
R E S E A R CH A R T I C L E

A sub+cortical fMRI-based surface parcellation

John D. Lewis1 | Gleb Bezgin1,2 | Vladimir S. Fonov1 | D. Louis Collins1 |

Alan C. Evans1

1McConnell Brain Imaging Center, Montreal

Neurological Institute, McGill University,

Montreal, Quebec, Canada

2Translational Neuroimaging Laboratory, The

McGill University Research Centre for Studies

in Aging, Verdun, Quebec, Canada

Correspondence

John D. Lewis, Montreal Neurological Institute,

McGill University, NW147, 3801 University

Street, Montreal, QC H3A2B4, Canada.

Email: jlewis@bic.mni.mcgill.ca

Funding information

Azrieli Neurodevelopmental Research

Program, Brain Canada Multi-Investigator

Research InitiativeAzrieli Foundation, Grant/

Award Number: ANRP-MIRI13-3388; Brain

Canada Foundation; Canadian Institutes of

Health Research; Natural Sciences and

Engineering Research Council of Canada;

Compute Canada; Calcul Quebec

Abstract

Both cortical and subcortical structures are organized into a large number of distinct

areas reflecting functional and cytoarchitectonic differences. Mapping these areas is of

fundamental importance to neuroscience. A central obstacle to this task is the inaccuracy

associated with bringing results from individuals into a common space. The vast individ-

ual differences in morphology pose a serious problem for volumetric registration.

Surface-based approaches fare substantially better, but have thus far been used only for

cortical parcellation, leaving subcortical parcellation in volumetric space. We extend the

surface-based approach to include also the subcortical deep gray-matter structures, thus

achieving a uniform representation across both cortex and subcortex, suitable for use

with surface-based metrics that span these structures, for example, white/gray contrast.

Using data from the Enhanced Nathan Klein Institute—Rockland Sample, limited to indi-

viduals between 19 and 69 years of age, we generate a functional parcellation of both

the cortical and subcortical surfaces. To assess this extended parcellation, we show that

(a) our parcellation provides greater homogeneity of functional connectivity patterns

than do arbitrary parcellations matching in the number and size of parcels; (b) our parcels

align with known cortical and subcortical architecture; and (c) our extended functional

parcellation provides an improved fit to the complexity of life-span (6–85 years) changes

in white/gray contrast data compared to arbitrary parcellations matching in the number

and size of parcels, supporting its use with surface-based measures. We provide our

extended functional parcellation for the use of the neuroimaging community.
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1 | INTRODUCTION

Cortical and subcortical gray matter alike comprise a large number

of areas with distinct functional and structural characteristics. A

substantial literature is dedicated to how best to identify these

areas. Researchers have divided the cortex into regions that are rel-

atively homogenous with respect to cytoarchitecture (Amunts

et al., 2005; Brodmann, 1909; Hirai & Jones, 1989; Zilles &

Amunts, 2009, 2010); regions based on morphometry (Tzourio-

Mazoyer et al., 2002); regions that are relatively homogeneous with
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respect to functional connectivity patterns (Gordon et al., 2016;

Klein et al., 2007; Wig et al., 2013); and regions that are relatively

homogenous across multiple modalities (Glasser, Coalson,

et al., 2016). Each of these approaches has advantages and each

comes with challenges. One of the most serious challenges, and

one that is shared across all parcellation schemes, is the difficulty

of mapping the individual results to a common space. Some of

these parcellation schemes have relied exclusively on volumetric

registration techniques to do this. However, there is a growing

appreciation of the limitations of this approach. Individual anatomi-

cal variability in brain morphology is problematic, particularly when

the age-range of the data is large, or when abnormalities are pre-

sent. Moreover, additional variability comes with multi-site, multi-

protocol data, some of which may include different contrasts for

different tissues, for example, blood, which complicates registra-

tion. Moreover, to overcome the failings of volume-based registra-

tion methods, the data are often blurred before assessing

correlation structure; but this blurs data across tissue classes, and

will have very different effects in cortical areas with narrow sulci

than in cortical areas with wide sulci, or in gray-matter structures

of different sizes; and it blurs areal boundaries (Turner &

Geyer, 2014; Glasser, Coalson, et al., 2016; Glasser, Smith,

et al., 2016; Coalson, Van Essen, & Glasser, 2018). To better deal

with the limitations of volume-based registration methods, some

recent parcellation methods have turned to surface-based registra-

tion approaches for the cortical aspect of this problem, for example,

Frost and Goebel (2012), Van Essen, Glasser, Dierker, Harwell, and

Coalson (2012), Gordon et al. (2016), and Glasser, Coalson,

et al. (2016). Surface-based approaches are significantly more accu-

rate in mapping cortical regions to a common space (Anticevic

et al., 2008; Coalson et al., 2018; Fischl et al., 2008; Frost &

Goebel, 2012; Glasser, Coalson, et al., 2016; Klein et al., 2010; Lyt-

telton, Boucher, Robbins, & Evans, 2007; Tucholka, Fritsch,

Poline, & Thirion, 2012; Turner & Geyer, 2014). This approach uses

the folding pattern instead of voxel intensity to drive a nonlinear

surface-based inter-subject registration procedure that aligns the corti-

cal folding patterns of each subject to a standard surface space (Fischl,

Sereno, Tootell, & Dale, 1999; Greve & Fischl, 2018). This surface-

based approach to the parcellation problem has been taken by a num-

ber of researchers, for example, Gordon et al. (2016); Glasser, Coalson,

et al. (2016). However, to the best of our knowledge, surface-based

parcellation approaches have been restricted to the cortex, with sub-

cortical parcellations remaining at the voxel level. We extend the

approach to include the subcortical structures as well as the cortex.

We want a surface-based parcellation for both the cortex and the

subcortical structures for two reasons. First, recent research has

begun to put surfaces on the subcortical structures, and to derive

surface-based metrics from them, for example, white/gray contrast

(Lewis et al., 2019). However, many types of analyses rely on

parcellations for dimensionality reduction, and currently, there are a

variety of cortical parcellations that can be used, but there are no sub-

cortical parcellations. Utilizing arbitrary divisions of the subcortical

surface meshes, as done by Lewis et al. (2019) supposes that there is

no relation between the metric(s) being examined and the underlying

organization, which is highly unlikely, and is likely to combine mea-

sures from very different subcortical regions, obscuring both the

boundary between them and their individual relationships to other

areas.

Second, some of the issues with volumetric registration that a

surface-based approach overcomes for the cortex are also issues for

registration of the subcortical structures. In part this is because regis-

tration of the subcortical structures to a template also involves the

cortex; the putamina, for example, are very near to the insular cortex,

which is well-known to be morphologically unreliable due to low tis-

sue contrast, and so presents a challenge for tissue segmentation, and

also to thin structures like the extreme capsule so volumetric blurring

during registration is problematic. The structures that are adjacent to

the ventricles present a different but related problem. The ventricles

are highly variable, particularly when the population comprises data

with a substantial age range, or subjects with disorders. This variability

can have a strong negative impact on the registration of adjacent

structures, that is, the caudate and thalamus. Likewise, the fornix is

extremely variable, and can also negatively impact the registration of

the structures near the mid-line. Additionally, the tissue contrast

between the deep gray-matter structures and the surrounding white

matter is relatively poor compared to that of the cortex and the adja-

cent white matter, and so also presents a problem for registration.

