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Introduction
Eukaryotic proteins often contain regions that demonstrate a 
compositional bias for a subset of the 20 amino acids. For 
example, the tract PSPEPPSESSPSPPSSTSPSTPPP is 
biased for proline (P) and serine (S). Such compositionally 
biased regions (CBRs) range from highly biased and repetitive 
to quite mildly skewed in residue usage.

Intrinsically disordered regions (IDRs) are stretches of 
protein chains that remain unfolded during part of the func-
tioning.1,2 The IDRs are implicated in a variety of functional 
roles including kinase binding, transcription and translation 
regulation, histone binding, and chromatin remodelling.2,3 
The sequences of IDRs often contain compositional bias, or 
‘low-complexity’, a related concept.4,5 They are also enriched 
in short runs of amino acids, sometimes termed homopep-
tides.6,7 The CBRs involved in protein interaction networks 
can be enriched in short linear motifs, particularly rich in 
serine and proline.8 Such CBRs can have also have residue 
patterning that may have functional significance such as resi-
due dispersion,9 repetitiveness,10 in addition to homopeptide 
content.6

Here, I formally define intrinsically disordered composi-
tionally biased regions (ID-CBRs) – CBRs that are intrinsi-
cally disordered – and cluster them using compositional 
distance and measures of residue patterning, ie, the degree of 
bunching or ‘blockiness’ of residues along the ID-CBR 

sequences and the amount of homopeptides in them. Functional 
hypotheses are extracted that are linked to clusters with specific 
predominant compositional tendencies and types of residue 
patterning.

Methods
Proteome data

The proteome of budding yeast Saccharomyces cerevisiae strain 
288c (UP000002311) was downloaded from UniProt in 
September 2023.11

Protein families

The yeast proteome was clustered into protein families using 
an algorithm described previously that uses the BLASTP pro-
gram.12,13 Briefly, similarities that accord to an e-value thresh-
old (=1 × 10−4) and an alignment coverage threshold were 
tallied and sequences then sorted on decreasing number of 
similarities. This sorted list was searched to progressively add 
sequences to families and de-select them from further consid-
eration. The 2 applied alignment coverage thresholds were 50% 
and 33%, but the former was used primarily (Supplemental File 
1). These coverage thresholds were the percentage lengths of 
both sequences in a pair-wise similarity that need to be included 
in the respective aligned parts. These protein families were 
labelled with a numeric family index.
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Compositional bias

The program fLPS was employed to annotate CBRs in 
yeast.14,15 The CBRs are labelled with a bias signature, which is 
the list of biasing residues sorted in decreasing order of contri-
bution with the ‘primary bias’ first, and a P-value indicating the 
degree of compositional bias.14 For any program that annotates 
CBRs or low-complexity regions, different parameter sets can 
be chosen that target regions of a certain length or degree of 
bias.16 Degree of bias can be conceived as how much of the 
sequences are ‘covered’ by a parameter set. For example, param-
eters can be picked that target regions of, say, length = 15 resi-
dues and cover ~10% of the sequences. To detect trends that are 
independent of parameter choice, and also tendencies that only 
occur for shorter or for longer regions, a range of 12 parameter 
sets were applied (Table 1). These parameter sets are labelled 
according to the length and coverage that they target, eg, 
len = 50_cov = 10% is for a target length of 50 residues and a 
target proteome coverage of ~10%.

To limit redundancy, lists of CBRs for any given parameter 
set were filtered to remove any with the same primary bias 
whose ends were ⩽10 residues from the ends of a CBR with a 
smaller P-value. Also, only 1 region of the same bias signature 
was selected for each sequence, to avoid overpopulating cluster 
trees.

Intrinsic disorder

Intrinsic disorder annotations for yeast were taken from the 
MobiDB database, namely, curated-disorder-merge (experimen-
tally determined) and prediction-disorder-alphafold (algorithmic 
annotations).17

Prions and prion-like regions

A list of amyloid-based prion-forming proteins in yeast was 
formed by updating a list analysed in a previous paper, with 
more recent examples18,19 (Supplemental Table 1). A list of 
intrinsically disordered prion proteins was obtained from the 
work of Chakrabortee et al20 (Supplemental Table 1).

Regions with prion-like composition were identified with 
PLAAC.21 The PDR score in PLAAC output was inspected 
(or the LLR score, failing no calculation of a PDR score). Two 
thresholds were considered: >0.0 or ⩾15.0, as before.22

Structural features

Coiled coils were defined using DeepCoil.23 Assignments 
across whole protein sequences to atom-record sequences of 
ASTRALSCOP protein domains (version 2.08) were made 
using BLASTP and e-value threshold 1 × 10−4.12,24

Table 1. Parameter sets examined and totals of hypothetical GO enrichments/depletions for ID-CBRs for each parameter set.

PARAMETER SETS ExAMINED
TOTAlS OF HyPOTHETICAl GO ENRICHMENTS/
DEPlETIONS FOR ID-CBRS FOR EACH PARAMETER SET

FlPS PARAMETER 
SET (M, M, T)

TARGET 
lENGTH 
(lEN =)A

ESTIMATED 
PROTEOME 
COvERAGE (COv =)A

PARAMETER SET 
lABEl (lEN =x_
COv = y)

ClUSTERS GO ENRICHMENTS GO DEPlETIONS

7, 11, 5.2e−05 10 5% len = 10_cov = 5% 183 294 39

12, 16, 5.4e−06 20 5% len = 20_cov = 5% 179 283 33

10, 20, 1.8e−05 20 10% len = 20_cov = 10% 221 351 51

9, 30, 6.9e−04 20 25% len = 20_cov = 25% 412 650 347

21, 25, 6.2e−09 50 5% len = 50_cov = 5% 119 182 18

23, 33, 4.1e−07 50 10% len = 50_cov = 10% 153 242 28

20, 50, 4.7e−05 50 25% len = 50_cov = 25% 233 360 65

32, 36, 7.9e−14 100 5% len = 100_cov = 5% 75 135 14

38, 48, 7.3e−10 100 10% len = 100_cov = 10% 125 224 27

34, 74, 5.2e−07 100 25% len = 100_cov = 25% 161 295 40

68, 78, 4.1e−18 250 10% len = 250_cov = 10% 72 142 14

78, 128, 2.1e−11 250 25% len = 250_cov = 25% 89 181 29

aSource: From Harrison.16
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Nuclear localization signals

Nuclear localization signals (NLS) sequences for yeast were 
downloaded from the NLSdb database.25 Only cases that were 
labelled ‘experimental’ or ‘by expert’ were extracted.

Definition of intrinsically disordered 
compositionally biased regions

An ID-CBR is a CBR that is likely intrinsically disordered. A 
CBR was labelled as an ID-CBR if >50% of it was annotated 
in any specific IDR, or it had an overall disorder propensity 
>0.0. The former is termed the overlap criterion, and the latter 
the propensity criterion. These regional disorder propensities 
were summed from individual amino-acid residue disorder 
propensities, which were given by log[fdis/fstruct], where fdis is the 
amino-acid frequency in a non-redundant set of experimen-
tally determined IDRs taken from the DISPROT database,26 
and fstruct is the frequency in the 40% set of protein domain 
sequences from ASTRAL version 2.08, but using the atom-
record sequences, to avoid inclusion of intrinsically disordered 
protein loops.24 The DISPROT IDRs were made non-redun-
dant by reducing to a set of cluster representatives arising from 

application of the protein-family clustering algorithm described 
above.

