical orange 
lines for TGIRT-seq and the 4N protocols, respectively. The diagonal red line indicates cases where the CPM values 
from NTT are equal to those for 4N protocols. (C) Correlation between miRNA abundances and miRNA length. 
Two-dimensional kernel density estimation of the distribution for miRNA abundances and lengths (n = 962) is 
shown. The linear regression, with the equation: log10CPM = 0.09 (miRNA size) +0.9, is plotted as a red line, and 
miRNAs with length <21 or >23 nt are indicated as white crosses. The coefficient of determinant (R2) is indicated in 
the plot. The color scale indicates the numbers of miRNAs not shown as crosses.
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findings above, we found that most of the under- and over-represented miRNAs in TGIRT-seq compared to 4N 
protocols were due to 5′- and 3′-end sequence biases that could be substantially corrected computationally, so that 
the abundance of most of the reference miRNAs after correction was similar to that in 4N protocols (Fig. 8A,B). 
However, a small number of miRNAs remained substantially under- or over-represented in both TGIRT-seq and 
4N protocols.

To identify other factors that might have contributed to the biased representation of these outlier miRNAs 
in TGIRT-seq, we defined over- and under-represented miRNAs as those whose log10CPM values after compu-
tational correction for end biases were ≥2 standard deviations higher (n = 8) or lower (n = 27) than the mean 
log10CPM, and then compared several potentially bias-inducing characteristics of these miRNAs to the remain-
ing 927 more uniformly represented miRNAs (those in the center box in Fig. 8B). The compared characteristics 
included miRNA length, GC content, stability of potential secondary structure (self-fold free energy), potential of 
the R1R adapter to co-fold with the miRNA cDNA ligated in the second step of TGIRT-seq (co-fold free energy), 
and the numbers of unpaired (i.e., free) 5′ and 3′ nucleotides in the most stable predicted secondary structure.

Violin plots of the distribution of miRNAs in each of the above group as a function of the compared char-
acteristic showed that miRNA length is the only tested factor that contributes significantly to the under- or 
over-representation of these outlier miRNAs in TGIRT-seq (Wilcoxon test p-values = 0.004 and 0.03, respec-
tively; Fig. 9). However, for the larger group of 962 miRNAs, a plot of miRNA representation as a function of 
length showed only a weak correlation (R2 = 0.073; Fig. 8C). The Violin plots confirmed that neither self-folding 
of the miRNAs nor co-folding of the R1R adapter with the miRNA cDNAs contributed significantly to the 
under-representation of the outlier miRNAs in TGIRT-seq (Fig. 9C,D).

Discussion
By avoiding gel-purification steps, the TGIRT Total RNA-seq method enables the rapid construction of compre-
hensive RNA-seq libraries containing nearly all RNA biotypes from small amounts of starting materials with less 
overall bias than other transcriptome-profiling methods7,8,14. Here, we addressed two issues in TGIRT-seq library 
preparation, the disproportionate loss of miRNA sequences during AMPure beads clean-up of adapter dimers, 
and sampling biases resulting from 5′- and 3′-end sequences preferences in the ssDNA ligation and TGIRT 
template-switching steps.

First, to address the adapter dimer problem, we used the known sequence biases of the thermostable 5′ App 
DNA/RNA ligase employed for R1R adapter ligation to design an R2R adapter with a single nucleotide change 
that strongly decreases adapter dimer formation during TGIRT-seq library preparation (88–99% lower compared 

