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Repeatedly performing a submaximal motor task for a prolonged period of time leads

to muscle fatigue comprising a central and peripheral component, which demands

a gradually increasing effort. However, the brain contribution to the enhancement of

effort to cope with progressing fatigue lacks a complete understanding. The intermittent

motor tasks (IMTs) closely resemble many activities of daily living (ADL), thus remaining

physiologically relevant to study fatigue. The scope of this study is therefore to investigate

the EEG-based brain activation patterns in healthy subjects performing IMT until

self-perceived exhaustion. Fourteen participants (median age 51.5 years; age range

26− 72 years; 6 males) repeated elbow flexion contractions at 40% maximum voluntary

contraction by following visual cues displayed on an oscilloscope screen until subjective

exhaustion. Each contraction lasted ≈5 s with a 2-s rest between trials. The force, EEG,

and surface EMG (from elbow joint muscles) data were simultaneously collected. After

preprocessing, we selected a subset of trials at the beginning, middle, and end of the

study session representing brain activities germane to mild, moderate, and severe fatigue

conditions, respectively, to compare and contrast the changes in the EEG time-frequency

(TF) characteristics across the conditions. The outcome of channel- and source-level

TF analyses reveals that the theta, alpha, and beta power spectral densities vary in

proportion to fatigue levels in cortical motor areas. We observed a statistically significant

change in the band-specific spectral power in relation to the graded fatigue from both the

steady- and post-contraction EEG data. The findings would enhance our understanding

on the etiology and physiology of voluntary motor-action-related fatigue and provide

pointers to counteract the perception of muscle weakness and lack of motor endurance

associated with ADL. The study outcome would help rationalize why certain patients

experience exacerbated fatigue while carrying out mundane tasks, evaluate how clinical

conditions such as neurological disorders and cancer treatment alter neural mechanisms

underlying fatigue in future studies, and develop therapeutic strategies for restoring the

patients’ ability to participate in ADL by mitigating the central and muscle fatigue.

Keywords: EEG, fatigue, maximum voluntary contraction, motor cortex, power spectral density, submaximal

muscle contraction, time-frequency analysis, elbow flexion
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1. INTRODUCTION

Fatigue interferes with task performance in multiple
ways—slowing down, improper execution, or failure to
accomplish. Furthermore, unpleasant sensations such as pain,
discomfort, and increased effort can accompany the muscle
fatigue. In healthy population, the consequences due to fatigue
may be reflected as reduced physical performance, difficulty
to carry out strenuous or prolonged activity, and demand for
extra effort to perform everyday tasks, which will subside after a
period of rest or decreased activity. Nevertheless, in individuals
suffering from muscular, neurological, cardiovascular, and
respiratory diseases and those who are aging or frail, the effects
of fatigue are amplified and posing restrictions on daily life
(Taylor et al., 2016).

Physical fatigue can be viewed as the decline in the voluntary-
force-generating capacity of the neuromuscular system induced
by a physical activity (Fry et al., 2017). It stems from active
skeletal muscles that are involved in the peripheral processes
as well as supraspinal mechanisms within the brain, thus
comprising physiological and psychological aspects (Gandevia,
2001; Berchicci et al., 2013). The fatigue processes at or distal
to the neuromuscular junction is referred to as peripheral
fatigue and those attributed to the central nervous system
affecting the neural drive to the muscle as central fatigue
(Bigland-Ritchie et al., 1978).

The force generated by muscle contractions depends on
the motor unit (MU) firing in the neuromuscular pathway:

FIGURE 1 | Schematic of neural contributions to muscle fatigue in single-joint contractions. Motoneuron firing is affected by the properties of motoneurons, muscle

afferent feedback, and the corticospinal and other descending drive. Fatigue induces changes at all these levels, thus influencing the strength and timing of muscle

contractions. Accordingly, the force generated by contraction of muscle fibers in the neuromuscular pathway is modified. Figure courtesy of Taylor et al. (2016).

the cessation or slowing down of MU firing marks fatigue,
whereas the increased recruitment of MUs serves as the
compensatory mechanism. The central fatigue changes the
MU firing by altering the intrinsic properties of motoneurons,
feedback from the sensory input, and descending drive, which
in turn modifies the strength and timing of muscle contractions.
Besides, a sensation of discomfort and fatigue is facilitated
by the firing of group III/IV muscle afferents. Furthermore,
the modulation of brain neurotransmitters impacts the task
endurance performance (Taylor et al., 2016). Therefore, the
neural contribution to muscle fatigue is multi-pronged as
depicted in Figure 1 and gaining better insights into this
mechanism holds paramount importance. Even though the
physical fatigue is influenced by the supraspinal mechanisms
within the brain, our understanding on how fatigue modulates
the brain activity is far from complete.