Furthermore, as prion-like regions are a subset of IDRs, prion 
propensities were considered in a similar way, but with a prion 
propensity scale derived from amino-acid frequencies in known 
prion-forming domains, compared with the overall frequencies 
in the yeast proteome (denoted Prprion). Also, >50% overlap with 
an annotated PLAAC prion-like region was used as a criterion.

Blockiness of intrinsically disordered 
compositionally biased regions

The distribution of residues along the expanse of an ID-CBR 
can vary quite substantially. One aspect is their degree of 
bunching or ‘blockiness’ (Figure 1). At one extreme, the most 
‘blocky’, all of the residues are segregated from each other in 
decreasing (or increasing) order of frequency from one end of 
the sequence to the other. At intermediate levels of blockiness, 
there may be smaller ‘islands’ of different residues; whereas at 
the other extreme amino acids of a specific type try to be as 
distant as possible from their fellows (Figure 1). This is quite 
easy to conceptualize for 2 residue types (they alternate), but 

Figure 1. Method for calculating blockiness of ID-CBRs. The blockiness ratio (RB) is derived from the blockiness (B) of the ID-CBR sequence and from 

Bmax and Bmin as depicted. A plot of log(RB) vs log(region length) is drawn for a parameter set for an amino-acid primary bias. Here, it would be for the 

yellow residues. Then, deviations from the linear regression line, D(RB), are used to characterize the blockiness of the ID-CBR.
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for many residue types, the solution is not trivial. A measure of 
such blockiness (B) was derived using the following formula:
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where L is the length of the sequence being considered, and 
dmin
diff  is the smallest interval from residue i to any residue of a 

different type, and dmin
same  is the smallest interval to a residue of 

the same type. The value of B is compared with minimum and 
maximum values, in the form of a ratio (RB) given by:
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Bmax is calculated from the maximally blocky arrangement 
depicted in Figure 1. To estimate Bmin, first residues of each 
type in decreasing order of frequency were filled into positions 
in a sequence of length L such that they were as far away as 
possible from any fellow residues of the same type. Then, the 
sequence was perturbed over 100 000 iterations by switching 
residues of different types and keeping any changes that lead to 
a lower Bmin estimate (Figure 1). RB is examined on log-log 
scatter plots vs region length. Linear regression lines are fitted 
and where they have significant correlation (P < .01), the devi-
ation D(RB) from the linear regression line is used as an indica-
tor of blockiness (negative for less blocky or not blocky, positive 
for more blocky). These deviations are used to divide data into 
tertiles with high (H), intermediate (I), or low (L) blockiness.

Homopeptide content

As before, homopeptides were defined as runs of amino acids 
with a minimum count of 3 residues.6 The proportion of resi-
dues in homopeptides (denoted hpep) was calculated for each 
ID-CBR. Specific data sets are separated into tertiles with 
high, intermediate, or low homopeptide content.

Clustering of intrinsically disordered 
compositionally biased regions using  
compositional distance

Compositional distance (Dcomp) was used to characterize the 
differences in amino-acid usage across ID-CBR populations. 
Dcomp is given by:

 
D f fcomp

i

i i= −( )∑ 1 2
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The summation is over all 20 amino-acid types i, for com-
paring ID-CBRs 1 and 2. All-to-all comparison of each 
ID-CBR population arising from an fLPS parameter set was 

performed. This yielded for each population a distance matrix. 
This distance matrix was fed into the neighbour program from 
the PHYLIP package (version 3.695),27 to make a neighbour-
joining (NJ) tree in Newick format,28 out of which an exhaus-
tive list of clusters and cluster members was extracted iteratively. 
This was achieved by at first searching for clustered pairs, and 
then expanding outwards from these pairs to define further 
larger clusters. This NJ analysis is not to infer evolutionary 
descent, but simply to extract clusters of ID-CBRs that are 
compositionally similar. The number of ID-CBRs in these 
trees ranges from 932 to 25 125.

The ID-CBR clusters were labelled with the most common 
bias occurring among the cluster members, and this was termed 
a consensus bias signature. This was set equal to the most com-
mon residue type at each position in the set of bias signatures, 
if the frequency of this is ⩾50% (if this frequency is <50% for 
the first position, the consensus is simply ‘X’). Contributions to 
the consensus from beyond the first position are included pro-
gressively if similarly they are included in ⩾50% of sequences.

Intrinsically disordered compositionally biased 
region cluster drawing

The illustrative example tree was drawn in Evolview.29 
ID-CBRs are named: UniProtAccession_Start_End_Bias 
Signature. They were also labelled with numeric protein-family 
indices, where appropriate.

Gene Ontology data

Gene Ontology (GO) term annotations for the yeast proteome 
were downloaded from geneontology.org in December 2023.30 
Also obtained was the complete GO digraph (file go-basic.obo). 
This was parsed recursively into a list of over terms for each 
lower term, an over-term being any term above a lower term in 
the digraph and connected to it.

Generation of hypothetical functional associations

Significant enrichments and depletions of GO terms were cal-
culated for each ID-CBR cluster using hypergeometric prob-
ability and a Bonferroni correction, with the P-value threshold 
for significance being divided by the total number of GO terms 
in the yeast annotation file for protein-family representatives. 
Duplicated term annotations for the same protein sequence 
were not counted. Where the count of terms for an ID-CBR 
cluster was zero, a normal approximation to the hypergeomet-
ric distribution was applied, with an equivalent z-score thresh-
old. Statistics were calculated for the proteome clustered into 
protein families using the protein-family clustering algorithm 
described above and the 50% coverage criterion.

The ID-CBR clusters overlap and have much common 
membership. So, to derive a list of distinct significant hypo-
thetical enrichments/depletions (abbreviated ED), the princi-
ple of parsimony was applied, ie, the most concise explanation 
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for the landscape of GO EDs was sought. In doing this, enrich-
ments are only compared with other enrichments, and deple-
tions to other depletions.

First, for each lower ID-CBR cluster, lists of over-clusters 
were generated, where an over-cluster is any cluster containing 
a smaller cluster. These over-cluster lists were then progres-
sively searched for larger clusters that yield a smaller significant 
P-value for a specific GO ED, and on finding such a cluster, 
the GO ED for the smaller cluster was de-selected, or vice 
versa if the smaller cluster P-value was smaller (this is illus-
trated schematically in Figure 2).

Second, for any specific GO ED, lists of GO over-terms in 
the same cluster or an over-cluster that have a smaller signifi-
cant P-value were searched for, and on finding them, the initial 
GO ED under examination was also de-selected (Figure 2).

The GO associations were derived for hpep and D(RB) ter-
tiles in the same manner, except they were only processed with 
the latter criterion considering GO over-terms.

Results and Discussion
Definition of intrinsically disordered 
compositionally biased regions

Compositionally biased regions were labelled in the proteome 
of baker’s yeast S cerevisiae, using the program fLPS.15 Different 
parameters annotate regions of shorter or longer CBR target 
length or cover more of less of the yeast proteome (ie, the 
regions can be less or more biased). A diverse panel of param-
eter sets that target varying region lengths and proteome cover-
age were applied (Table 1). For example, for the fLPS 
parameters m = 12, M = 16, t = 5.4e−06, the median target length 
of CBRs is 20 and the estimated proteome coverage is ~5% 
(denoted ‘len = 20_cov = 5%’).