Thus, unsurprisingly, accurate registration of the subcortical deep

gray-matter structures is notoriously difficult (Heckemann, Hajnal,

Aljabar, Rueckert, & Hammers, 2006). And as with the cortex, the

blurring that is used to overcome the failings of volume-based regis-

tration methods blurs data across tissue classes, areal boundaries, and

even between structures that are separated only by a narrow band of

white matter, for example, the globus pallidus and putamen; and for

structures that are adjacent to the ventricles, like the thalamus and

caudate, such blurring will have an even greater impact. Moreover,

inaccurate registration in structures composed of numerous sub-

nuclei will confound parcellation methods. The difficulties associated

with volume-based subcortical registration underlie the vast effort

that has gone into developing alternate methods. Multiple methods

have been proposed to overcome the inadequacies of nonlinear regis-

tration, for example, multi-atlas label-fusion. Multi-atlas label-fusion

has been shown to fare far better than single-atlas registration for the

accurate segmentation of the subcortical structures (Aljabar, Heckemann,

Hammers, Hajnal, & Rueckert, 2009; Collins & Pruessner, 2010; Coupé

et al., 2011; Heckemann et al., 2006; Lötjönen et al., 2010; Pipitone

et al., 2014). This approach uses a library of labeled atlases, and registers

either all of, or a subset of, these atlases to a target image. The registered

labels are then fused via, for example, patch-based label fusion (Coupé

et al., 2011), to produce labels for the target structure. Such an approach

provides accurate labels for the subcortical structures, but does not pro-

vide a mapping from the segmented subcortical structures to a common

space. Lewis et al. (2019) provided a solution to this problem. Lewis

et al. (2019) used a multi-atlas label-fusion approach to label the thala-

mus, caudate, pallidus, and putamen, and then fitted surfaces to these

labels, allowing surface registration to provide the mapping from the
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segmented subcortical structures to a common space. We draw on those

methods to extend surface-based parcellation to include those subcorti-

cal deep gray-matter structures, as well as the cortex. Of course, these

subcortical surfaces introduce the issue of flattening three-dimensional

(3D) structures onto a two-dimensional (2D) manifold. However, if the

surface-based measures are determined at the same depth as the func-

tional measures, this will not be a problem. Moreover, of course, a sur-

face parcellation can be constructed at whatever arbitrary depth is

desired, or at multiple depths.

Our cortical and subcortical surface-based parcellation approach

is an extension of the work of Gordon et al. (2016) who builds on the

work of Cohen et al. (2008). Cohen et al. (2008) observed that rs-fMRI

connectivity patterns show sharp transitions, which potentially iden-

tify areal boundaries. It has since been shown that such transitions

correspond to boundaries defined by patterns of cyto- and

myeloarchitectonics (Glasser, Coalson, et al., 2016; Gordon

et al., 2016; Wig, Laumann, & Petersen, 2014). Gordon et al. (2016)

mapped rs-fMRI data to the cortical surface, and built on Cohen

et al.'s work to produce all connectivity-based areal boundaries on the

cortical surface, and based on these, a cortical parcellation. On the

other hand, Gordon et al. (2016) represented the subcortical deep

gray-matter structures in volumetric space. We draw on the methods

of Lewis et al. (2019) to extend Gordon et al.'s work to include

surface-based representations of the subcortical deep gray-matter

structures as well as the cortex. We refer to this cortical + subcortical

rs-fMRI connectivity-based parcellation as the Bezgin–Lewis

extended Gordon (BLeG) parcellation.

Gordon et al. (2016) assessed their parcellation in multiple ways,

including in terms of the homogeneity of the functional connectivity

patterns within the parcels in comparison to the same for random var-

iants of that parcellation, as well as the fit of their parcellation to the

existing data on cytoarchitectonic boundaries. We extend this assess-

ment to the subcortical structures, showing greater within-parcel

functional homogeneity in both the cortex and the subcortical struc-

tures for BLeG than for random parcellations with the same number

of parcels and mean parcel size; and showing that the known architec-

ture of both the cortex and the subcortical structures is reflected in

the BLeG parcellation. We further extend the assessment to consider

the use of our BLeG parcellation with surface-based metrics, which is

our main purpose in proposing this cortical + subcortical parcellation;

here we use the white/gray contrast measure of Lewis et al. (2018)

and Lewis et al. (2019). This measure is a ratio of the intensities in the

white matter and the adjacent gray matter, similar to the measure for-

mulated by Salat et al. (2009). Thus it, in part, reflects the integrity of

the white matter adjacent to the gray matter, and, in part, the cellular

complexity of the gray matter and the degree of myelination within it,

including from invading myelinated fibers. In addition, critically, this

measure can be produced for cortex and all subcortical structures;

subcortical gray-matter intensity was measured at the same depth as

was functional connectivity, thus eliminating the issue of mapping a

3D structure to a 2D manifold. By drawing on the fact that white/gray

contrast in different brain regions shows differential relations to age,

sex, brain volume, and so forth, which is true for a variety of morpho-

metric measures (Allen, Bruss, Brown, & Damasio, 2005; Goldstein

et al., 2001; Kennedy et al., 2009; Raz et al., 1997, 2005; Raz &

Rodrigue, 2006; Sowell et al., 2006; Storsve et al., 2014), and particu-

larly for subcortical structures (Goddings et al., 2014; Østby

et al., 2009), we devise an assessment of within-parcel model-

complexity homogeneity. Here, the linear model that provided the

best fit to the white/gray contrast measures at each vertex was deter-

mined for life-span data, as well as the complexity of that model, that

is, the number of terms in the best-fit model for the data, counting

composite terms as more than a single term, but less than the number

of base terms it comprises (Section 2.3.4); the homogeneity of model

complexity was then computed for every parcel of our extended func-

tional parcellation, BLeG, and the mean of this parcel-wise homogene-

ity of model complexity provided a measure of how well the overall

parcellation aligned with the white/gray contrast data over the life-

span. This test was repeated for parcellations based on arbitrary divi-

sions of the surface meshes matching the number and size of parcels.

We show that our extended functional parcellation, BLeG, provides

an improved fit to the complexity of the life-span changes in the

white/gray contrast data compared to these random parcellations,

thus indicating the utility of our BLeG parcellation for use with

surface-based morphometric data.

2 | MATERIALS AND METHODS

2.1 | Data

The data used here were from the publicly available Enhanced

Nathan–Klein Institute—Rockland Sample (Nooner et al., 2012)—

commonly known as the NKI-RS data. Data collection received ethics

approval through both the Nathan–Klein Institute and Montclair State

University. Written informed consent was obtained from all partici-

pants, and in the case of minors, also from their legal guardians. All

imaging data were acquired from the same scanner (Siemens Mag-

netom TrioTim, 3.0 T). T1-weighted images were acquired with an

MPRAGE sequence (TR = 1,900 ms; TE = 2.52 ms; voxel

size = 1 mm isotropic). Resting-state fMRI data were acquired in mul-

tiple ways for each subject, varying in temporal and spatial resolution.