Aside from electrophysiological markers, fatigue can also be
subjectively quantified by the perception of effort during physical
activities, e.g., psychophysiological scale developed in Borg
(1982). To understand the central and peripheral mechanisms
underlying neuromuscular fatigue while performing isometric
muscle contractions, several studies (Falvo et al., 2011; Pincivero,
2011; De Morree et al., 2012) have measured the perception of
effort with the Borg category ratio scale.

The functional magnetic resonance imaging (fMRI) studies
were dedicated to observe the changes in the cortical activation
due to single-limb contractions until self-perceived exhaustion.
The sustained maximal (Post et al., 2009; Steens et al., 2012)
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and submaximal contractions (Benwell et al., 2007; Van Duinen
et al., 2007) with hand muscles progressively enhanced the
activation in themotor cortex, supplementarymotor area (SMA),
and sensorimotor cortex. On the contrary, the repetitive fatigue
task (Liu et al., 2005b) distinctly differs from the continuous
one (Yang et al., 2010) in the sense that the former does not
alter the blood-oxygen-level-dependent (BOLD) signal from the
motor function cortices. The study findings would thus resolve
an important research dilemma: do the motor-related cortices
handle the fatigue induced by the repetitive and continuous task
differently? Our fatigue study involving repetitive submaximal
elbow flexion attempts to clarify whether the band-specific power
of the electroencephalographic (EEG) signals recorded over
specific cortical regions could be modulated by fatigue. To this
end, we analyze the event-related spectral perturbation (ERSP),
which is the estimation of post-onset and post-offset changes in
the EEG spectrum with respect to the baseline (rest). The onset
and offset refer to the time instant marking the application of a
task-related stimulus and the cessation of the task, respectively.
A more formal definition of ERSP is deferred to Section 4.

A few magnetoencephalographic (MEG) studies reported the
effect of fatigue on the spectral power of signals recorded from the
sensorimotor cortex. The post-movement beta rebound (PMBR)
was reported to increase because of submaximal contractions
until fatigue (Fry et al., 2017). Likewise, the muscle fatigue
enhanced the beta- and gamma-band power of MEG signals
while a motor task was carried out (Tecchio et al., 2006).
Nevertheless, a repetitive maximal contraction fatigue task
reduced the MEG alpha-band power from the sensorimotor
and prefrontal areas (Tanaka et al., 2015). These contradictory
results led us to speculate that even among the repetitive tasks,
the influence of fatigue on the neural mechanisms may differ
between the submaximal and maximal contractions. Our study
is therefore intended to verify if the EEG spectral power changes
due to fatigue caused by repetitive submaximal contractions
agree with the MEG study findings.

There are ample evidences to believe that the fatigue task
involving submaximal isometric contractions causes a significant
rise in movement-related cortical potentials (MRCP) in brain
regions that include primary motor cortex (M1), SMA, and
premotor cortex, e.g., studies related to upper limb (Johnston
et al., 2001; Schillings et al., 2006; De Morree et al., 2012; Guo
et al., 2014) and lower limb (Berchicci et al., 2013). Similarly,
a significant increase in the alpha- or beta-band EEG power in
SMA, frontal, parietal lobe, and Brodmann area 11 was attributed
to fatigue caused by cycling (Schneider et al., 2009; Hilty et al.,
2011; Enders et al., 2016). By contrast, intermittent maximal
and sustained submaximal contractions significantly reduced the
alpha- and beta-band power measured at the EEG electrodes over
the central and parietal lobes (Nishihira et al., 1995; Liu et al.,
2005a). Thus, the findings related to band-specific EEG power
changes due to a fatigue task remain inconclusive, which warrant
further investigation.

Fatigue gradually sets in soon after the commencement
of contractions, regardless of the fact that the individual
continues the task execution (Barry and Enoka, 2007). It
explains the reason why fatigue, task failure, and exhaustion

are distinguishable (Berchicci et al., 2013). On this premise,
we hypothesize that as the execution of repetitive submaximal
contractions proceeds in time, the individual would experience
increased levels of fatigue, and hence the modulation in the
activation of motor-related cortices marking the fatigue level
would also scale proportionally. Our study outcome would
add knowledge of central mechanism of muscle fatigue as the
experiment has been designed bearing the following objectives
in mind. (i) The primary goal is to investigate how the EEG
spectral power is altered with regard to graded fatigue levels,
which has not been explored by past studies. (ii) The secondary
goal is to help reach a consensus with the contradictory findings
from fMRI, MEG, and EEG fatigue studies involving voluntary
muscle contractions. (iii) The future goals are to make use of
this knowledge to understand how the spectral power changes
with fatigue are modified by a pathology and to design effective
rehabilitation techniques targeting patients who have impaired
movement functions.

2. METHODS

The current analysis was carried out on a previously collected
dataset for which only the analysis on the muscle and force data
was published (Cai et al., 2014).