Intrinsically disordered compositionally biased regions were 
defined as regions that are compositionally biased and demon-
strate a propensity for intrinsic disorder. For all the produced 
data sets, ID-CBRs were identified using 2 criteria, the overlap 
and propensity criteria as described in section ‘Methods’. There 
is substantial convergence between these criteria for ID-CBRs. 
Figure 3 presents an analysis of this for the parameter sets for 
10% coverage. Here, we can see that typically >90% of cases 
found by 1 criterion are also found by the other (Figure 3A). 
An example of a plot of percentage IDR overlap vs disorder for 

Figure 2. Parsimonious reduction to a list of distinct GO enrichments 

and depletions. The list of significant EDs is reduced parsimoniously 

using the criteria illustrated. The upper panel indicates the case where, if 

there are 2 clusters, 1 smaller and 1 larger that encompass it, and they 

both have an ED for the same GO term, either is de-selected for the ED if 

the other has a smaller P-value. The lower panel shows the scenario 

where a smaller cluster has a significant GO ED, but a larger cluster has 

a significant ED for a GO over-term relative to it. In this situation, the 

smaller cluster is de-selected for this GO ED.

Figure 3. Convergence of the propensity and overlap criteria for 

ID-CBRs. (A) A tabulation of the percentages of ID-CBRs found by 1 

criterion that are found by the other, for the parameter sets that yield 10% 

proteome coverage. (B) An example of a plot of ID-CBR disorder 

propensity vs disorder overlap for the len = 100_cov = 10% parameter set.
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the len = 100_cov = 10% parameter set illustrates this conver-
gence (Figure 3B).

In general, there is little contribution to ID-CBRs from 
structured protein domains or coiled coils (Table 2). Only 0.2% 
to 2.2% of ID-CBR residues are covered with a structured pro-
tein domain match, and only 0.1% to 0.8% are labelled with a 
coiled coil by the DEEPCOIL algorithm.23

Intrinsically disordered compositionally  
biased regions prevalences

Some ID-CBR types are prevalent regardless of the parameter 
sets used (Figure 4). In particular, {S}-rich ID-CBRs are always 
ranked first, with the related signatures {SN}, {ST}, {SP}, and 
{SK} in the top 20 (Figure 4). {N}-rich and {Q}-rich are the 
next most prevalent. Such biases are linked to the prion phe-
nomenon in budding yeast, and a large population of N-rich 
ID-CBRs accumulated during the evolution of the 
Saccharomycetes class.31 These prevalences tally with the general 
trends across Saccharomycetes for homopeptide frequency.6 
However, some regions are only prevalent for low target length 
or high proteome coverage, eg, {K}-rich regions, and some only 
gain prominence at higher proteome coverage (ie, they are 
more mildly biased), such as the {Y}-rich, {F}-rich, and 
{G}-rich regions that move into view (Figure 4B). Also, 

multiple-residue biases become more numerous when longer 
ID-CBRs are probed (Figure 4C).

Blockiness and homopeptide content

The patterning of residues within an ID-CBR may also have 
functional importance. One type of patterning is blockiness, 
where residues of the same type clump together more along the 
sequence. A measure of blockiness RB was derived as described 
in section ‘Methods’ (Figure 1). It was found to be most 
informative to plot RB vs region length on a log-log plot and 
extract the deviation from the regression line D(RB) as a rela-
tive measure of blockiness for a population of ID-CBRs with 
the same primary bias (Figure 1). Triads of sequences with 
roughly the same region length and low, intermediate, or high 
blockiness have been picked out for 2 example populations 
(Figure 5). In Figure 5A, one can see that sequences with lower 
relative blockiness can still have a lot of shorter homopeptides 
in them. In Figure 5B, the examples are the special case of 
regions that have bias for both E and K. For the lowest blocki-
ness example, the Es and Ks are dispersed quite evenly along 
the sequence. Another measure of residue patterning studied 
here is the proportion of homopeptides (denoted hpep), where 
homopeptides are runs of ⩾3 residues. In general, D(RB)  
only has a shallow correlation with hpep (R2 values < 0.05) 

Table 2. The percentage occurrence of ASTRAl protein domain matches and coiled-coil annotations in the ID-CBRs.

PARAMETER SET ASTRAl PROTEIN DOMAIN MATCHES (%) COIlED-COIl ANNOTATIONS (%)

OF REGIONS OF RESIDUES OF REGIONS OF RESIDUES

len = 10_cov = 5% 0.1 0.2 0.3 0.2

len = 20_cov = 5% 0.5 0.5 0.3 0.2

len = 20_cov = 10% 0.8 0.7 0.5 0.3

len = 20_cov = 25% 1.5 1.4 0.9 0.6

len = 50_cov = 5% 0.7 0.4 0.4 0.1

len = 50_cov = 10% 1.0 0.6 0.7 0.3

len = 50_cov = 25% 2.2 1.4 1.3 0.7

len = 100_cov = 5% 1.0 0.5 0.2 < 0.1

len = 100_cov = 10% 1.4 0.7 1.2 0.5

len = 100_cov = 25% 3.4 1.7 2.3 0.8

len = 250_cov = 10% 3.0 0.7 2.0 0.4

len = 250_cov = 25% 7.6 2.2 4.4 0.8

Coiled-coil and ASTRAlSCOP domain annotations as described in section ‘Methods’.
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Figure 4. Prevalences of different bias signatures for ID-CBRs. (A) The prevalence of ID-CBR bias signatures across all 12 parameter sets was 

calculated using a mean rank, where the most prevalent is given rank 1, and so on. The colour key for this whole figure is to the right, and it is the same as 

used in the example tree figure (Supplemental Figure 2). (B) The parameter sets for a low target length = 20 residues, but with increasing proteome 

coverage down the page. (C) Similarly to (B), but for a higher target length of 100 residues.
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(examples for serine-rich ID-CBRs are displayed in 
Supplemental Figure 1).

Intrinsically disordered compositionally  
biased region clustering

The ID-CBR data sets arising for any one parameter set were 
clustered using compositional-distance matrices fed into the 
NJ algorithm.28 An example of this clustering is displayed in 
Supplemental Figure 2, for annotations with target length 100 
residues and coverage 5% (ie, highly biased). Here, ID-CBRs 
coloured according to their primary biasing residues can be 
observed coalescing into larger clusters. Of particular note are 
the following: a large cluster of primarily Q-rich or N-rich 
regions, almost all of which are also labelled as prion-like in 
composition, or prion-forming; populations of SN-rich and 
ST-rich regions, and a charged group that bifurcates between 
mostly E-rich and most K-rich.