Figure 9.  Factors other than end biases that may contribute to measurement errors in miRNA representation 
in TGIRT-seq. The figure shows violin plots comparing several potentially bias-inducing characteristics in over-
represented (n = 8) or under-represented miRNAs (n = 27) in combined TGIRT-seq datasets obtained using 
the NTT adapter defined as those with log10CPM values two or more standard deviations higher than the mean 
log10CPM compared to the remaining 927 miRNAs (those within the center box in Fig. 8B). The characteristics 
compared include: (A) miRNA length; (B) GC content; (C) the minimum free energy of the most stable 
predicted secondary structure (self-fold energy) computed by the Vienna RNA package; (D) the predicted 
minimum free energy of base pairing between the R1R adapter and the miRNA cDNA with attached R2R 
adapter to which it is ligated in the second step of TGIRT-seq (Fig. 1A) computed by Vienna RNA package (co-
fold energy); (E) the number of unpaired (free) 3′ nucleotides in the predicted secondary structure; and (F) the 
number of unpaired (free) 5′ nucleotides in the predicted secondary structure. Asterisks on the top of the violins 
indicate significance of the difference between the outliers and remaining miRNAs determined by Wilcoxon test 
(*p = 0.03; **p = 0.004).
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to the previous NTC adapter; Fig. 2). The redesigned R2R adapter (denoted NTT) decreases the number of 
rounds of AMPure beads clean-up required to remove adapter dimers, thereby increasing the recovery of very 
small RNAs and enabling the construction of TGIRT-seq libraries from smaller amounts of starting materials.

A previous approach for decreasing adapter dimer formation in RNA-seq protocols in which DNA adapters 
are ligated to both 5′- and 3′-RNA ends uses adapters with chemical modifications near the ligated ends of both 
adapters38. These chemical modifications were hypothesized to inhibit ligation and impede subsequent reverse 
transcription when brought into close proximity in adapter dimers, but not when separated by a library insert. 
The authors carefully noted, however, that adapter dimer suppression was largely dependent upon the sequence of 
the adapters and that the same chemical modifications did not achieve the same degree of suppression with other 
adapter sequences38. Our results extend these findings by showing that, at least for some ligases, small changes 
in adapter sequences based on analysis of the sequence preferences of the ligase is sufficient to strongly suppress 
adapter dimer formation without resorting to chemical modifications.

Next, we used TGIRT-seq of miRNA reference sets to analyze and correct 5′- and 3′-end biases in miRNA-seq. 
The 5′-end bias in TGIRT-seq is due in large part to sequence biases of the thermostable 5′ App DNA/RNA ligase 
used for single-stranded ligation of the R1R adapter to the 3′ end of the cDNA (Fig. 1A). We found that this bias 
could not be mitigated by using an R1R adapter with randomized nucleotides near its 5′ end, as in 4N ligation 
RNA-seq protocols, but could be corrected computationally by using a random forest regression model to give 
the same level of bias as in 4N protocols. The 3′-end bias in TGIRT-seq is confined largely to the 3′ nucleotide of 
the target miRNA, which base pairs with the 3′ overhang of the DNA primer mix during template-switching. We 
first thought that this 3′ bias for G and against U might reflect the relative strengths of the rG/dC and rU/dA base 
pair between the 3′ nucleotide of the miRNA and the 3′-overhang nucleotide of the R2R DNA primer. However, 
this 3′ bias could be only slightly ameliorated by substituting a diaminopurine 3′ overhang to enable a stronger 
base pair to a 3′ U and was not observed for the reciprocal combinations rC/dG and rA/dU, suggesting that it 
results from nucleotide sequence preferences of the TGIRT enzyme. In a test with miRNA reference set, this 3′ 
bias could be almost completely remediated either by using primer mixes with an adjusted ratio of 3′ A, C, G, and 
T overhang nucleotides to compensate for the sequence preferences of the TGIRT enzyme or computationally 
by using the random forest regression algorithm, which simultaneously corrects the 5′ bias (Fig. 4). The degree 
of computational correction that can be attained for TGIRT-seq is possible because sequences biases are almost 
entirely confined to the first three nucleotides from either end of the RNA template.