2.1. Subjects
Fourteen healthy volunteers, of whom six were males, were
enrolled in a study, where they were asked to perform an
intermittent submaximal motor task repeatedly until they
experienced severe fatigue to a point that they could not
proceed any longer (Cai et al., 2014). The median age of the
participants was 51.5 years and their age range was 26 − 72
years. Prior to the recruitment, the subjects were questioned
whether they were depressed or not, and those who replied in
the negative were only included in the study. The subjects were
recruited through local advertisement. The approval for the study
procedures was sought from the local Institutional Review Board
and the subjects were required to provide a written informed
consent. The demographics of the healthy cohort are presented
in Supplementary Table S1.

2.2. Experimental Procedure
The participants first familiarized themselves with the
submaximal elbow flexion task by attempting two isometric
contractions with ≈ 30 − 40% perceived maximal effort that
lasted for a few seconds. After the warm-up activities, the
Maximum Voluntary Contraction (MVC) force of isometric
elbow flexion was recorded. Next, they performed the
intermittent motor task (IMT) comprising repetitive elbow
flexion at 40% MVC until they were subjectively exhausted.

2.2.1. MVC Force
The subjects were seated with their forearm in a neutral position
making an elbow joint angle of ≈100◦. They were instructed
to exert the maximal strength while performing two elbow
flexion contractions using their dominant arm. The MVC force
displayed on an oscilloscope screen was recorded with a data
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acquisition system (1401 Plus, Cambridge Electronic Design,
Ltd., Cambridge, UK) in a computer. Simultaneously, the MVC
force was also measured by a force transducer (JR3 Universal
Force-Moment Sensor System, Woodland, CA). Out of the two
MVC measurements, the highest value was selected for the
subsequent analysis. If the two measurements differed by more
than 5%, the MVC task had to be repeated to ascertain that the
maximum effort was exerted during the contraction.

2.2.2. Intermittent Motor Fatigue Task
The IMT was intended to contract the elbow flexor muscles
until the subjects perceived severe fatigue. Each submaximal
intermittent contraction set at 40% MVC was maintained for 5 s.
The effort level to perform submaximal contractions was chosen
to be 40% MVC to ensure that severe fatigue would be induced
within 30min leading to task failure (Cai et al., 2014). Note that
this intensity of effort would be similar to mild-moderate day-
to-day tasks (such as holding an infant, picking up groceries,
etc.). The subjects were guided by visual cues associated with
the initiation and cessation of contractions via an oscilloscope
display in order to perform a series of contractions interleaved
by a rest period of 2 s. The contractions were repeated until the
individuals encountered self-perceived exhaustion.

2.2.3. EEG Data Acquisition
Scalp EEG signals were recorded with a high-density 128-channel
EEG data acquisition system (Electrical Geodesics, Inc. Eugene,
OR, USA), in which the electrodes were arranged in a hat-
like net and interconnected using nylon strings. Out of 128
channels, three were dedicated for EMG measurements from
the muscles, namely Biceps Brachii, Brachioradialis (two elbow
flexors), and Triceps Brachii (elbow extensor). A fourth channel
was used for recording the elbow flexion force signal sensed
by the force transducer. After soaking the electrode net in the
electrolyte—one liter of distilled water added with 1.5 teaspoons
of potassium chloride—it was mounted on the subject’s head.
The connection quality of the electrodes was ensured by bringing
their impedance values below 10 k�. The signal from each
channel was amplified by a factor of 75, 000, band-pass filtered
(0.01Hz to 100Hz), and digitized at a sampling rate of 250Hz
using NeuroScan system (Compumedic NeuroScan, Charlotte,
NC) (Yang, 2008).

For more specific details on the experimental protocol,
interested readers may refer to Yang (2008), Cai et al. (2014).

3. DATA PREPROCESSING PIPELINE

The 124-channel EEG data were preprocessed as outlined in
Supplementary Figure S1 with the standard tools available in
EEGLAB 2021.0 software (Delorme and Makeig, 2004) prior to
carrying out the ERSP analyses.

Filtering and Noise Removal. The EEG signals were first
band-pass filtered using a Hamming windowed sinc finite
impulse response filter with the lower and higher cut-off
frequencies of 1 and 100Hz, respectively. Next, they were filtered
using a notch filter to remove the 60Hz power-line noise and
its higher harmonics. The noisy bursts in the filtered EEG data

were corrected with Artifact Subspace Reconstruction (ASR)
approach, which is an EEGLAB plug-in (Mullen et al., 2015). The
threshold for burst detection criterion (specified as k in the ASR
algorithm) was set as 20 as recommended in Chang et al. (2019)
based on a rigorous evaluation. Afterwards, the EEG signals were
re-referenced to the common average, i.e., the arithmetic average
of all electrodes (Nunez and Srinivasan, 2006), which is advocated
for EEG source estimation.