To representatively probe the detail of these clusterings, the 
positioning of the Sup35 protein was examined (UniProt 

accession P05453, Figure 6). The Sup35 protein functions in 
translation termination and stop codon recognition and con-
tains a {QYNG}-rich prion-forming domain that underlies the 
[PSI+] prion phenomenon.32,33 It also contains a {KE}-rich 
central M domain that mediates pH sensing during reversible 
condensate formation in response to stress.34,35 Rnq1 (UniProt 
P25367) is a prion protein that underlies the [RNQ+] prion 
phenomenon, which is required in yeast cells for the natural 
occurrence of the [PSI+] prion.36-38 In Figure 6 (lower left), 
one can see that a region containing its prion-forming domain 
clusters pairwise with part of the Sup35 prion-forming domain, 
indicating that its [PSI+] seeding function may be in part 
compositionally engendered. Two other prion-forming 
domains cluster close by, one in Ngr1, a negative-growth regu-
latory protein, and the other in Pgd1, a mediator of RNA pol 
II transcription subunit 3. Indeed, for parameter sets targeting 
5% coverage (ie, for detecting highly biased regions), this close 
clustering of Rnq1 and Sup35 is the general result (median 
cluster size = 3, Table 3). Across the upper half of the figure, we 

Figure 5. Examples of the blockiness calculation. (A) log10(RB) vs log10(region length) for ID-CBRs for the len = 100_cov = 5% parameter set and a 

primary bias of S (serine). Examples of higher, intermediate, and lower blockiness are picked out. (B) As in (A), except for the special category of K/E-rich 

(ID-CBRs that are rich in both lysine and glutamate), and the len = 100_cov = 25% parameter set (ie, for detection of longer ID-CBRs with more mild bias).
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progressively zoom into the locale of the Sup35 M domain in 
the clustering tree, where we find it together with other {KE}/
{EK}-rich ID-CBRs, and paired most closely with a {KE}-rich 
region in Zeo1, which is an antagonist in signalling cell-wall 
stress to the PKC1-MPK1 cell integrity pathway (Figure 6).

Figure 6. ID-CBR clusters involving the Sup35 prion protein. The illustrative clustering supplied in Supplemental Figure 2 is examined with zoom-ins to the 

locales of the Sup35 {KE}-rich M domain and the {QyNG}-rich prion-forming domain. The colour-coding is described in the Supplemental Figure legend. The 

tree is made with parameters for target length = 100 residues and proteome coverage of ~5%. ID-CBRs are named: UniProtAccession_Start_End_

BiasSignature. A large cluster of predominantly E-biased or K-biased regions is zoomed into (upper left), then a further zoom-in reveals the locale of the 

Sup35 M domain. The ID-CBR sequences are displayed below this, coloured in concert. Also, a zoom-in to a cluster containing a Sup35 prion-forming 

ID-CBR is presented along with the sequences of the Sup35 ID-CBR and 3 other prion-forming ID-CBRs within the cluster. labels that indicate the presence 

of prion or prion-like domains in the respective protein sequences are also arrayed in an outer rim (see Supplemental Figure legend for details). Numeric 

protein-family indices are displayed where relevant. The depicted sequences are also labelled with their bias signatures and their D(RB) and hpep tertiles.

Table 3. Smallest clusters in cluster trees containing both Sup35 and 
Rnq1.

PARAMETER SET SMAllEST ClUSTER SIzE

len = 10_cov = 5% 2

len = 20_cov = 5% 12

len = 20_cov = 10% 3

len = 20_cov = 25% 357

len = 50_cov = 5% 4

len = 50_cov = 10% 1525

len = 50_cov = 25% 14

len = 100_cov = 5% 2

PARAMETER SET SMAllEST ClUSTER SIzE

len = 100_cov = 10% 36

len = 100_cov = 25% 1361

len = 250_cov = 10% 147

len = 250_cov = 25% 4

The results for 5% coverage (ie, highly biased) are in bold.

(Continued)

Table 3. (Continued)
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Hypothetical Gene Ontology functional  
cluster associations

The informativeness of this compositional-distance clustering 
was further probed by generating sets of functional hypotheses 
using GO.30 Significant GO associations were filtered for redun-
dancy and for protein-family sequence homology as described in 
section ‘Methods’. Hundreds of GO EDs are detected, with 
depletions being about ~20% the amounts of enrichments (Table 
1). Each calculated GO ED is a hypothesis about the functional 
importance of clusters. The number of parameter sets that a GO 

ED occurs in is used as an indicator of parameter independence. 
Also, more regions that are more distant compositionally are 
pulled in the larger the cluster is; the more parameter sets that a 
cluster is found by, more, mildly biased regions are pulled into 
the hypothesis. Furthermore, significant ED may occur for just, 
say, low proteome coverage, or long target length parameter sets.

As an illustrative example, the significant GO EDs that 
occur in most parameter sets for the Sup35 protein have been 
arrayed in Table 4, for both its {KE}-rich M domain and its 
{QYNG}-rich prion-forming domain. The most striking trend 
for the E/K-rich clusters is the predominant association with 

Table 4. Most prominent hypothetical GO enrichments for compositional-distance clusters containing the Sup35 M domain or prion-forming domain 
ID-CBRs.

CONTAINING SUP35 M DOMAIN ID-CBRSA

CONSENSUS BIAS NO. OF 
PARAMETER SETS

ClUSTER SIzE 
RANGE

CASES wITH GO 
TERM

P-vAlUE RANGE GO TERM DESCRIPTION

E / K 11 135-1785 10-32 1e−07-1e−17 GO:0030687 Preribosome, large 
subunit precursor

E / K 10 107-1782 10-32 2e−06-4e−12 GO:0042273 Ribosomal large 
subunit biogenesis

E / K 10 157-1247 29-84 1e−11-9e−26 GO:0042254 Ribosome 
biogenesis

E / K 10 166-1900 15-84 4e−06-7e−21 GO:0016887 ATP hydrolysis 
activity

E / K 10 162-1802 43-162 9e−20-2e−38 GO:0005730 Nucleolus

 . . . . . . . . . . . . . . .

e / K 4* 586-1095 82-143 8e−06-1e−08 Go:0000166 nucleotide 
binding

CONTAINING SUP35 PRION-FORMING DOMAIN ID-CBRSB

CONSENSUS BIAS NO. OF 
PARAMETER SETS

ClUSTER SIzE 
RANGE

CASES wITH GO 
TERM

P-vAlUE RANGE GO TERM DESCRIPTION

Q / n 12 108-984 66-447 4e−06-4e−12 Go:0005737 Cytoplasm

Q / N 11 120-1713 33-125 3e−15-6e−32 GO:0045944 Positive regulation 
of RNA pol II 
transcn.

Q / n 9 11-528 5-29 9e−06-6e−12 Go:0010494 Cytoplasmic 
stress granule

Q / N 9 113-1467 79-697 5e−11-4e−30 GO:0005634 Nucleus

Q / N 8 234-1177 24-59 4e−11-2e−18 GO:0043565 Sequence-specific 
DNA binding

 . . . . . . . . . . . . . . .

n / Q 4** 207-1145 32-76 6e-08-9e-24 Go:0003729 mRnA binding

The terms associated with Sup35 are in bold.
aFurther categories in the top 20 associated with nucleolar function and compartments include (no. parameter sets in brackets): GO:0006364 rRNA processing (9); 
GO:0000466 maturation of 5.8S rRNA from tricistronic rRNA transcript (8); GO:0000463 maturation of lSU-rRNA from tricistronic rRNA transcript (8); GO:0030686 
90S preribosome (7); GO:0000462 maturation of SSU-rRNA from tricistronic rRNA transcript (5); GO:0000480 endonucleolytic cleavage in 5’-ETS of tricistronic rRNA 
transcript (4); GO:0000472 endonucleolytic cleavage to generate mature 5’-end of SSU-rRNA (4).
bFurther categories in the top 20 associated with transcription include (# parameter sets in brackets): GO:0006357 regulation of transcription by RNA polymerase II (8); 
GO:0003677 DNA binding (7); GO:0001228 DNA-binding transcription activator activity, RNA polymerase II-specific (7); GO:0000981 DNA-binding transcription-factor 
activity, RNA polymerase II-specific (7); and GO:0000122 negative regulation of transcription by RNA polymerase II (6).
*Parameter sets (len = 20_cov = 25%, len = 20_cov = 10%, len = 50_cov = 10%, len = 50_cov = 25%).
**Parameter sets (len = 10_cov = 5%, len = 100_cov = 10%, len = 20_cov = 10%, len = 20_cov = 25%).
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the nucleolus, and with other categories linked to nucleolar 
functions and compartments, although these are not specifi-
cally annotated for Sup35. Itself, it is part of a more general 
association of E/K-rich ID-CBRs with nucleotide binding. 
The Sup35 Q-rich ID-CBR is part of a clear association with 
cytoplasmic stress granules along with up to 28 other Q/N-rich 
cases, an association which does not occur for the E/K-rich 
regions, which is interesting considering the role of the M 
domain in phase separation.34,35