We utilized the high spatial resolution multiplexed data

(TR = 1,400 ms; TE = 30 ms; voxel size = 2 mm isotropic) for the

principal parcellation; and the low temporal and spatial resolution data

(TR = 2,500; TE = 30 ms; voxel size = 3 mm isotropic) for comparison

with Gordon et al.'s (2016) original parcellation. We included all sub-

jects for which there were both usable T1-weighted data and fMRI

data. There were 568 such individuals, ranging from 6 to 85 years of

age. The BLeG parcellation was constructed from the individuals

between 19 and 69 years of age, of which there were 393 (69% of

these were female); the data from individuals less than 19 years of

age and individuals greater than 70 years of age were used to verify

the use of the BLeG parcellation with data from children, adolescents,
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and the elderly, as well as the adult data from which it was con-

structed. There were 115 individuals <19 years of age (48% female),

and 60 individuals greater than 70 years of age (68% female).

2.2 | Data processing

The T1-weighted volumes were processed to derive surfaces onto

which the fMRI data could be loaded, and from which surface-based

measures of white/gray contrast could be computed. These various

surfaces are derived from the surfaces that lie at the gray–white

boundary and, in the case of the cortex, the gray–CSF boundary; the

processing that produces these surfaces is described next. The deriva-

tion of the surfaces onto which the fMRI is loaded is described in Sec-

tion 2.2.1 together with a description of the fMRI processing. The

derivation of the surfaces from which the measures of white/gray

contrast are computed is described in Section 2.3.4 together with a

description of how those measures are computed.

2.2.1 | Surface extraction

The T1-weighted volumes were denoised (Manj�on, Coupé, Martí-Bonmatí,

Collins, & Robles, 2010) and then processed with CIVET (version 2.1;

2016), a fully automated structural image analysis pipeline developed at

the Montreal Neurological Institute.1 CIVET corrects intensity non-

uniformities using N3 (Sled, Zijdenbos, & Evans, 1998); aligns the input

volumes to the Talairach-like ICBM-152-nl template (Collins, Neelin,

Peters, & Evans, 1994); classifies the image into white matter, gray matter,

cerebrospinal fluid, and background (Tohka, Zijdenbos, & Evans, 2004;

Zijdenbos, Forghani, & Evans, 2002); extracts the white-matter and pial

surfaces (Kim et al., 2005); and maps these to a common surface template

(Lyttelton et al., 2007).

Subcortical segmentation into left and right caudate, putamen,

globus pallidus, and thalamus was done using a label-fusion-based

labeling technique based on Coupé et al. (2011) and further developed

by Weier, Fonov, Lavoie, Doyon, and Collins (2014) and by Lewis

et al. (2019). The approach uses a population-specific template library.

The library was constructed by clustering (as described in Lewis

et al., 2019) the deformation fields from the nonlinear transforms pro-

duced by CIVET, and using the central-most subject of each cluster to

construct the entries in the template library. The number of clusters

was specified as the square of the natural log of the number of sub-

jects. To create the library entry for a cluster, the nonlinear transform

for the central-most subject was inverted and used to warp the

ICBM-152-nl template together with the subcortical segmentation

defined on it; this pair was then added to the template library. The

template library is thus a set of warped copies of the ICBM-152-nl

template together with their correspondingly warped segmentations,

and represents the range of deformations found in the population.

Once the template library had been created, each subject in the popu-

lation was nonlinearly registered to the n closest templates in the

library (here, n = 7), and the resulting transforms were used to warp

their corresponding segmentations to the subject; the final labeling

was then established via patch-based label fusion.

Once the subcortical structures for a subject were labeled, sur-

faces defined on the ICBM-152-nl template were fitted to those

labels. These model surfaces were warped to each individual based on

the transforms derived from the label-fusion-based labeling stage, and

then adjusted to the final labels by moving vertices along a distance

map created for each label. The surfaces for each structure were then

registered to their corresponding common surface template to ensure

cross-subject vertex correspondence, as per the cortical surfaces.

Based on these surfaces at the gray–white boundary and, for the

cortex, the pial surface, several additional surfaces were created to

allow for the surface-based fMRI analysis. The fMRI data were

preprocessed (as described in Section 2.2.2) and then loaded onto the

cortical midsurface, a surface falling halfway between the surface at

the cortical gray–white boundary and the pial surface, and onto sur-

faces 2 mm inside of the surfaces at the gray–white boundary of the

subcortical structures. These choices avoid partial volume effects, to

the extent possible. These surfaces are shown in Figure 1.

To create the surfaces 2 mm inside of the surfaces at the gray–

white boundary of the subcortical structures, a distance map was cre-

ated from those surfaces, smoothed with a Gaussian kernel, and used

to create a gradient vector field. The subcortical white surfaces were

then moved 2 mm along this vector field into the subcortical gray

F IGURE 1 An example of the surfaces that the preprocessed
fMRI time-series data are projected onto. The coronal slice shows the
cortical midsurface in red, as well as the supra-white surfaces within

the subcortical gray matter; the fMRI data are projected onto these
surfaces. For reference, the surfaces at the gray–white boundary are
shown in green. The insets show the top and front views of the
subcortical surfaces, with the areas of the thalamus and caudate that
are adjacent to the ventricles shown in black. Note that the spatial
aspect of the subcortical structures in the insets has been
manipulated to provide a view of each structure
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matter to produce the subcortical supra-white surfaces. The proce-

dure is described in detail in Lewis et al. (2019).

2.2.2 | rs-fMRI processing

The rs-fMRI data were minimally preprocessed before loading the

data onto the surfaces. The approach is essentially that used in

fMRIPrep (Esteban et al., 2019), adapted to work with CIVET. First, a

slice-timing correction was applied with FSL's slicetimer (Smith

et al., 2004), with the timings for each slice in the multi-band acquisi-

tion provided. FSL's motion correction algorithm, mcflirt (Jenkinson,

Bannister, Brady, & Smith, 2002) was then used to register all volumes

to a reference functional volume; the seventh volume was used; the

first six volumes were discarded. As well as producing the motion-

corrected fMRI data, this procedure provided the motion-correction

parameters, and identified motion-contaminated volumes by frame-

by-frame displacement (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012). ICA-AROMA was then applied to the motion-

corrected data to identify independent components associated with

motion artifacts, and to remove them from the data (Pruim

et al., 2015). Pruim et al. (2015) note, however, that the default set-

tings are not appropriate for use with fast TR data, since important

information is available in higher frequencies, which are better

resolved in the measured observations of fast TR data, and thus classi-

fying ICs with high-frequency content as motion ICs removes signal

from the data (Mayer et al., 2019). Thus we altered the default set-

tings to classify independent components as motion artifacts if and

only if they correlated with the realignment parameters from mcflirt at

a greater than chance level. The fMRI images were then corrected for

the distortions associated with echo-planar imaging using large defor-

mation diffeomorphic metric mapping (Miller, Beg, Ceritoglu, &

Stark, 2005) based on the T1-weighted volume, with the deformation

restricted to the phase encoding direction of the fMRI acquisition.