Epoching andData Cleaning. The continuous EEG data were
then epoched as illustrated in Figure 2 (left) with respect to the
event-markers denoting the onset and offset of the elbow flexion
task as follows. For analyzing the EEG pertaining to the steady
contraction, the epoch limits were selected as 1.5 s before and
5 s after the task onset. To study the post-contraction EEG, the
epoch limits were 4 s before and 2 s after the task offset. In the case
of post-contraction, the baseline EEG (from 1.5 s before the task
initiation up to the onset) from every epoch was used to replace
the data within the time range, 4–2.5 s, before the task offset in
the respective epoch.

The epoched data was visually inspected for the presence
of noisy data. The epochs contaminated with noise, which
would possibly affect the outcome of ERSP analysis, and those
containing stim pulses (generated by supra-maximal stimulation
of the muscle belly or motor nerve connecting the muscle to
assess the peripheral fatigue, which is not investigated in this
work) were removed.

ICA Decomposition and Dipole Estimation. The
multichannel EEG data free of noisy epochs and stim pulses
was decomposed by an Independent Component Analysis
(ICA) algorithm, namely Extended Infomax (Lee et al., 2000)
(“runica” in the EEGLAB toolbox), to estimate the underlying
temporally independent EEG sources. The projection of EEG
source signals to the scalp surface gave rise to scalp maps. We
employed an EEGLAB plug-in, namely DIPFIT (Oostendorp
and Van Oosterom, 1989), to identify the location of equivalent
dipoles that could best describe the scalp maps. For this
purpose, the boundary element spherical head model from the
standard Brain Electrical Source Analysis [BESA (BESA GmbH,
Gräfelfing, GE)] was adopted. Since the subject-specific digitized
electrode positions were not available, the standard Montreal
Neurological Institute (MNI) space that contains the dipole
locations was applied to the head model.

Artifactual IC Removal. The degree of resemblance between
an independent component (IC) scalp map and the projection
of the equivalent dipole is quantified using the residual scalp
map variance (RV); for instance, the best-fitting model has the
smallest RV. The ICs were classified with an artificial neural
network framework into two categories: (i) “non-brain-related
ICs” representing electrical artifacts stemming from muscle,
eye, heart, line noise, and channel noise and (ii) “brain ICs”
accounting predominantly for activities originating within the
brain. The classifier was implemented with an EEGLAB plug-
in (Pion-Tonachini et al., 2019), known as ICLabel. The ICs
designated as non-brain-related and those having RV values
exceeding 20% were discarded. This process called IC pruning
will help remove artifactual IC components that are spatially
stereotypical. With the retained neural ICs (RV ≤ 20 %), the
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FIGURE 2 | (A) To compute the ERSP for the steady contraction during 1–3 s, EEG epochs were generated within the interval –1.5 to 5 s, where 0 s represents the

time instant of task initiation. The baseline EEG acquired during the period –1.5 to –0.5 s was only used for the ERSP computation to preclude the data associated

with movement anticipation. Similarly, the data within the interval 0–1 s was disregarded as the subjects were ramping up to attain the target force of 40% MVC.

(B) To study the ERSP for the time window of post-movement synchronization (PMS), i.e., 0.25–1.25 s with 0 s denoting the time of task cessation, the data within the

range –4 to 2 s was epoched. Note that the data within the interval –4 to –2.5 s was replaced by the respective baseline data in every epoch. Yet, the baseline data

within the time span of –4 to –3 s was only considered for calculating the ERSP for the aforementioned reason. The data recorded during the period 0–0.25 s was

discarded because the subjects required a brief duration to ramp down the force and reach the resting state. (right panel) The mean (solid line) and the standard

deviation (shaded region) of the force recorded by a transducer during the intermittent elbow flexion trials performed by a male (bottom) and a female (top)

representative healthy volunteer. For every individual, the total trials were divided into three equal sets, with the first, second, and the third set of trials representing the

minimum, moderate, and severe fatigue condition. The task onset and offset are denoted by the event-markers, “Start” and “End” at 0 s and 5 s, respectively. Notice

that almost all the subjects could maintain a steady contraction within the interval 1–3 s after ramping up the force for about 1 s after the task onset.

EEG signals were reconstructed to produce ICA-cleaned EEG for
further analysis.

4. DATA ANALYSIS

We conducted the following ERSP analyses. (i) Channel-Level
ERSP Analysis. It was performed directly with the EEG data
recorded using electrodes mounted on the scalp over brain
regions of interest. (ii) Source-Level ERSP Analysis. First, the
ICs were estimated by decomposing the scalp EEG data with
the Extended Infomax ICA algorithm (Bell and Sejnowski, 1995).

Next, the ICs were clustered with the k-means algorithm from
the MATLAB Statistics Toolbox based on the location and
orientation of the equivalent dipoles to obtain physiologically and
anatomically separate brain sources. The parameters of k-means
were selected as the default values, i.e., the number of clusters
and the standard deviation to decide the outliers were eight and
three, respectively. The rule of thumb to determine the number
of k-means clusters is suggested as

√
V/2 in p. 365, Mardia et al.