Three specific examples of compositional-distance clusters 
with clear hypothetical functional associations were picked to 
examine in further detail (Figure 7). An {AQ}-rich region with 
low blockiness is linked to transcription coactivator activity 
and to a general category of transcriptional regulation (Figure 
7A), thus providing functional hypotheses for other clustered 
but un-annotated cases. In Cyc8, length variation of this region 
has been shown to cause concerted upregulation or downregu-
lation of expression in >150 genes, and transcription-factor 

binding site analysis further suggests that this is due to Cyc8’s 
role as a coactivator.39 The {AQ}-rich ID-CBR in GTS1 was 
shown to be part of a tract that suppresses polyglutamine toxic-
ity of other proteins,40 implying a dual function for such tracts. 
The second example (Figure 7B) is an {AK}/{KA}-rich region 
that overlaps IDRs in proteins associated with tRNA ami-
noacylation. Arc1p is a protein that binds tRNA and forms the 
AME complex with methionyl-tRNA and glutamyl-tRNA 
synthetases and functions in tRNA delivery.41,42 A long {KA}-
rich region in Arc1p is part of a central IDR region whose 
character (ie, lysine content) indicates it may feature in RNA 
binding.43 The third example is a set of {SE}-rich ID-CBRs, 4 
of which are linked by GO to regulation of protein localization 
(Figure 7C), such as SPA2, which is a polarisome subunit 
linked to actin cytoskeletal organization, establishment of cell 
polarity, apical bud growth, and regulation of mating projection 
growth initiation and termination.44,45 The function of this 
region has yet to be discerned. Of the other cases, BNI1 is also 

Figure 7. Three examples of ID-CBRs clustered by compositional distance. Along the top is the key for the 1-row tables at the top of each figure panel. 

The consensus bias is the predominant bias for the cluster for any parameter set. Also tabulated are the number of parameter sets that designate this 

cluster, the cluster size range across parameter sets, and the predominant tertiles for hpep and D(RB) for the cluster, ie, H for high, I for intermediate, and 

l for low (with the proportion in these tertiles in brackets). Gene Ontology associations significant at < Bonferroni-corrected P-value threshold of 1.1e−05 

are listed, with the number of cases for each association in brackets. The identity of these cases is colour-coded with dots. The longest ID-CBR 

sequences for each case are shown.
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a polarisome component, and ZDS1 and ZDS2 are involved in 
establishment of cell polarity (Figure 7C).

Larger clusters of regions containing hundreds of cases may 
also be functionally informative. A rather large cluster of 138 
R-rich regions significantly associated with nuclear localization 
was noted at 25% proteome coverage (ie, they are often mildly 
biased) and shorter target lengths (Supplemental File 2). To 
check whether these regions arise from possible NLSs (which 
can have some R bias) or from DNA-binding (as arginine fea-
tures in DNA-binding mechanisms46), they were cross-refer-
enced with the 104 known NLSs in the NLSdb database.25 
Only 11 of the 104 NLSs associate with an R-rich tract, with a 
further 30 associated with a K-rich tract and 26 being embed-
ded in regions with a different compositional bias (eg, the short 
NLSs in large ribosomal subunit protein uL15 P02406 are 
encompassed by an {HG}-rich ID-CBR). Furthermore, when 
the larger number of R-rich tracts that are also associated with 
DNA/nucleic-acid binding is accounted for, the nuclear asso-
ciation for these R-rich tracts is no longer significant, indicating 
that it likely comes primarily from features for such binding. 
Similarly, for a much larger cluster of >900 cases of short 
K-rich regions found at 25% coverage, the significant associa-
tion with nuclear localization disappears when the larger num-
ber of cases associated with DNA/nucleic-acid binding is 
accounted for.

Tertiles of blockiness and homopeptide content  
and their functional hypotheses

The ID-CBRs with the same primary bias were portioned into 
tertiles for both hpep and D(RB) values (H, high; I, intermedi-
ate; L, low). Functional hypotheses for these tertiles were then 
examined. First for these tertiles, I continued the theme of 
examining E/K and Q/N biases that were first picked out in 
relation to the Sup35p example (Table 5). Notable E/K-rich 
examples in this table are high hpep and D(RB) ID-CBRs asso-
ciated with the nucleolus (examples are depicted in Supplemental 
Figure 3C), and low D(RB) ones linked to the spindle pole body. 
In a recent review, such nucleolar regions are specifically 
described as associated with the fibrillar centre and dense 
fibrillar component within nucleoli.47 There are 2 distinct types 
of Q/N-rich ID-CBRs; those associated with transcription 
coactivator activity have high hpep and high D(RB), whereas 
those linked to kinase activity tend towards intermediate hpep 
and low D(RB) (Table 5, examples are depicted in Supplemental 
Figure 3A and B). Indeed, experimental work on modifying the 
length of Q/N homopeptide tracts in transcription factors and 
coactivators has indicated that they can tune or modulate their 
proteins’ regulatory roles.39

The most prominent functional hypotheses across all tertiles 
and parameter sets are arrayed in Supplemental Table 2. One 
can see that in general, low blockiness and high hpep content are 
favoured among these GO EDs, although these lists overlap 

rarely (just 3 cases), and 26 cases show both a hpep trend and a 
blockiness trend. For example, a population of up to 36S-rich 
ID-CBRs with low hpep and intermediate blockiness is linked 
to DNA-binding transcription-factor activity, including a tract of 
SFL1, an activator involved in control of flocculation, stress 
response and pseudohyphal growth,48 and VHL1, which is 
required for induction of vitamin H and biotin-intermediate 
transporters49 (Figure 8A). A group of up to 18 cases of D-rich 
ID-CBRs feature a chromatin remodelling linkage (Figure 8B), 
including the transcription-factor Autonomously-Replicating 
Sequence binding factor 1, and RAD26, which is involved in 
transcription-coupled repair of nucleotide excisions. In general, 
D-rich regions may facilitate and accelerate DNA binding, 
especially at cytosine-rich sites.50,51

Data

In addition to the raw data for ID-CBRs used to define and 
analyse them in this article, further characteristics have been 
added to the Supplementary Files, such as the normalized 
Kyte-Doolittle Hydropathy and ‘middleness’ scales that were 
generated for a previous study,13,52 and proportions of groups of 
residues based on the Taylor Venn diagram of amino acids (eg, 
‘tiny polar, ‘charged’, ‘aromatic’)53 (Supplemental File 3). This 
information can be cross-referenced with the lists of ID-CBR 
cluster membership (Supplemental File 4) and of GO E/Ds 
(Supplemental File 2).