The surfaces described above were then transformed to overlay the

distortion-corrected rs-fMRI, and the rs-fMRI data were loaded onto

them, that is, the voxel intensities were sampled onto the vertices of

the cortical midsurfaces and the subcortical supra-white surfaces.

The connectivity-based parcellation of the rs-fMRI is based on

the methods described in Gordon et al. (2016), which builds on the

work of Cohen et al. (2008). Cohen et al. (2008) observed that rs-fMRI

connectivity patterns show sharp transitions, which potentially iden-

tify areal boundaries. Gordon et al. (2016) extended Cohen et al.'s

work to produce all cortical connectivity-based areal boundaries, and

based on these, a parcellation of the cortex. We further extend this

work by including surfaces for the caudate, globus pallidus, putamen,

and thalamus, in addition to those for the cortex, producing a

parcellation for all of these surfaces. To achieve this, we adapt the

code provided by Gordon et al. (2016).2 We convert the cortical mid-

surfaces and subcortical supra-white surfaces, with their associated

rs-fMRI time courses, to CIFTI,3 and as per Gordon et al. (2016), for

each subject, correlate the time course of each surface vertex (both

cortical and subcortical) with that from every other surface vertex.

The resultant correlation maps are then transformed using Fisher's r-

to-z transformation. The pairwise correlations between entries in each

subject's correlation map comprise that subject's similarity matrix. A

set of gradient maps that identify positions of abrupt changes in con-

nectivity patterns are then generated by taking the first spatial deriva-

tive in each subject's similarity matrix. The gradient maps are then

averaged across subjects, and the average gradient maps are sub-

jected to Beucher's (1979) “watershed by flooding” algorithm to iden-

tify potential areal boundaries. The resulting boundary maps are then

averaged to yield a map of the frequency with which each vertex is

identified as a potential boundary vertex. The resulting boundary map

for the high-resolution NKI-RS data is shown in Figure 2; the results

for the low-resolution NKI-RS data are provided in Figure S7.

The local minima in the boundary map are seeds for parcel crea-

tion. Parcels are expanded outward from these seeds until they either

meet another parcel or reach a height threshold on the boundary

map. Adjacent parcels are then merged, if they are too similar. Addi-

tionally, parcels containing fewer than 30 cortical vertices are merged

with the adjacent parcel with the lowest boundary map values sepa-

rating the two. Finally, vertices with high boundary map values

(defined as the top quartile of values in the boundary map) were elimi-

nated from parcels, and treated as transition zones between parcels.

This procedure is as implemented by Gordon et al. (2016), and uses

the default parameters in that code, with the exception of the bound-

ary threshold in the parcel_creator function, which was lowered to 0.5

due to signal loss from ICA-AROMA. The final parcellation is shown in

Figure 3. Note that the regions of the subcortical material that are

adjacent to the ventricles are masked. This is for two reasons: first,

because this parcellation is meant for use with white/gray contrast

measures, and white/gray contrast cannot be assessed in these

regions; and second, because the signal from fMRI is known to suffer

from pulsatory artifacts in areas adjacent to the ventricles (Edelman

et al., 1994; Hu, Le, Parrish, & Erhard, 1995; Kim, 1995). Nonetheless,

we show the version of the parcellation without these areas masked

in Figure S1, and provide it in the release; but people should be wary

of those parcels.

2.3 | Assessing the parcellation

Gordon et al. (2016) assessed their parcellation in multiple ways: in

terms of the within-parcel homogeneity of functional connectivity

patterns; by visually comparing parcel alignment with known

cytoarchitectonic areas; and by assessing the stability of the boundary

maps across two datasets. We extend these assessments to include

the subcortical structures. We assess the within-parcel homogeneity

of functional connectivity patterns within both the cortex and the

subcortical structures; we compare the placement of the parcels to

the known architecture of both the cortex and the subcortical struc-

tures; and we assess the stability of the boundary map across devel-

opmental data, adult data, and data from elderly individuals.

Furthermore, to assess the usefulness of our parcellation with struc-

tural metrics, which is the main objective of producing this cortical
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+ subcortical surface-based parcellation, we assess it in terms of the

within-parcel homogeneity of the complexity of the models required

to bestfit white/gray contrast measures (Lewis et al., 2018, 2019). We

use white/gray contrast measures because they span both the cortical

and the subcortical structures and because they are sensitive to age,

sex, and brain size. We determine the linear models that best fit the

data at each vertex, and the complexity of those models, and then

assess the within-parcel homogeneity of model complexity. The mean

of this parcel-wise homogeneity of model complexity provides a mea-

sure of how well the overall connectivity-based parcellation aligns

with the age-, sex-, and brain size-related differences in white/gray

contrast measures. Both the functional and structural assessments of

within-parcel homogeneity are done for the BLeG parcellation in com-

parison to parcellations based on arbitrary divisions of the surface

meshes but with the same number of parcels and same mean parcel

size as the BLeG parcellation.

F IGURE 2 The connectivity-based boundary map. The top half of
the figure shows the cortical results; the bottom half shows the
subcortical results, with the same set of orientations as the cortical
results. Note that the spatial aspect of the subcortical structures has
been manipulated to reveal the map of each structure in each
orientation; but the position of each structure is nonetheless
approximately correct. Notice that the watershed boundaries are
generally quite clear

F IGURE 3 The connectivity-based BLeG parcellation. The top
half of the figure shows the cortical results; the bottom half shows
the subcortical results, with the same set of orientations as the
cortical results. Note that the spatial aspect of the subcortical
structures has been manipulated to reveal the map of each structure
in each orientation; but the position of each structure is nonetheless
approximately correct. Notice that the watershed boundaries in
Figure 2 translate directly to the parcel boundaries
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2.3.1 | Assessment of within-parcel functional
homogeneity

For each parcellation, we determined the parcel-wise homogeneity of

the fMRI connectivity patterns. We define the homogeneity of fMRI

connectivity for a parcel p to be the mean of the correlations between

the connectivity patterns of all pairs of vertices within parcel p, across

subjects. We define the within-parcel homogeneity of fMRI connectivity

for the overall parcellation as the mean of the homogeneity of all parcels.

We assess the within-parcel homogeneity of fMRI connectivity

for our BLeG parcellation and for parcellations based on arbitrary divi-

sions of the surface meshes. We generated 100 parcellations with

random parcels. These were generated by seeding random vertices in

each structure, and then iteratively (a) growing parcels out from each

seed until they collided with another parcel, and (b) discarding the

smallest parcel once further expansion was not possible; this process

continued until the number of parcels matched that of the BLeG

parcellation for each structure. Thus, these were random parcellations

in terms of the placement of the parcels, but each random parcellation

had the same number of parcels in each structure as does the BLeG

parcellation, and was constructed such that the mean size of the par-

cels did not differ significantly from the BLeG parcellation. This is

shown in Figure S2. We then compute the median of the mean

within-parcel homogeneity of fMRI connectivity across the 100 ran-

dom parcellations, the median absolute deviation of the within-parcel

homogeneity across all random parcellations, and the improvement in

the within-parcel homogeneity of the BLeG parcellation relative to

the median for these random parcellations, in terms of median abso-

lute deviations from the median of the random parcellations.