(1980), where V is the number of data points to be clustered. In
our case, this value coincides with the default choice in EEGLAB:
on average there will be one IC component per subject per
cluster. Finally, the analysis was carried out with the plausible
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EEG sources (IC clusters) located within motor-related cortical
regions. In both cases, we performed the ERSP analysis with the
EEG data corresponding to the steady elbow flexion and post-
contraction (hatched blue region in Figures 2A,B, respectively).
By visually inspecting the force data in Figure 2 (right) that was
simultaneously measured with the force transducer, the steady-
contraction period was determined to be between 1 and 3 s
after the task initiation. The EEG data within the interval 0–
1 s (unhatched blue region in Figure 2A) was excluded from the
analysis since the subjects were ramping up to reach certain target
force that was set for the IMT trials. Likewise, while performing
the ERSP analysis for post-contraction, the data recorded from 0
to 0.25 s after the task offset (unhatched blue region in Figure 2B)
was disregarded because it would contain remnant task-related
EEG as the subjects were ramping down to rest after cessation of
the task. The EEG acquired during the time interval immediately
before the task onset, i.e., –0.5–0 s (unhatched pink region in
Figure 2A), was not considered as the baseline data, because this
data segment would be associated with movement anticipation
and hence does not represent the ideal state of rest. For the
same rationale, the baseline data from –3 to –2.5 s with respect
to the task offset (unhatched pink region in Figure 2B) was not
included in the ERSP calculation.

We computed the ERSP based on the formal definition
provided in Fuentemilla et al. (2006), Delorme et al. (2007),
and Meltzer et al. (2008) for the EEG data in a frequency
band of interest during the steady contraction or post-
contraction to compare the power spectral density (PSD)
between the fatigue conditions at the channel or source level.
Furthermore, we implemented the framework illustrated in
Supplementary Figure S2 to make statistical inferences. Recall
from Section 2.2.2 that the healthy volunteers repeated the
elbow flexion until they experienced severe fatigue (SevFatg),
which eventually led to the cessation of intermittent contractions.
We suppose that there would have been a steady progression
of fatigue as the subjects prolonged the IMT execution and
ultimately they reached SevFatg just before discontinuing the
motor task. On this premise, we divided the entire EEG data into
three sets with equal number of trials by preserving the order
to maintain the correspondence to minimum fatigue (MinFatg),
moderate fatigue (ModFatg), and SevFatg. For the ERSP analysis,
we selected only the first, middle, and the last 10% of trials from
the first, second, and third set of trials, respectively, to ensure that
the data germane to the three fatigue conditions are distinctly
disparate. In our EEG dataset, 10% of trials from every fatigue
condition varies between the subjects within the range [5, 9] and
has a median value of≈ 8.

Statistical Framework. For notational convenience in the
sequel, the subject (or component) index j and the fatigue
condition are omitted in Equations (1)–(4). The mean event-
related spectrum (ERS1) is the average data power spectrum
across M trials computed for the sliding time windows centered
at t in each trial, given by

1Readers are cautioned not to confuse this abbreviation with the conventional one
for event-related synchronization.

ERS(f , t) =
1

M

M
∑

k=1

|Sk(f , t)|2 (1)

with Sk(f , t) being the spectral estimate for trial k at frequency
f and time instant t. In the present setting, M denotes the total
number of trials for a given subject (channel-level) or component
in an IC cluster (source-level) corresponding to any one of the
three fatigue conditions. The term |Sk(f , t)|2 represents the power
spectrum for the k-th trial of subject (or component) j. We
apply the gain model, which is the default choice in EEGLAB
software that divides the contraction-induced spectral activity
by the pre-contraction spectral activity. For a given frequency
band, the absolute ERSP is computed by dividing the ERS
power in Equation (1) computed for the steady contraction or
post-contraction at each time-frequency point by the average
spectral power in the pre-contraction baseline period at the
same frequency.

As pointed out in Grandchamp and Delorme (2011), the log-
transformed measure of ERSP is endowed with the following
merits: (i) The EEG signal distribution, in general, is skewed. By
taking its logarithm, the distribution is made more normal, and
hence it becomes suitable for parametric inference testing. (ii)
The log-transformed power values help visualize a wider range of
power variations, whereas its absolute value leads to the masking
of power changes at high frequencies by those at low frequencies.
Therefore, the ERSP analyses and the results reported here are
based on the log-transformed ERSP in Equation (2) and its time-
averaged quantity in Equation (3), both expressed in decibels
(dBs):