Conclusions
Here, intrinsically disordered compositionally biased regions 
(ID-CBRs) were formally defined, using 2 different criteria 
that were largely congruent. It was discovered that ID-CBRs 
can be formed into clusters using compositional-distance and 
residue patterning (ie, ‘blockiness’ and homopeptide content), 
and these clusters can have significant functional associations. 
In doing so, redundancies were taken account of, such as from 
the sequence homology of protein-family members, and from 
similar GO functional terms. The function of CBRs has been 
generally un-appreciated or under-appreciated in cell biological 
experiments, constructs, and hypotheses, so these data may be 
helpful in that regard. The chief advantage of the approach 
described here is that it mitigates against any parameter depend-
ence in annotating and analysing compositional biases. However, 
this also means that in many cases, the relevant region bounda-
ries can be ambiguous, and there are multiple solutions to defin-
ing the CBRs, so that several protein constructs may be 
necessary to investigate the relative functional importance of 
CBR features in cell biology experiments. The functional anno-
tations are also restricted by the detail and structure of the GO 
digraph created by the GO curators. Nevertheless, they can be 
used as hypotheses for other proteins in the same cluster or ter-
tile; also, for a given association, the CB-IDRs may perform a 
more specific functional role that has yet to be elucidated.



Harrison 13
Ta

b
le

 5
. 

G
en

e 
O

nt
ol

og
y 

en
ric

hm
en

ts
 fo

r 
te

rt
ile

s 
of

 b
lo

ck
in

es
s 

an
d 

ho
m

op
ep

tid
e 

co
nt

en
t f

or
 E

/K
-r

ic
h 

re
gi

on
s 

an
d 

Q
-o

r-
N

-r
ic

h 
re

gi
on

s.

E
/K

-R
IC

H

H
I

l

T
E

R
T

Il
E

 
C

O
U

N
T

A

R
E

G
IO

N
 

C
O

U
N

T
S

B

C
AT

E
G

O
R

y
C

T
E

R
T

Il
E

 
C

O
U

N
T

A

R
E

G
IO

N
 

C
O

U
N

T
S

B

C
AT

E
G

O
R

y
C

T
E

R
T

Il
E

 
C

O
U

N
T

A

R
E

G
IO

N
 

C
O

U
N

T
B

C
AT

E
G

O
R

y
C

B
lo

ck
in

es
s 

(R
B
)

4(
3H

,1
I)

9
-1

5
G

O
:0

00
57

30
 n

u
cl

eo
lu

s
-

-
-

3
3

G
O

:0
0

0
81

8
6 

A
TP

-d
ep

t. 
ac

tiv
ity

, a
ct

in
g

 o
n 

R
N

A

H
om

op
ep

tid
e 

co
nt

en
t (

hp
ep

)

6(
4H

,2
I)

7-
21

G
O

:0
00

57
30

 n
u

cl
eo

lu
s

4
10

-1
4

G
O

:0
0

0
6

3
6

4 
rR

N
A

 
p

ro
ce

ss
in

g
2

33
-6

0
G

O
:0

0
0

5
81

6 
sp

in
d

le
 p

ol
e 

b
od

y

2
3

G
O

:0
0

3
6

4
37

 Is
w

1b
 c

om
p

le
x

-
-

-
-

-
-

2
11

-1
4

G
O

:0
01

6
8

87
 A

TP
 h

yd
ro

ly
si

s 
ac

tiv
ity

-
-

-
-

-
-

2
28

-5
0

G
O

:0
0

0
56

3
4 

nu
cl

eu
s

-
-

-
-

-
-

Q
-O

R
-N

-R
IC

H
 R

E
G

IO
N

S

H
I

l

T
E

R
T

Il
E

 
C

O
U

N
T

R
E

G
IO

N
 

C
O

U
N

T
S

C
AT

E
G

O
R

y
T

E
R

T
Il

E
 

C
O

U
N

T
R

E
G

IO
N

 
C

O
U

N
T

S
C

AT
E

G
O

R
y

T
E

R
T

Il
E

 
C

O
U

N
T

R
E

G
IO

N
 

C
O

U
N

T
S

C
AT

E
G

O
R

y

B
lo

ck
in

es
s 

(R
B
)

4
17

-2
9

G
O

:0
0

0
37

23
 R

N
A

 b
in

d
in

g
2

8
G

O
:0

01
81

0
5 

p
ep

tid
yl

-s
er

in
e 

p
ho

sp
ho

ry
la

tio
n

5(
4l

,1
I)

28
-1

01
G

O
:0

0
0

5
8

8
6 

p
la

sm
a 

m
em

b
ra

ne

3
7-

19
G

O
:0

00
37

13
 t

ra
n

sc
ri

p
ti

o
n

 c
o

ac
ti

va
to

r 
ac

ti
vi

ty
-

-
-

4
15

-3
3

G
O

:0
0

0
59

3
5 

ce
llu

la
r 

b
ud

 n
ec

k

3(
2H

,1
I)

9
-1

7
G

O
:0

0
0

4
67

4 
p

ro
te

in
 S

er
/T

hr
 k

in
as

e 
ac

tiv
ity

-
-

-
3

5
-6

G
O

:0
0

3
0

27
6 

cl
at

hr
in

 b
in

d
in

g

-
-

-
-

-
-

3
7-

10
G

O
:0

01
71

4
8 

ne
g

at
iv

e 
re

g
ul

at
io

n 
of

 tr
an

sl
at

io
n

-
-

-
-

-
-

3(
2l

,1
I)

25
-6

0
G

O
:0

01
6

31
0 

p
ho

sp
ho

ry
la

tio
n

-
-

-
-

-
-

3(
2l

,1
I)

25
-6

0
G

O
:0

01
63

01
 k

in
as

e 
ac

ti
vi

ty

H
om

op
ep

tid
e 

co
nt

en
t (

hp
ep

)

7(
6H

,1
I)

11
-2

8
G

O
:0

01
0

49
4 

cy
to

p
la

sm
ic

 g
ra

nu
le

5(
3I

,2
l)

8
-2

0
G

O
:0

0
0

37
0

0 
D

N
A

-b
in

d
in

g
 

TF
 a

ct
iv

ity
2

8
-1

0
G

O
:0

0
31

92
9 

TO
R

 s
ig

na
lli

ng

6(
5H

,1
I)

10
-2

4
G

O
:0

00
37

13
 t

ra
n

sc
ri

p
ti

o
n

 c
o

ac
ti

va
to

r 
ac

ti
vi

ty
5(

3I
,2

l)
4

-7
G

O
:0

0
4

4
61

3 
nu

cl
ea

r 
p

or
e 

ce
nt

ra
l t

ra
ns

p
or

t c
ha

nn
el

-
-

-

5
7-

23
G

O
:0

0
61

62
9 

R
N

A
 p

ol
 II

 s
p

ec
ifi

c 
D

N
A

-b
in

d
in

g
 

TF
 b

in
d

in
g

4(
3I

,1
l)

25
-5

3
G

O
:0

01
63

01
 k

in
as

e 
ac

ti
vi

ty
-

-
-

4
5

-7
G

O
:0

0
0

0
28

8 
nu

cl
ea

r-
tr

an
sc

rib
ed

 m
R

N
A

 
ca

ta
b

ol
is

m
, d

ea
d

en
yl

at
io

n
-d

ep
t. 