Although the computational corrections for 5′- and 3′-end biases in TGIRT-seq and 4N ligation RNA-seq 
protocols address different factors, sequence bias in TGIRT-seq and adapter/miRNA co-folding in the 4N pro-
tocols33–36, they achieve very similar degrees of overall correction in the datasets for miRNA reference sets, with 
relatively few outliers that are differentially corrected by one or the other method (Fig. 8). This likely reflects that 
the biases corrected by the two methods are orthogonal. The TGIRT-seq correction for 5′-end bias addresses 
sequence preferences of the ligase, which are larger for the 5′ App RNA/DNA ligase than for the T4 RNA ligases 
used in the 4N protocols33–37, while the 4N correction addresses adapter/miRNA co-folding, which is not a sig-
nificant factor in the high temperature ssDNA ligation in TGIRT-seq (Fig. 9). Examination of outlier miRNAs 
after correction for TGIRT-seq. 5′- and 3′-end biases indicates that miRNA length may be a contributing factor 
for under- and over-representation of some but not most miRNAs (Fig. 9).

As noted previously by Giraldez et al.36, biological samples would likely behave differently from synthetic RNA 
pools tested at a single concentration in vitro. Thus, although the random forest regression model described here 
provides insight into the sources of bias and proof-of-concept that this method can be used for bias correction 
in RNA-seq, its use for biological samples requires parallel validation in different sample types (e.g., by heterolo-
gous miRNA spikes-ins added at different concentrations) and/or confirmation by orthogonal approaches, such 
as RT-qPCR, microarrays, or bead-based hybridization assays (e.g., Firefly; Abcam)39–42. Longer term, the bias 
in 5′-adapter addition might be addressed by using a modified or different ligase, but a less biased ligase might 
also lead to increased production of adapter dimers. Thus, a preferable approach may be to use an alternative 
method for 5′-adapter addition, such as leveraging the ability of TGIRT-III to add non-templated A residues to 
the 3′ of cDNAs to enable template-switching to an acceptor oligonucleotide with 3′ U residues, analogous to the 
Clontech/Takara SMART-seq protocols43,44. The 3′ bias in TGIRT template-switching seems less problematic as 
it can be addressed either computationally or by using an adjusted ratio of 3′ overhangs in R2 RNA/R2R DNA 
starter duplex. Longer term, it might also be addressed by using a different or modified TGIRT enzyme with less 
sequence bias. The recently determined crystal structure of full-length GsI-IIC RT in an active conformation with 
bound substrates12 provides a platform for detailed analysis of the structural basis and possible alleviation of this 
3′-end bias.

An attractive feature of the TGIRT Total RNA-seq method is that it can comprehensively profile different 
RNA size classes in a single RNA-seq experiment, enabling applications such as correlation of mRNA codon 
usages with isodecoder tRNA levels45,46; comparison of expression levels of small ncRNAs and mRNAs encoding 
components of the same RNP complexes14; and the analysis of tRNAs and tRNA fragments or mature, pre-, and 
pri-miRNA in the same RNA-seq7,8,23,47. Previous work showed that the total RNA-seq protocol with TGIRT-III 
works well for quantitation of small RNAs down to ~60 nt14, and the use of the new NTT adapter substantially 
improves the recovery of miRNAs sequences, both for the miRNA reference sets used here and in cellular, exo-
somal, and human plasma RNA samples analyzed in our laboratory. We note, however, that even with the NTT 
adapters, the recovery of miRNA sequences in the TGIRT Total RNA-seq method with GsI-IIC RT (TGIRT-III) 
is less efficient than that of larger RNAs (Fig. 2), reflecting that miRNA library products may still be differen-
tially lost at clean-up steps in the TGIRT-seq protocol (including the single round of Ampure beads clean-up 
to remove PCR primers and residual adapter dimers) and that larger RNAs out compete very small RNAs (<60 
nt) for reverse transcription by GsI-IIC RT in mixed-sized RNA preparations8. For studies focused on mature 
miRNAs, the latter issue could be minimized by introducing a size-selection step to obtain more uniformly sized 
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RNA preparations and/or by employing orthogonal approaches (see above) to confirm quantitative inferences 
about miRNA abundance. Additionally, based on comparison of published datasets, we find that alternative 
TGIRT-CircLigase method, which includes a gel-purification step, performed similarly to 4N protocols in both 
the recovery of miRNA sequences as a function of sequencing depth and overall variance from the expected 
CPM values (Fig. 7), and at present, it may be the TGIRT method of choice for studies focused primarily on 
mature miRNAs. We also note that another TGIRT enzyme, TeI4c RT, which has so far not been used exten-
sively for RNA-seq, has significantly different properties than GsI-IIC RT, including the ability to synthesize even 
longer cDNAs and to give a more uniform representation of RNAs <60 nt in mixed-sized RNA preparations8. The 
numerous group II intron RTs identified by the sequencing of bacterial, archaeal, and organellar genomes may 
provide a rich resource for the identification of enzymes with even more beneficial properties for RNA-seq than 
those tested thus far.