ERSP(f , t) = 10 log10[ERS(f , t)⊘ BAVG(f )] (2)
∼

ERSP(f ) =
1

r

∑

¯
t∈R

ERSP(f ,
¯
t) (3)

where

BAVG(f ) =
1

pq

p
∑

k=1

∑

t̄∈Q

|Sk(f , t̄)|2 (4)

⊘ denotes Hadamard division, and r is the cardinality of the
set R of steady- or post-contraction time points. In Equation
(4), BAVG(f ) denotes the pre-contraction spectral power as a
function of f averaged over a total of q time points belonging
to the set Q in the baseline period across p trials. We derived
a common baseline for every subject (or component), i.e., the
power spectra of the pre-contraction data for the j-th subject
(or component) were averaged across the trials, time points, and
fatigue conditions. The rationale for using a common baseline
across fatigue conditions is to counteract the effect due to
fatigue-induced changes in the baseline to the best possible
extent. Consequently, p in Equation (4) represents the sum of
selected number of trials for a subject (or component) under
MinFatg, ModFatg, and SevFatg. We vertically concatenated the

row vectors
∼

ERSP
FatgCond

j for j = 1, 2, . . . ,N to construct a matrix
of size N × f as given by
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∼
ERSP

FatgCond

=



















∼
ERSP

FatgCond

1
∼

ERSP
FatgCond

2
...

∼
ERSP

FatgCond

N



















∈ R
N×f . (5)

To draw statistical inferences, we conducted the surrogate
permutation test with the following: (i) log-transformed ERSP

matrices ERSP
FatgCond
j defined in Equation (2) for frequencies in

the interval 3Hz to 90Hz and time period shown in Figure 2

(left); (ii) log-transformed time-averaged ERSP vectors that are
vertically concatenated as in Equation (5) to build the matrix

∼
ERSP

FatgCond

. Subsequently, we applied a false discovery rate
(FDR) correction test in both scenarios to assess how the FDR
was controlled for multiple comparisons (Lage-Castellanos et al.,
2010). Finally, we performed a one-way repeated measures
analysis of variance (ANOVA) test after averaging the PSD values

in
∼

ERSP
FatgCond

over the EEG frequency bands2 of interest, which

is henceforth referred to as
≈

ERSP
FatgCond

.

5. STATISTICAL INFERENCES

Permutation Test and FDR Correction. We studied the
log-transformed matrices ERSP

FatgCond
j and the vertical

concatenation of log-transformed time-averaged row vectors
∼

ERSP
FatgCond

with the surrogate permutation test from the
EEGLAB toolbox. We adopted the permutation test (Pesarin,
1992) that draws samples without replacement (Rimbert et al.,
2019), because the EEG data may not conform to the normality
assumption required by many statistical approaches. Moreover,
the test is deemed suitable for our small sample size, i.e., 14, and
in scenarios where the data contain outliers, which is more likely
our case. We selected the following values for the permutation
test: p < 0.05 and 2000 permutations. The test results validated
the differences among the three fatigue conditions in terms
of ERSP values at each time-frequency point. We applied the
FDR correction to control the type I errors in null hypothesis
testing when conducting multiple comparisons with a p-value
threshold of 0.05. The reason for employing FDR is that it is
less conservative compared to family-wise error rate (FWER)
controlling procedures and have greater power (Benjamini and
Hochberg, 1995).

One-Way Repeated Measures ANOVA and Bonferroni

Correction. A one-way repeated measures ANOVA

(Schober and Vetter, 2018) was performed with
≈

ERSP
FatgCond

obtained by averaging the log-transformed ERSP over the
steady-/post-contraction time interval and the frequency

2To obtain physiologically meaningful interpretation of results, both the channel-
level and source-level ERSP were computed for individual EEG frequency bands as
each one has different functional characteristics. The typical frequency bands and
their approximate spectral boundaries in adults (Tatum, 2021) are as follows: delta
- 1Hz to 4Hz; theta - 4Hz to 8Hz; alpha - 8Hz to 13Hz; beta - 13Hz to 30Hz; low
gamma - 30Hz to 50Hz; and high gamma - 50Hz to 80Hz.

band of interest to verify whether their means are different.
While ANOVA is considered to be robust when the normality
assumption is violated (Kirk, 2012), we rely on the log
transformation that enables the data distribution to be made
normal, thus rendering it suitable for parametric inference
testing. We conducted the multiple comparison test (post-hoc
analysis) with Bonferroni correction (Abdi, 2007), when the
p-value for the ANOVA was statistically significant to explore the
difference between the three group means while controlling for
the FWER.

6. RESULTS

The ERSP analysis was carried out across the three fatigue
conditions and the results were reported for the following
four schemes: (i) channel-level ERSP for steady contraction;
(ii) source-level ERSP for steady contraction; (iii) channel-
level ERSP for post-contraction; and (iv) source-level ERSP
for post-contraction.