2.3.2 | Comparison of BLeG parcels to known
anatomy

Gordon et al. (2016) demonstrated that these methods produce a

parcellation that, at least for the cortex, aligns reasonably well with

known cytoarchitectonic areas, particularly primary visual, motor, and

sensory cortices. They visually compared their cortical parcels to the

probabilistic borders of these cortical areas, as mapped by Van Essen

et al. (2012) based on cytoarchitectonic maps produced by Fischl

et al. (2008). We repeat this analysis, but instead of probabilistic maps

for these areas, we rely on the mapping provided by Glasser, Coalson,

et al. (2016). In addition, we extend this approach to the subcortical

structures, but in this case, we rely on schematic descriptions of the anat-

omy of the structures. A consensus description is available only for the

thalamus; we compare our BLeG parcellation of the thalamus to that.

2.3.3 | Assessment of parcellation stability across
the life-span

Additionally, we assessed the stability of the parcellation across the

life-span by creating parcellations for the data of individuals between

6 and 18 years of life and for the data of individuals between 70 and

85 years of life, and comparing both of them to the BLeG parcellation,

constructed from the data of individuals between 19 and 69 years of

life. These parcellations were compared via their Dice coefficients.

This tests the sensitivity of the method to age-related differences in

connectivity, both during development and senescence, and also the

applicability of our BLeG parcellation for use with data outside of the

age-range of the data from which it was created.

2.3.4 | Assessment of BLeG with white/gray
contrast

Finally, and most relevant to the main point of producing this cortical

and subcortical surface-based parcellation, we assess our BLeG

parcellation in terms of its usefulness with surface-based measures;

specifically, we demonstrate this for white–gray contrast measures

(Lewis et al., 2018, 2019). To generate the white/gray contrast mea-

sures, two additional surfaces were created from each of the surfaces

at the gray–white boundary: a sub-white surface below the gray–

white boundary, that is, inside the white matter, and a supra-white

surface above the gray–white boundary, that is, inside the gray mat-

ter. The T1-weighted intensities were then read onto these surfaces,

and at each vertex, the value on the sub-white surface was divided by

the value on the supra-white surface. For the cortex, the sub-white

surface was placed 1 mm beneath the surface at the inner edge of the

cortical gray matter and the supra-white surface was placed 35% of

the way from the surface at the gray-white boundary to the surface at

the gray-CSF boundary. For the subcortical structures, because of the

lesser spatial constraints, the sub-white surfaces were placed 2 mm

outside of the surfaces at the gray–white boundaries, and the supra-

white surfaces were placed 2 mm inside of the surfaces at the gray–

white boundaries. These surfaces are shown in Figure 4. To create the

surfaces on either side of the gray–white boundary, a distance map

was created from the surfaces at the gray–white boundary (both cor-

tical and subcortical), smoothed with a Gaussian kernel, and used to

create a gradient vector field. The cortical white surface was moved

1 mm inward along this gradient vector field to produce a sub-white

surface, and outward 35% of the distance to the gray surface to pro-

duce a supra-white surface. The same procedure produced the con-

trast measures for the subcortical surfaces, but moving inward and

outward 2 mm. This procedure ensures that the sub-white surfaces in

regions with thin strands of white matter will not cross, and so will

provide the best possible approximation of white matter. This can be

seen in Figure 4 between subcortical structures and within thin gyri.

Notice, however, that areas of the sub-white surfaces of the caudate

and thalamus fall within the ventricles rather than white matter, and

thus the white/gray contrast measures in these areas will not be valid

and must be masked. This is, of course, also the case for the brainstem

and midsagittal cuts.

The intensity values on the T1-weighted image were sampled at

each vertex of both the supra-white surfaces and the sub-white sur-

faces, and the ratio was formed by dividing the value at each vertex of
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the sub-white surface by the value at the corresponding vertex of the

supra-white surface. The intensity values were sampled in stereotaxic

space, with the T1-weighted volume upsampled to 0.5 mm iso, with

no non-uniformity correction or normalization. This avoids, to the

extent possible, issues arising from differences in brain size, while

leaving the intensity values essentially unchanged.

At each vertex, we determined the best-fit model to the contrast

data from all models comprised of terms including any of “AGE,”
“SEX,” and “BRAINVOL” (total), as well as any of the composite terms

“AGE2,” “AGE3,” and the interaction terms for any of “SEX,”
“BRAINVOL,” and “AGE1–3.” The best-fit model was determined by

searching all possible models and choosing the one with the lowest

value for the Akaike information criterion (AIC; Akaike, 1976). Each

model was evaluated using the SurfStat toolbox.4 We then deter-

mined the complexity of the best-fit model at each vertex. We

defined model complexity (mc) as the sum of the number of terms, with

composite terms counted as the number of base terms in the compos-

ite term raised to the power 0.5, capturing the intuition that, for

example, “1 + AGE + AGE2” (mc = 3.4142) should be more complex

than “1 + AGE + SEX” (mc = 3), but less complex than “1 + AGE +

SEX + BRAINVOL” (mc = 4). This yielded the map in Figure S3.

For each parcellation, we determined the parcel-wise homogene-

ity of model complexity, and compared the homogeneity of model

complexity for our BLeG parcellation to the homogeneity of model

complexity for the arbitrary divisions of the surface meshes described

in Section 2.3.1. We define the homogeneity of model complexity for

a parcel p to be 1/(1 + std[mcp]), where mcp is the vector comprised

of the model complexity at each vertex within parcel p. Thus, the

homogeneity of model complexity for a parcel ranges from 0 to 1, with

greater variation in the model complexity at each vertex within the

parcel yielding lower homogeneity of model complexity for the parcel.

We define the homogeneity of model complexity of the overall

parcellation as the mean of the parcel-wise homogeneity of model

complexity. We assess the homogeneity of model complexity for our

BLeG parcellation and for the 100 random parcellations; we then

compute the median and median absolute deviation of the homogene-

ity of model complexity across the 100 random parcellations, and the

relation of the BLeG parcellation to these random parcellations in

terms of median absolute deviations from the median of the random

parcellations.

3 | RESULTS

3.1 | Assessment of BLeG with fMRI connectivity
patterns

The results of the test of the homogeneity of within-parcel fMRI

connectivity-based patterns for the BLeG parcellation are shown in

Figure 5. The BLeG parcellation shows mean within-parcel fMRI con-

nectivity homogeneity significantly greater than the median of ran-

dom parcellations with the same number of parcels and a mean parcel

size that is not different from the BLeG parcellation. As shown in

Figure 5, this greater mean within-parcel fMRI homogeneity is present

in the cortex as well as in each of the subcortical structures. Thus, the

BLeG parcellation captures the patterns of functional connectivity to

a far greater extent than would be expected from the size of the par-

cels alone, and this is true for parcels throughout the cortex and the

subcortical structures.