d
ec

ay
4(

3I
,1

l)
53

-8
5

G
O

:0
0

0
82

70
 z

in
c

-i
on

 
b

in
d

in
g

-
-

-

4
84

-4
48

G
O

:0
0

0
57

37
 c

yt
op

la
sm

-
-

-
-

-
-

E
nr

ic
hm

en
ts

 th
at

 o
cc

ur
 fo

r 
m

ul
tip

le
 p

ar
am

et
er

 s
et

s 
ar

e 
lis

te
d 

up
 to

 a
 m

ax
im

um
 o

f t
he

 to
p 

5,
 in

cl
ud

in
g 

tie
s.

a T
he

 c
ou

nt
 o

f t
er

til
es

, i
e,

 h
ig

h 
(H

),
 in

te
rm

ed
ia

te
 (

I)
, o

r 
lo

w
 (

l)
 fo

r 
hp

ep
 a

nd
 fo

r 
D

(R
B
).

b T
he

 r
an

ge
 o

f r
eg

io
n 

co
un

ts
 fo

r 
di

ffe
re

nt
 p

ar
am

et
er

 s
et

s.
 T

he
 u

pp
er

 b
ou

nd
s 

ar
is

e 
w

he
n 

m
or

e 
m

ild
ly

 b
ia

se
d 

re
gi

on
s 

ar
e 

in
cl

ud
ed

 (
th

ro
ug

h 
ap

pl
ic

at
io

n 
of

 p
ar

am
et

er
 s

et
s 

w
ith

 h
ig

he
r 

pr
ot

eo
m

e 
co

ve
ra

ge
).

c E
nr

ic
hm

en
ts

 th
at

 o
cc

ur
 fo

r 
bo

th
 a

 h
p

ep
 a

nd
 D

(R
B
) 

te
rt

ile
s 

ar
e 

in
 b

ol
d.



14 Bioinformatics and Biology Insights 

Acknowledgements
The author thanks Wan-Chun Su for running the DeepCoil 
program.

Author Contributions
PMH conceived the project, performed the data analysis and 
wrote the paper. 

Data Availability Statement
The source data for the work is available from public sequence data-
bases as described in section ‘Methods’. Generated cluster and anno-
tation data are available in several Supplementary Files.

ORCID iD
Paul M. Harrison  https://orcid.org/0000-0002-7477-1014

SuppleMentAl MAteRIAl
Supplemental material for this article is available online.

RefeRenCeS
 1. Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the pro-

tein structure-function paradigm. J Mol Biol. 1999;293:321-331. doi:10.1006/
jmbi.1999.3110

 2. van der Lee R, Buljan M, Lang B, et al. Classification of intrinsically disordered 
regions and proteins. Chem Rev. 2014;114:6589-6631. doi:10.1021/cr400525m

 3. Narasumani M, Harrison PM. Discerning evolutionary trends in post-transla-
tional modification and the effect of intrinsic disorder: analysis of methylation, 
acetylation and ubiquitination sites in human proteins. PLoS Comput Biol. 
2018;14:e1006349. doi:10.1371/journal.pcbi.1006349

 4. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence 
complexity of disordered protein. Proteins. 2001;42:38-48. 
doi:10.1002/1097-0134(20010101)42:1<38::aid-prot50>3.0.co;2-3

 5. Zhao B, Kurgan L. Compositional bias of intrinsically disordered proteins and regions 
and their predictions. Biomolecules. 2022;12:888. doi:10.3390/biom12070888

 6. Wang Y, Harrison PM. Homopeptide and homocodon levels across fungi are 
coupled to GC/AT-bias and intrinsic disorder, with unique behaviours for some 
amino acids. Sci Rep. 2021;11:10025. doi:10.1038/s41598-021-89650-1

 7. Tompa P. Intrinsically unstructured proteins evolve by repeat expansion. Bioess-
ays. 2003;25:847-855. doi:10.1002/bies.10324

 8. Kastano K, Mier P, Dosztanyi Z, Promponas VJ, Andrade-Navarro MA. Func-
tional tuning of intrinsically disordered regions in human proteins by composi-
tion bias. Biomolecules. 2022;12:1486. doi:10.3390/biom12101486

 9. Cascarina SM, King DC, Osborne Nishimura E, Ross ED. LCD-Composer: an 
intuitive, composition-centric method enabling the identification and detailed 
functional mapping of low-complexity domains. NAR Genom Bioinform. 
2021;3:lqab048. doi:10.1093/nargab/lqab048

 10. Mier P, Andrade-Navarro MA. Assessing the low complexity of protein 
sequences via the low complexity triangle. PLoS ONE. 2020;15:e0239154. 
doi:10.1371/journal.pone.0239154

 11. UniProt C. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids 
Res. 2023;51:D523-D531. doi:10.1093/nar/gkac1052

 12. Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: 
a new generation of protein database search programs. Nucleic Acids Res. 
1997;25:3389-3402.

 13. Harrison PM. Compositionally biased dark matter in the protein universe. Pro-
teomics. 2018;18:e1800069. doi:10.1002/pmic.201800069

 14. Harrison PM. FLPS: fast discovery of compositional biases for the protein uni-
verse. BMC Bioinformatics. 2017;18:476. doi:10.1186/s12859-017-1906-3

 15. Harrison PM. fLPS 2.0: rapid annotation of compositionally-biased regions in 
biological sequences. PeerJ. 2021;9:e12363. doi:10.7717/peerj.12363

 16. Harrison PM. Optimizing strategy for the discovery of compositionally-biased 
or low-complexity regions in proteins. Sci Rep. 2024;14:680. doi:10.1038/
s41598-023-50991-8

 17. Piovesan D, Del Conte A, Clementel D, et al. MobiDB: 10 years of intrinsically 
disordered proteins. Nucleic Acids Res. 2023;51:D438-D444. doi:10.1093/nar/
gkac1065

 18. Su TY, Harrison PM. Conservation of prion-like composition and sequence in 
prion-formers and prion-like proteins of Saccharomyces cerevisiae. Front Mol 
Biosci. 2019;6:54. doi:10.3389/fmolb.2019.00054

 19. Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey 
identifies prions and illuminates sequence features of prionogenic proteins. Cell. 
2009;137:146-158.

 20. Chakrabortee S, Byers JS, Jones S, et al. Intrinsically disordered proteins drive 
emergence and inheritance of biological traits. Cell. 2016;167:369-381.e12. 
doi:10.1016/j.cell.2016.09.017

 21. Lancaster AK, Nutter-Upham A, Lindquist S, King OD. PLAAC: a web and 
command-line application to identify proteins with prion-like amino acid com-
position. Bioinformatics. 2014;30:2501-2502. doi:10.1093/bioinformatics/btu310

 22. Su WC, Harrison PM. Deep conservation of prion-like composition in the 
eukaryotic prion-former Pub1/Tia1 family and its relatives. PeerJ. 2020;8:e9023. 
doi:10.7717/peerj.9023

 23. Ludwiczak J, Winski A, Szczepaniak K, Alva V, Dunin-Horkawicz S. Deep-
Coil-a fast and accurate prediction of coiled-coil domains in protein sequences. 
Bioinformatics. 2019;35:2790-2795. doi:10.1093/bioinformatics/bty1062

 24. Fox NK, Brenner SE, Chandonia JM. SCOPe: Structural Classification of Pro-
teins – extended, integrating SCOP and ASTRAL data and classification of 
new structures. Nucleic Acids Res. 2014;42:D304-D309. doi:10.1093/nar/
gkt1240