Methods
DNA and RNA oligonucleotides.  The sequences of DNA and RNA oligonucleotides used in this work are 
summarized in Supplementary Table S3. All oligonucleotides were purchased from Integrated DNA Technologies 
(IDT) in RNase-free HPLC-purified form. R2R oligonucleotides with different 3′ nucleotides were hand-mixed 
prior to annealing to the R2 RNA oligonucleotide to obtain the desired ratio of single nucleotide 3′-overhangs7,8. 
The NTT and NTC primer mixes contain an equimolar mix of R2R DNAs with 3′ A, C, G, and T residues. In the 
MTT primer mix, the R2R DNA with a 3′ A was replaced with a 3′ diaminopurine. In the NTTR primer mix, R2R 
DNAs with 3′ A, C, G, and T were mixed at a ratio of 6.6:0.4:1:1. Primer mixes with other ratios of 3′ nucleotides 
described in Results (Fig. 6) were prepared similarly.

RNA preparations.  The miRXplore miRNA reference set was purchased from Miltenyi Biotech. The 
RNA was dissolved in nuclease-free water (Invitrogen), adjusted to 1 μM, and aliquoted for storage at −80 °C. 
Fragmented human reference RNA samples were prepared as described7. 50 μl of Universal Human Reference 
RNA (UHRR; Agilent) at 1 μg/μl was mixed with 1 μl of ERCC ExFold Mix 1 (Thermo Fisher Scientific; denoted 
ERCC spike-ins) prepared according to the provided protocol. 2 μl of the resulting UHRR sample with ERCC 
spike-ins was ribo-depleted by using a Human/Mouse/Rat Ribo-zero rRNA removal kit (Illumina), fragmented 
to 70–100 nt by using an NEBNext Magnesium RNA Fragmentation Module (94 °C for 7 min; New England 
Biolabs), and treated with T4 polynucleotide kinase (Epicentre) to remove 3′ phosphates that impede TGIRT 
template-switching7. After each of the above steps, the RNA was cleaned-up by using a Zymo RNA Clean & 
Concentrator kit, with 8 volumes of ethanol added to the input RNA to maximize the recovery of small RNAs7. 
The fragment size range and RNA concentration were verified by using a 2100 Bioanalyzer (Agilent) with an 
Agilent 6000 RNA pico chip and aliquoted into 6 ng/3 μl portions for storage in −80 °C.