Moreover, as shown in Figures S5 and S6, this is also the case for

data other than that from which the BLeG parcellation was created,

including, for example, children, adolescents, and the elderly.

3.2 | Comparison of BLeG parcels to known
anatomy

The comparison of our BLeG parcellation to the pictorial description

of the consensus anatomy of the thalamus is shown in Figure 6. Our

BLeG parcellation excludes the portion of the thalamus adjacent to

the ventricles, which is approximately the region medial to the internal

medullary lamina, and so the comparison applies only to the lateral

nuclei. This comparison yields a good correspondence. The consensus

anatomy shows eight subnuclei internal to the thalamus; each of these

F IGURE 4 An example of the surfaces used to form the white/
gray contrast measures. The surface at the gray–white boundary is
shown in green. Copies of these surfaces were moved into gray
matter (red) and white matter (blue) along with the gradient vectors of

a distance map based on the surface at the gray–white boundary.
Gray matter and white matter intensity were then measured at each
of the vertices of these derivative surfaces, and the white/gray
contrast measure formed as the ratio of white intensity to gray
intensity at corresponding vertices of the two surfaces. Note that in
areas with thin strands of white matter sub-white surfaces about
rather than cross. Note also that areas of the sub-white surface of the
caudate and thalamus fall in the ventricles; measures in these areas
are invalid and must be masked
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can be directly mapped to the thalamic BLeG parcels. However, it

should be noted that the anterior nuclear group comprises the

anteromedial, anterodorsal, and anteroventral nuclei (Morel, Magnin, &

Jeanmonod, 1997); and since we mask out the medial nuclei, we see

here only the anterodorsal, and anteroventral nuclei. Further, it should

be kept in mind that the consensus anatomy is provided as a sche-

matic, and so only approximates the positions of the nuclei via notions

of anterior or posterior, medial or lateral, and dorsal or ventral, and is

not intended to accurately convey the shape of the nuclei, or the

boundaries between them. Note also that the lateral and medial genic-

ulate nuclei are not represented in the BLeG parcellation, since the

fMRI data were sampled 2 mm inside the surface of the thalamus, and

so not inside these very small structures that protrude from the

thalamus.

F IGURE 5 Mean within-
parcel fMRI connectivity
homogeneity for the BLeG
parcellation compared to for
random parcellations. The mean
within-parcel fMRI connectivity
homogeneities for the BLeG
parcellation (large dots) are
greater than those for random

parcellations (small dots) for all
structures. Note that the
comparison for the cortex is
shown in red; the comparison for
the thalamus in yellow; that for
the caudate in green; that for the
globus pallidus in blue; and the
comparison for the putamen is
shown in magenta. The
comparisons of the left
hemisphere structures are shown
on the top row; the comparison
for the right hemisphere
structures is shown on the
bottom row. The y-axis is the
mean within-parcel fMRI
connectivity homogeneity for
each parcellation, centered on the
median across all parcellations,
and measured in median absolute
deviations from that median. The
x-axis is the index of each of the
100 parcellations
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The comparison of our BLeG parcellation to the cortical anatomy

considered the motor and sensory cortices, and the primary and sec-

ondary visual cortices. Primary visual cortex is essentially Brodmann

area 17, which is the pericalcarine cortex; secondary visual cortex is

Brodmann area 18, which is a narrow band of cortex surrounding area

V1; primary motor cortex is standardly thought to be contained within

the pre-central gyrus; and primary sensory cortex within the post-

central gyrus. The boundaries of these areas are taken from the multi-

modal parcellation of Glasser, Coalson, et al. (2016) as mapped to the

CIVET-2.1.0 surfaces using multimodal surface matching (MSM) sur-

face registration (Lewis et al., 2020). Those regions are shown in

Figure 7 together with the BLeG parcels that overlap each region.

The excellent agreement of the BLeG parcellation with the

boundaries of the calcarine fissure suggests that, at least for V1, the

BLeG parcellation well-captures the anatomical structure of cortex. In

the cases of the primary motor and sensory cortices, this is less clear.

The anatomically defined divisions of the pre- and post-central gyri do

not show the same solid agreement with the BLeG parcellation. The

F IGURE 6 Comparison of the BLeG parcellation of the thalamus to the pictorial description of its consensus anatomy [Illustration provided
by Moises Dominguez, MD and Lineage Medical, LLC]. Note that the pictorial description of the thalamus is viewed from above and via a cross-
sectional cut to show the midline thalamic nuclei and the medial nuclear group as well as the ventral posterior medial nucleus, whereas our BLeG
parcellation masks out the portion of the thalamus adjacent to the ventricles, essentially discarding the areas medial to the internal medullary
lamina, and so is shown in a fully lateral view. Comparing the BLeG parcellation to the consensus anatomy for the portion of the thalamus lateral
to the internal medullary lamina shows a one-to-one correspondence, with the anterior nuclear group further divided into its anterodorsal and
anteroventral subparts. However, it should be noted that a perfect correspondence should not be expected; the pictorial description is a
schematic, and so only approximates the positions of the nuclei via notions of anterior or posterior, medial or lateral, and dorsal or ventral. Note
also that the fMRI data are measured 2 mm inside the thalamic surface, and so activity in, for example, the lateral and medial geniculate nuclei is

not measured
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BLeG parcels often extend across the nadir of the central sulcus, and

sulci in general; rather the gyral crowns seem to separate regions

showing differences in functional connectivity patterns.

3.3 | Assessment of parcellation stability across
the life-span

The watershed boundaries computed for the individuals between

6 and 18 years of age and for those between 70 and 85 years of age

are shown in Figure S4. Notice that the two appear to be quite similar,

and both appear to be similar to the BLeG boundary map shown in

Figure 2. It should be noted that the boundary map for individuals less

than 19 years of age is constructed from data from only 115 individ-

uals, and the boundary map for the individuals between 70 and

85 years of age is constructed from only 60 individuals. Nonetheless,

the resulting parcellations are similar for all three. The Dice coefficient

for the comparison of the adult BLeG to the developmental BLeG is

0.868; the Dice coefficient for the comparison of the adult BLeG to

the elderly BLeG is 0.822.

Further evidence of the validity of our BLeG parcellation for data

from across the life-span is provided in Figures S5 and S6. These fig-

ures show the assessment of within-parcel fMRI-connectivity homo-

geneity in the developmental data and in the data from the elderly.

3.4 | Assessment of BLeG with white/gray
contrast

The results of the test of the use of our BLeG parcellation with the

model complexity of the surface-based measures of white/gray con-

trast are shown in Figure 8. The BLeG parcellation generally shows

greater mean within-parcel model complexity homogeneity than do

the random parcellations with the same number of parcels in each

structure and a mean parcel size that is not different from the BLeG

parcellation. However, interestingly, this is less true for the cortex

than for any of the subcortical structures. The bilateral thalamus, cau-

date, and putamen all show mean within-parcel model complexity

homogeneity that is several median absolute deviations greater for

the BLeG parcellation than for the random parcellations; while the

bilateral globus pallidus, the smallest structure, shows mean within-

parcel model complexity homogeneity only slightly greater than that

of the random parcellations. Thus, the BLeG parcellation captures the

patterns of model complexity within the white/gray contrast data to a

far greater extent than would be expected from the size of the parcels

alone, but this is true to a lesser extent for the cortex than for the

subcortical structures.