6.1. Selected Channels and IC Clusters
Out of 124 EEG channels, we selected six channels, namely FC3,
C1, C3, C5, CP1, and CP3, corresponding to the scalp electrodes
mounted over the contralateral cortical regions associated with
the IMT (elbow flexion) for the channel-level analysis. Note that
all the 14 healthy participants were right-handed. To perform
the source-level analysis, first, the ICs were estimated from the
multichannel EEG signals by the ICA algorithm and fitted with
the equivalent dipoles via DIPFIT toolbox. Second, the ICs across
the subjects were clustered with k-means algorithm based on
the location and orientation of equivalent dipoles as described
in Section 3. Third, the scalp maps of cluster centroids and
the clusters of equivalent dipoles were visually inspected to
identify the plausible neural sources that were located in close
proximity to the cortical regions of interest responsible for the
upper extremity motor task. The dipole clusters of interest (blue
dots) and the respective cluster centroids (red dots) were shown
for the steady-contraction EEG in the first row and for the
post-contraction EEG in the second row of Figure 3.

6.2. ERSP Represented as Time-Frequency
Image
For a given fatigue condition, we computed the log-transformed
ERSP measure in Equation (2) from an EEG channel of
interest for all the 14 subjects in the channel-level analysis. The
EEG channel was replaced by an IC cluster of interest, while
performing the source-level analysis with the ERSPs computed
for the components of the cluster. We generated separate sets of

2-D patterns obtained by averaging ERSP
FatgCond
j over N subjects

(components), denoted as ERSP
FatgCond
AVG in the sequel, for the

steady and post-contraction using both analyses. We reiterate
that since our objective is to compare the PSDs across MinFatg,
ModFatg, and SevFatg, a subject- or component-wise common
baseline needs to be derived as in Equation (4) for calculating the
ERSP to minimize the effect of fatigue on the baseline. Among
the six selected channels, namely FC3, C1, C3, C5, CP1, and CP3,
representative ERSP patterns from CP1 and CP3 are displayed
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FIGURE 3 | The clusters of equivalent dipoles were identified based on their location and orientation with the k-means algorithm as described in Section 4 for

source-level analysis. Each IC cluster (Cls) is assigned an arbitrary index for identification; the number of ICs constituting the cluster and the number of associated

subjects (Ss) are provided within the parentheses. The IC clusters represent plausible neural sources estimated from steady-contraction EEG (row 1) and

post-contraction EEG (row 2), and they are located in the following brain regions: (row 1) Cls 3 - left cingulate gyrus; Cls 4 - left superior parietal gyrus; Cls 7 - right

paracentral lobule; Cls 9 - left transverse temporal gyrus; (row 2) Cls 4 - left precuneus; Cls 5 - right paracentral lobule; Cls 6 - left transverse temporal gyrus; and Cls

7 - left cingulate gyrus. The dipoles are marked with blue dots and the cluster centroids estimated by the k-means with red dots.

in Figure 4 (row 1 & 2) for the steady contraction. Likewise,
typical ERSP patterns from C3 and C5 are shown for the post-
contraction in Figure 5 (row 1 & 2). We performed the source-
level analysis on the following four IC clusters3 because they were
located within the cortical regions associated with the execution
of motor tasks and are shown in Figure 3: IC Cluster 3, 4, 7,
and 9 for the steady-contraction data and IC Cluster 4, 5, 6, and
7 for the post-contraction data. A sample set of patterns from
the source-level analysis is shown under each category—steady
contraction in Figure 4 (row 3) and post-contraction in Figure 5

(row 3). The task (elbow flexion) onset and offset are marked
in all the patterns with a dotted vertical line in Figures 4, 5,
respectively. The last column in both Figures 4, 5 is the pictorial
representation of the outcome of surrogate permutation test
subject to the FDR correction with p < 0.05. Interestingly, in
all instances from the channel- and source-level analysis for the
steady or post-contraction, we observed statistically significant
differences across MinFatg, ModFatg, and SevFatg at a large

3An IC cluster index is meant only for referring to a particular IC cluster without
any other significance.

collection of time-frequency points within the theta-, alpha-, and
beta-band frequency range.

6.3. ERSP Averaged Over Task-Related
Time Intervals
The PSD values of time-frequency points in ERSP

FatgCond
j were

averaged over time within the steady- (1–3 s) or post-contraction

(0.25–1.25 s) interval to deduce
∼

ERSP
FatgCond

j for j-th subject
(component) to help investigate how the PSD modulates across
the fatigue conditions in the steady- or post-contraction interval
as the frequency varies within the range 3–90 Hz. Simply put,