TGIRT-seq.  TGIRT-seq libraries were prepared as described7,8 using 6 ng of fragmented Universal Human 
Reference RNA (UHRR) with ERCC spike-ins or 50 nM Miltenyi miRXplore RNA prepared as described above. 
The template-switching and reverse transcription reactions were done as described7,8 with 1 μM TGIRT-III 
(InGex) and 100 nM pre-annealed R2 RNA/R2R DNA in 20 μl of reaction medium containing 450 mM NaCl, 
5 mM MgCl2, 20 mM Tris-HCl, 5 mM DTT, pH 7.5. Reactions were set up with all components except dNTPs, 
pre-incubated for 30 min at room temperature, a step that increases the efficiency of template-switching and 
reverse transcription, and then initiated by adding dNTPs (final concentrations 1 mM each of dATP, dCTP, dGTP, 
and dTTP). The template-switching reactions were incubated for 15 min at 60 °C and then terminated by adding 
1 μl 5 M NaOH to degrade RNA and heating at 95 °C for 5 min followed by neutralization with 1 μl 5 M HCl 
and two rounds of MinElute column clean-up (Qiagen) to decrease the amount of unused R2R DNA adapter. 
The R1R DNA adapter was pre-adenylated by using an adenylation kit (New England Biolabs) and then ligated 
to the 3′ end of the cDNA by using thermostable 5′ App DNA/RNA Ligase (New England Biolabs) for 2 h at 
65 °C. The ligated products were purified by using a MinElute Reaction Cleanup Kit and amplified by PCR with 
Phusion High-Fidelity DNA polymerase (Thermo Fisher Scientific; denaturation at 98 °C for 5 sec followed by 
12 cycles of 98 °C 5 sec, 60 °C 10 sec, 72 °C 15 sec and then held at 4 °C). The PCR products were cleaned up by 
using Agencourt AMPure XP beads (1.4X volume; Beckman Coulter) and sequenced on an Illumina NextSeq 500 
instrument to obtain 2 × 75-nt paired-end reads.

Bioinformatic analysis.  Datasets obtained for ribo-depleted, fragmented UHRR plus ERCC spike-ins using 
the NTT adapter were compared with published datasets for identically prepared samples using the NTC adapter 
downloaded from NCBI (SRA accession number SRP0660097). After removing the extra T residue introduced 
by the NTT adapter at the 5′ end of Read 2, reads from datasets obtained by using the NTT and NTC adapters 
were trimmed with cutadapt48 1.16 to remove Illumina TruSeq adapters and PCR primer sequences (sequenc-
ing quality score cut-off at 20), and reads <15-nt after trimming were discarded. Reads were then mapped by 
using HISAT249 v2.0.2 with default settings to a human genome reference sequence (Ensembl GRCh38 Release 
76) combined with additional contigs for 5S and 45S rRNA genes and the E. coli genome sequence (Genebank: 
NC_000913) (denoted Pass 1). The additional contigs for the 5S and 45S rRNA genes included the 2.2-kb 5S 
rRNA repeats from the 5S rRNA cluster on chromosome 1 (1q42, GeneBank: X12811) and the 43-kb 45S rRNA 
repeats that contained 5.8S, 18S and 28S rRNAs from clusters on chromosomes 13, 14, 15, 21, and 22 (GeneBank: 
U13369). Unmapped reads from Pass 1 were re-mapped to Ensembl GRCh38 Release 76 by Bowtie 250 v2.2.6 with 
local alignment to improve the mapping rate for reads containing post-transcriptionally added 5′ or 3′ nucleo-
tides (e.g., CCA and poly(U)), short untrimmed adapter sequences, or non-templated nucleotides added to the 
3′ end of the cDNAs by the TGIRT enzyme (denoted Pass 2). The uniquely mapped reads from Passes 1 and 2 
were combined using Samtools51 v1.8. To process multiply mapped reads, we examined different alignments with 
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the highest mapping score and selected the alignment with the shortest distance between the two paired ends 
(i.e., the shortest read span). In the case of ties between reads mapping to rRNA and non-rRNA sequences, the 
read was assigned to the rRNA sequence, and in other cases, the read was assigned randomly to one of the tied 
choices. Uniquely mapped reads and the filtered multiply mapped reads were combined and intersected with gene 
annotations (Ensembl GRCh38 Release 76) supplemented with the RNY5 gene and its 10 pseudogene sequences, 
which were not annotated in this release, to generate the counts for individual features. Coverage of each feature 
was calculated by Bedtools52. To avoid miscounting of embedded sncRNAs, the reads were first intersected with 
sncRNA annotations, and the remaining reads were then intersected with the annotations for protein-coding 
genes, lincRNAs, antisense, and other lncRNAs. To further improve the mapping rate for tRNAs and rRNAs, 
we combined reads that were uniquely or multiply mapped to tRNAs or rRNAs in the initial alignments and 
re-mapped them to tRNA (Genomic tRNA Database and UCSC genome browser website) or rRNA (GeneBank: 
X12811 and U13369) reference sequences using Bowtie 2 local alignment.