4 | DISCUSSION

Drawing on our recent work using label-based fusion methods to

identify the thalamus, caudate, putamen, and globus pallidus, which

we then fitted surfaces to; we extended Gordon et al.'s (2016)

surface-based rs-fMRI connectivity parcellation approach to include

also these deep gray-matter structures. We generated a functional

parcellation of both the cortical and subcortical surfaces using the

portion of the life-span data from the Enhanced Nathan Klein

Institute—Rockland Sample (Nooner et al., 2012) comprised of data

from 393 individuals between 19 and 69 years of age. We call this the

Bezgin–Lewis extended Gordon (BLeG) parcellation, and we provide it

for the use of the neuroimaging community.5

The cortical portion of our BLeG parcellation is surprisingly dis-

similar to Gordon et al.'s parcellation; the methods are, for the most

part, identical, other than the subcortical structures here being repre-

sented as surfaces rather than volumes. There are 392 cortical BLeG

regions (left 194; right 198). The Gordon parcellation has 356 parcels

(178 in either hemisphere), though 422 parcels before the elimination

of parcels deemed to be unreliable. In addition to these differences, a

direct comparison of the two parcellations yields a Dice coefficient of

only 0.62. However, these discrepancies might stem from a number

of sources. First, there are substantial differences in the resolution of

F IGURE 7 BLeG parcels compared to cortical anatomy. The left subfigure shows the boundary of the left V1 (black line) and the BLeG
parcels within it. Notice that there are multiple parcels within the boundary, and that none of them extends substantially beyond the boundary.
The middle subfigure shows the parcels within the boundaries of Brodmann area 4 (shown in black), that is, M1, and the BLeG parcels within
it. Notice that these parcels largely fall within the boundary of area 4, but often extend beyond the nadir of the central sulcus. The right subfigure
shows the boundary of Brodmann area 3 (shown in black), that is, S1, and the BLeG parcels within it. Notice the overlap of the parcels in M1
and S1
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the data: the Gordon et al. (2016) data have a spatial resolution of

4 � 4 � 4 mm, and a temporal resolution of 2.5 s; the NKI-RS samples

have a spatial resolution of 2 � 2 � 2 mm, and a temporal resolution

of 1.4 s. It is unclear to exactly what extent those differences should

impact the parcellation. The higher spatial resolution of the NKI-RS

data used for our BLeG parcellation compared to the data used by

Gordon et al. (2016) most likely eliminates substantial noise from

partial volume effects, which may be a cause of the low-SNR parcels,

and may provide a sort-of blurring. The results of our parcellation with

the low-resolution data indicate that this is indeed the case. The

parcellation based on the low-resolution data has far fewer parcels,

and comparison with the Gordon et al. (2016) parcellation yields an

improved Dice coefficient of 0.66. However, this is still far from a per-

fect agreement between the two parcellations. However, the data

F IGURE 8 Median within-
parcel white/gray contrast model
complexity homogeneity for the
BLeG parcellation compared to
for random parcellations. The
median within-parcel white/gray
contrast model complexity
homogeneities for the BLeG
parcellation (large dots) are

generally greater than those for
random parcellations (small dots).
Note that the comparison for the
cortex is shown in red; the
comparison for the thalamus in
yellow; that for the caudate in
green; that for the globus pallidus
in blue; and the comparison for
the putamen is shown in
magenta. The comparisons of the
left hemisphere structures are
shown on the top row; the
comparison for the right
hemisphere structures is shown
on the bottom row. The y-axis is
the median within-parcel white/
gray contrast model complexity
for each parcellation, centered on
the median across all
parcellations, and measured in
median absolute deviations from
that median. The x-axis is the
index of each of the
100 parcellations
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used by Gordon et al. were lower resolution still. Also, our sample size

was substantially larger than that used by Gordon et al., that is,

393 versus 120; and the age-range of the data used by Gordon et al.

was 19–32 years of age, whereas we used that portion of the NKI-RS

data with subjects between 19 and 69 years of age. Functional con-

nectivity patterns are known to be similar across the life-span, but

there are some age-related differences (Han et al., 2018). Further

investigation is needed to determine to what extent each of these dif-

ferences accounts for the differences between the Gordon

et al. (2016) parcellation and our BLeG parcellation. On the other

hand, the similarities across the BLeG parcellation and its develop-

mental and elderly counterparts suggest that the sample differences

do not play a major role, and the only slight improvement in Dice simi-

larity for the low-resolution versus high-resolution parcellation in

comparison to the Gordon et al. (2016) parcellation suggests that the

resolution of the data has only a modest effect on the outcome; so

the implication is that scanner and protocol differences play a major

role in producing these parcellation differences.

As per Gordon et al. (2016), we looked at the alignment of our

parcellation with regions of the brain with more or less consensus

architectures. For the cortex, we looked at the primary visual, motor,

and sensory cortices. In the Gordon et al. parcellation, the primary

visual cortex contained a single parcel; in our BLeG parcellation, it

contained multiple parcels, but with those parcels, for the most part,

respecting the borders of V1. The primary motor cortex, that is,

Brodmann area 4, comprised multiple parcels for both the Gordon

et al. parcellation and our BLeG parcellation, but with more parcels in

the Gordon et al. parcellation. These parcels seem to roughly respect

the boundaries of M1, though less so toward the gyral crown in the

Gordon et al. parcellation, and more so toward the nadir of the central

sulcus. This is also the case for the primary sensory cortex, that is,

Brodmann areas 3a and 3b, but in this case, the extension of the par-

cels across the nadir of the central sulcus is more pronounced in our

BLeG parcellation. The source of this difference between our BLeG

parcellation and the Gordon et al. parcellation is unclear; perhaps

there are differences in the accuracy of the placement of the surfaces

within the sulci. But it is worth noting that Brodmann area 3a, which

lies at the nadir of the central sulcus, is considered an area of sensori-

motor integration, responsible for proprioception, and is thus not truly

distinct from either motor functions or more truly purely sensory

functions. In the case of the subcortical structures, there was consen-

sus architecture only for the thalamus. As shown in Figure 6, our

BLeG parcellation of the thalamus is in good agreement with the sche-

matic description of the consensus anatomy, allowing that the ante-

rior nuclear group can divide into its dorsal and ventral parts.

A more thorough assessment of our BLeG parcellation of the sub-

cortical structures would be preferable, but consensus architecture is

lacking for structures other than the thalamus, and even for the thala-

mus, it is only schematic. Nonetheless, there are points of apparent

disagreement that are worth consideration. The globus pallidus, for

instance, appears to comprise two anatomical structures: the globus

pallidus internal and external. Our BLeG parcellation instead divides

the globus pallidus into four regions on the left, and three on the right.

Recent work suggests that the globus pallidus, in fact, divides into

three regions: the external segment, the lateral internal segment, and

the medial internal segment (Kita, 2010). However, there is no evi-

dence to support either an asymmetry, or a division of the globus

pallidus into four parcels. Nonetheless, this parcellation yields

increased fMRI homogeneity compared to random parcellations with

the same number of parcels and the same mean parcel size, and

increased homogeneity of model complexity compared to random

parcellations.