Figure 8. Examples of significant Gene Ontology associations for tertiles 

of homopeptide content (hpep) and blockiness [D(RB)]. Residues are 

colour-coded as in other figures. Gene Ontology associations significant 

at < Bonferroni-corrected P-value threshold of 1.1e−05 are listed, with 

the number of cases for each association in brackets. Each ID-CBR is 

colour-coded with the coding applied also in previous figures. listed for 

each ID-CBR are: the UniProt accession, the range (start to end), the 

binomial bias P-value, the bias signature in curly brackets, and the hpep 

and D(RB) values. The longest regions for each protein for each tendency 

are picked to display. (A) RNA polymerase II-specific transcription-factor 

(TF) activity is a significant association for serine-rich ID-CBRs with low 

homopeptide content and intermediate blockiness. (B) Chromatin 

remodelling is a significant functional hypothesis for aspartate-rich 

ID-CBRs with intermediate blockiness. Glutamate residues are also 

pointed out with red highlighting.

https://orcid.org/0000-0002-7477-1014


Harrison 15

 25. Bernhofer M, Goldberg T, Wolf S, et al. NLSdb-major update for database of 
nuclear localization signals and nuclear export signals. Nucleic Acids Res. 
2018;46:D503-D508. doi:10.1093/nar/gkx1021

 26. Quaglia F, Meszaros B, Salladini E, et al. DisProt in 2022: improved quality and 
accessibility of protein intrinsic disorder annotation. Nucleic Acids Res. 
2022;50:D480-D487. doi:10.1093/nar/gkab1082

 27. Felsenstein J. PHYLIP-phylogeny inference package. Cladistics. 1989;5: 
164-166.

 28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstruct-
ing phylogenetic trees. Mol Biol Evol. 1987;4:406-425. doi:10.1093/oxfordjourn-
als.molbev.a040454

 29. Subramanian B, Gao S, Lercher MJ, Hu S, Chen WH. Evolview v3: a webserver 
for visualization, annotation, and management of phylogenetic trees. Nucleic 
Acids Res. 2019;47:W270-W275. doi:10.1093/nar/gkz357

 30. Gene Ontology Consortium; Aleksander SA, Balhoff J, et al. The Gene Ontology 
knowledgebase in 2023. Genetics. 2023;224:iyad031. doi:10.1093/genetics/iyad031

 31. An L, Fitzpatrick D, Harrison PM. Emergence and evolution of yeast prion and 
prion-like proteins. BMC Evol Biol. 2016;16:24. doi:10.1186/s12862-016-0594-3

 32. Shorter J, Lindquist S. Prions as adaptive conduits of memory and inheritance. 
Nat Rev Genet. 2005;6:435-450. doi:10.1038/nrg1616

 33. Serio TR, Lindquist SL. [PSI+]: an epigenetic modulator of translation termi-
nation efficiency. Annu Rev Cell Dev Biol. 1999;15:661-703. doi:10.1146/annurev.
cellbio.15.1.661

 34. Franzmann TM, Alberti S. Protein phase separation as a stress survival strategy. 
Cold Spring Harb Perspect Biol. 2019;11:a034058. doi:10.1101/cshperspect.a034058

 35. Franzmann TM, Jahnel M, Pozniakovsky A, et al. Phase separation of a yeast 
prion protein promotes cellular fitness. Science. 2018;359:eaao5654. doi:10.1126/
science.aao5654

 36. Vitrenko YA, Pavon ME, Stone SI, Liebman SW. Propagation of the [PIN+] 
prion by fragments of Rnq1 fused to GFP. Curr Genet. 2007;51:309-319. 
doi:10.1007/s00294-007-0127-0

 37. Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S. Prions 
are a common mechanism for phenotypic inheritance in wild yeasts. Nature. 
2012;482:363-368. doi:10.1038/nature10875

 38. Sondheimer N, Lopez N, Craig EA, Lindquist S. The role of Sis1 in the mainte-
nance of the [RNQ+] prion. EMBO J. 2001;20:2435-2442. doi:10.1093/
emboj/20.10.2435

 39. Gemayel R, Chavali S, Pougach K, et al. Variable glutamine-rich repeats modu-
late transcription factor activity. Mol Cell. 2015;59:615-627. doi:10.1016/j.
molcel.2015.07.003

 40. Ripaud L, Chumakova V, Antonin M, et al. Overexpression of Q-rich prion-like 
proteins suppresses polyQ cytotoxicity and alters the polyQ interactome. Proc 
Natl Acad Sci U S A. 2014;111:18219-18224. doi:10.1073/pnas.1421313111

 41. Deinert K, Fasiolo F, Hurt EC, Simos G. Arc1p organizes the yeast aminoacyl-
tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs. 
J Biol Chem. 2001;276:6000-6008. doi:10.1074/jbc.M008682200

 42. Galani K, Grosshans H, Deinert K, Hurt EC, Simos G. The intracellular loca-
tion of two aminoacyl-tRNA synthetases depends on complex formation with 
Arc1p. EMBO J. 2001;20:6889-6898. doi:10.1093/emboj/20.23.6889

 43. Ukmar-Godec T, Hutten S, Grieshop MP, et al. Lysine/RNA-interactions drive 
and regulate biomolecular condensation. Nat Commun. 2019;10:2909. 
doi:10.1038/s41467-019-10792-y

 44. Sheu YJ, Santos B, Fortin N, Costigan C, Snyder M. Spa2p interacts with cell 
polarity proteins and signaling components involved in yeast cell morphogenesis. 
Mol Cell Biol. 1998;18:4053-4069. doi:10.1128/MCB.18.7.4053

 45. Yorihuzi T, Ohsumi Y. Saccharomyces cerevisiae MATa mutant cells defective in 
pointed projection formation in response to alpha-factor at high concentrations. 
Yeast. 1994;10:579-594. doi:10.1002/yea.320100503

 46. Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B. The role of DNA 
shape in protein-DNA recognition. Nature. 2009;461:1248-1253. doi:10.1038/
nature08473

 47. King MR, Ruff KM, Pappu RV. Emergent microenvironments of nucleoli. 
Nucleus. 2024;15:2319957. doi:10.1080/19491034.2024.2319957

 48. Song Q , Johnson C, Wilson TE, Kumar A. Pooled segregant sequencing reveals 
genetic determinants of yeast pseudohyphal growth. PLoS Genet. 
2014;10:e1004570. doi:10.1371/journal.pgen.1004570

 49. Weider M, Machnik A, Klebl F, Sauer N. Vhr1p, a new transcription factor from 
budding yeast, regulates biotin-dependent expression of VHT1 and BIO5. J Biol 
Chem. 2006;281:13513-13524. doi:10.1074/jbc.M512158200

 50. Hossain KA, Kogut M, Slabonska J, Sappati S, Wieczor M, Czub J. How acidic 
amino acid residues facilitate DNA target site selection. Proc Natl Acad Sci U S A. 
2023;120:e2212501120. doi:10.1073/pnas.2212501120

 51. Wang X, Bigman LS, Greenblatt HM, Yu B, Levy Y, Iwahara J. Negatively 
charged, intrinsically disordered regions can accelerate target search by DNA-
binding proteins. Nucleic Acids Res. 2023;51:4701-4712. doi:10.1093/nar/
gkad045

 52. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character 
of a protein. J Mol Biol. 1982;157:105-132. doi:10.1016/0022-2836(82)90515-0

 53. Taylor WR. The classification of amino acid conservation. J Theor Biol. 
1986;119:205-218. doi:10.1016/s0022-5193(86)80075-3