For correlation analysis, RNA-seq datasets were normalized for the total number of mapped reads by using 
DESeq253 and plotted in R. Reads that mapped to protein-coding genes were analyzed by Picard (http://broadin-
stitute.github.io/picard/) to calculate the percentage of bases in CDS, UTR, intron, and intergenic regions.

For datasets obtained for the Miltenyi miRXplore miRNA reference set, reads obtained using the NTT and NTC 
adapters were processed as described above for UHRR datasets and then mapped with Bowtie2 using local align-
ment with default settings to the Miltenyi miRXplore reference sequences. Uniquely mapped reads with lengths 
between 15 and 40 nt (86–88% of the mapped reads for the NTT adapter; Supplementary Table S2) were retrieved 
and used to calculate the counts table for 962 miRNAs. Counts from each dataset were median normalized, log2 
transformed, and used to generate scatter plots, empirical cumulative distribution function (ECDF) plots, and nucle-
otide frequency plots in R. RMSE was calculated using log2 transformed median normalized counts.

Correction of 5′- and 3′-end biases.  miRNA sequence biases were analyzed with customized scripts using  
pysam51 and SciPy ecosystem (http://www.scipy.org/). The predicted deviations between the expected log10 
miRNA abundance for each miRNA (log10CPM; 962 equilmolar miRNAs from Miltenyi miRXplore reference 
set) and measured log10 abundance for that miRNA were calculated by using a random forest regression model 
implemented in R54 according to the following equation:

∆ = − − −logCPM f x x x x x x( , , , , , )m m m m m m m,1 ,2 ,3 , 3 , 2 , 1

where ∆logCPMm indicates the difference between observed log10CPM and expected log10CPM for miRNA m; f 
indicates the random forest regression function; and xm,i indicates the nucleotide of miRNA m at position i. Only 
the first 3 bases (i = 1 to 3) and the last 3 bases (i = −3 to −1) of each miRNA were considered in this model.

Correction of miRNA abundances was done by subtracting ∆logCPMm from the experimental log10CPM for 
each miRNA. The corrected read count was then converted into a corrected pseudo-count (non-integer) by taking 
a power of 10, via:

= −∆Corrected count 10 log CPM log CPM( )m exp m10 , 10

where ∆logCPMm indicates the correction factor derived from the model for miRNA m and log CPM10 m,exp indi-
cates the experimental log10CPM for miRNA m. Codes have been deposited in GitHub: https://github.com/wck-
douglas/tgirt_smRNA.

Comparison of TGIRT-seq of miRNAs to established small RNA-seq methods.  miRNA count 
tables for 4N ligation, NEXTflex, TruSeq, NEBNext and CleanTag were downloaded from the National Center 
for Biotechnology Information (NCBI) Sequence Read Archive (SRA accession number SRP12684536), and 
counts from the 962 Miltenyi miRXplore RNAs were extracted for the comparisons. Raw reads obtained by the 
TGIRT-CircLigase method6 were downloaded from NCBI (SRA accession number SRR8337756) and aligned to 
the Miltenyi miRXplore reference sequences using Bowtie2 (settings local -D 20 -R 3 -N 0 -L 8 -i S,1,0.50 -k 5  
--norc --no-mixed --no-discordant) to generate a miRNA count table. miRNA counts from TGIRT-seq datasets 
and the downloaded datasets were normalized to CPM for the comparisons. The predicted RNA folding and 
co-folding patterns and minimum free energies were computed by the ViennaRNA package55.

Accession number.  The datasets generated and analyzed in the current study are available in the National 
Center for Biotechnology Information Sequence Read Archive under SRA accession number SRP168562.
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