As a part of their verification of their parcellation, Gordon et al.

used a second dataset to show that the method produced similar

boundary maps in both datasets. Their verification dataset was

acquired with a similar protocol, and had a similar age-range to that

from which their parcellation was constructed; and the boundary

maps for the two were, indeed, similar. We, again, followed Gordon

et al., but with a major difference: we divided the full NKI-RS dataset

into those less than 19 years of age, those 70 years of age or greater,

and those 19–69 years of age. The BLeG parcellation was constructed

from the individuals between 19 and 69 years of age; the other two

sets of individuals provided verification datasets. However, note that,

whereas the verification dataset used by Gordon et al. simply showed

that the method replicated the parcellation, our verification addition-

ally shows that the method replicates the parcellation in children and

adolescents, as well as in the elderly. The comparison of the BLeG

parcellation and the parcellation from children and adolescents

yielded a Dice coefficient of 0.868; the comparison of the BLeG

parcellation and the parcellation from individuals over 70 years of age

yielded a Dice coefficient of 0.822. Further, we assessed within-parcel

fMRI connectivity homogeneity also in these two verification

datasets, as well as our BLeG parcellation; all three parcellations

showed an increase relative to the within-parcel fMRI connectivity

homogeneity based on random parcels with the same number of par-

cels and mean parcel size for each structure, and that increase was

similar across all three parcellations. These results seem adequate to

support the suggestion that our BLeG parcellation is suitable for use

with subjects from childhood to senescence. Although, as noted by

Han et al. (2018), differences between parcellations based on samples

from different time periods across the life-span preclude direct com-

parisons, the three parcellations nonetheless show far more similari-

ties than differences. Our BLeG parcellation is arguably a good

parcellation to use to allow results from different samples with differ-

ent age ranges to be compared.

Finally, we assessed the use of our BLeG parcellation with white/

gray contrast metrics from the NKI-RS life-span data, that is, all of the

data from 6 to 85 years of age. We computed the best-fit model to

the contrast data at each vertex, and then measured the within parcel

homogeneity of the complexity of these models for both our BLeG

parcellation and random parcellations with the same number of par-

cels and same mean parcel size as the BLeG parcellation in each struc-

ture. The results showed a general increase in within-parcel model

complexity homogeneity across structures, but with the cortex show-

ing the least increase. It is interesting to contrast this with the fact

that the cortex showed the greatest increase in within-parcel
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homogeneity with fMRI connectivity patterns. However, the lower

within-parcel homogeneity of model complexity may be because the

cortex shows little variation in model complexity compared to the

subcortical structures. In any case, the generally increased within-

parcel homogeneity of model complexity in the BLeG parcellation

compared to in random parcellations with the same number of parcels

and same mean parcel size as the BLeG parcellation in each structure

argues for the utility of our BLeG parcellation with surface-based

measures that span the cortex and the subcortical structures.

In summary, building on Gordon et al.'s (2016) surface-based rs-

fMRI connectivity parcellation approach, and on Lewis et al.'s (2019)

methods for labeling and putting surfaces on the subcortical material,

we have extended Gordon et al.'s method to include the deep struc-

tures as well as the cortex. We have applied this extended methodol-

ogy to data from the Enhanced Nathan Klein Institute—Rockland

Sample (Nooner et al., 2012), limited to the data from individuals from

19 to 69 years of age, and generated the Bezgin–Lewis extended Gor-

don (BLeG) parcellation. We have shown that our BLeG parcellation

has much higher within-parcel rs-fMRI connectivity homogeneity than

should be expected based on parcel size alone (Figure 5). We have

shown that the parcels of the BLeG parcellation correspond reason-

ably well with the known anatomy of both cortical and subcortical

areas (Figures 6 and 7). We have shown that the BLeG parcellation

compares well with the parcellation built from the data from children

and adolescents, and also with the parcellation built from the data

from the elderly (Figure S4). We have shown that within-parcel fMRI

connectivity homogeneity with the BLeG parcellation is increased in

all age groups relative to that seen with random parcellations with the

same number of parcels and same mean parcel size as the BLeG

parcellation (Figures 5, S5, and S6). And we have shown that within-

parcel model complexity homogeneity for gray/white contrast is

higher for the BLeG parcellation than should be expected based on

parcel size alone (Figure 8), thus providing some evidence that this

extension of the Gordon et al. parcellation to include the subcortical

structures is suitable for use with surface-based measures of both the

cortex and the subcortical structures.

However, some caveats should be noted. First, we have not per-

formed global signal regression. Truly global noise has been shown to

have no impact on parcellation (Glasser et al., 2018; Glasser, Coalson,

et al., 2016), but methods such as global signal regression remove sig-

nal and negatively impact parcellation boundaries (Glasser

et al., 2018). Second, our modification to ICA-AROMA to preserve

ICA components with high-frequency content that appear unrelated

to motion is non-standard, and should receive a more careful verifica-

tion. Third, though there are certainly gains made by using a surface-

based approach in terms of registration (Anticevic et al., 2008; Fischl

et al., 2008; Klein et al., 2010; Lyttelton et al., 2007), there are also

potential losses. Whereas the cortex is fairly indisputably, at least at

the resolution of fMRI, a 2D structure, that is less clear for the deep

gray matter. There is a potentially important third dimension to the

deep gray-matter structures. The intralaminar nuclei of the thalamus,

for instance, are potentially lost in a surface-based analysis. This

could, of course, be dealt with by generating surfaces at multiple

depths within the deep gray-matter structures; but we have not done

this here. There are also deep gray-matter structures that are difficult

to fit surfaces to, for example, the hippocampus; and we have not.

Likewise, the cerebellum has such fine structure in terms of gray-

matter folds that it is exceedingly difficult to perform tissue segmen-

tation on and to fit surfaces to; and we have not. It should also be

noted that though surface registration overcomes many of the prob-

lems that volumetric registration suffers from, it is also flawed. The

gyrification-related information that drives surface registration can

leave ambiguities that lead to misregistration of the surfaces. Thus,

the surface data must be verified. Moreover, though surface registra-

tion generally properly aligns the data of matching sulci and gyri, there

is little information to force alignment along the length of a gyrus or

sulcus. An approach that utilizes multi-modal data, for example, that

of Glasser, Coalson, et al. (2016), may yield superior results. In addi-

tion, it is worth noting that the approach used here to extend Gordon

et al.'s surface-based approach to parcellation to include the subcorti-

cal structures is in no way specific to Gordon et al.'s approach; our

extension could easily be adapted to other surface-based approaches.

However, we believe that we have demonstrated the worth of

incorporating the subcortical structures into a surface-based

parcellation, for the benefits it provides for registration of these struc-

tures, for the benefits it provides in terms of a uniform representation

of the cortex and the subcortical structures, and as a means of achiev-

ing dimensionality reduction that is based in a biological reality. We

provide our BLeG parcellation for the use of the neuroimaging com-

munity with the hope that it proves useful.
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