∼
ERSP

FatgCond

for a channel or neural source is the time-averaged
PSD for different subjects (components) expressed as a function
of frequency. For the steady contraction, the 1-D ERSPs are
plotted for channel CP1 and CP3 in the left and right panel
of Figure 6, respectively. Figure 7 (left panel) shows the plots
for IC Cluster 7, which comprises ICs located within a motor-
related cortical area (right paracentral lobule) as depicted in
Figure 7 (right panel). Notice that for CP1 and CP3, the PSD
averaged over time increases with fatigue maintaining a statistical
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FIGURE 4 | Representative 2-D patterns ERSP
FatgCond
AVG generated for the EEG data recorded from two scalp electrodes, CP1 and CP3, during the steady contraction

are depicted in the top and middle row, respectively. For the source-level analysis, the ICA decomposition was performed on the multichannel EEG signals and the IC

clusters were estimated. The ERSP patterns are shown in the bottom row for IC Cluster 7 that comprises ICs located near the right paracentral lobule. Both the

channel-level and source-level ERSP analyses reveal that the PSD computed in the theta, alpha, and beta frequency band scales with the fatigue level. The results

from the permutation test followed by the FDR correction with a threshold p-value of 0.05 (except for IC Cluster 7 with p < 0.01) are displayed in the last column in

every row. The dotted vertical line in each ERSP pattern denotes the onset of the elbow flexion task.

significance (p < 0.05) in the theta, alpha, and beta band per the
permutation test with FDR correction for multiple comparisons.
Also noteworthy is that in IC Cluster 7, even though the mean
PSD pertaining to ModFatg and SevFatg seems to overlap at
around 25Hz, the permutation test with FDR correction could
detect the difference at those frequencies. In like manner, the
channel- and source-level 1-D ERSPs for post-contraction are
exemplified in Figures 8, 9, which underscore our key finding,
i.e., in both analyses, the time-averaged PSD increases as the
perceived fatigue escalates in the theta, alpha, and beta band.

For post-contraction, the plots were generated from
∼

ERSP
FatgCond

for channel C3 and C5 (Figure 8 left and right panel) as well
as IC Cluster 5 (Figure 9 left panel) containing ICs positioned
in a cortical region related to motor function (right paracentral
lobule) (Figure 9 right panel).

6.4. ERSP Averaged Over Task-Related
Time Intervals and Frequency Bands
We averaged ERSP

FatgCond
j across the time and frequency points

within the steady-/post-contraction period and a motor-related
frequency band (theta, alpha, or beta), respectively. Thus,
the band-specific PSD values corresponding to a time period
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FIGURE 5 | Typical 2-D patterns ERSP
FatgCond
AVG for the EEG signals recorded during post-contraction with the scalp electrodes, C3 and C5, are shown in the top and

middle row, respectively. The set of ERSP patterns displayed in the bottom row corresponds to IC Cluster 5 situated in the right paracentral lobule. The ERSP patterns

offer evidence for a monotonic increase in the theta-, alpha-, and beta-band PSD with fatigue. The FDR-corrected p-values less than 0.05 threshold from the

permutation test are depicted in the last column to indicate the statistical significance. The dotted vertical line in each ERSP pattern represents the offset of the elbow

flexion task.

were evaluated for MinFatg, ModFatg, and SevFatg, which are

represented as a vector
≈

ERSP
FatgCond

of length N for all the
subjects (components). The statistical inferences help verify
whether the averaged ERSP measure maintains a monotonic
relationship with fatigue and differs between the three fatigue
conditions with a statistical significance. To this end, we applied

a one-way repeated measures ANOVA to
≈

ERSP
FatgCond

values
estimated for the subjects (channel-level) or IC components
(source-level). If the test results turned out to be overall
significant (p < 0.05), then we conducted the post-hoc analysis
with Bonferroni correction to determine the significance of
differences between pairs of group means. For a given frequency

band, the pairwise differences of time- and frequency-averaged
PSD between the three fatigue groups were visually inspected
with the box plots. For the steady contraction, the box plots are
provided for two EEG channels—CP1 (row 1) and CP3 (row
2)—and IC Cluster 7 (row 3) in Figure 10. Similarly, Figure 11
contains the box plots of channel C3 (row 1), C5 (row 2), and IC

Cluster 5 (row 3) for the post-contraction data. The first, second,
and third column of Figures 10, 11 correspond to theta, alpha,
and beta band, respectively. With a couple of exemptions (shaded

in gray in Table 1),
≈

ERSP
FatgCond

scales with fatigue for the EEG
channels and IC clusters pertinent to the motor and sensory
cortical areas during the steady- and post-contraction period.
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FIGURE 6 | The ERSP values at time-frequency points were averaged over the steady-contraction period of 1 s to 3 s for EEG signals. The plots produced from
∼

ERSP
FatgCond

help understand how the time-averaged PSD computed for the scalp EEG varies with IMT-induced fatigue. The mean and standard deviation (std) of

PSD pertaining to the three fatigue conditions are expressed as functions of frequency within the range 3Hz to 90Hz for the EEG channel CP1 (left panel) and CP3

(right panel). The frequencies at which the PSD differs across the fatigue conditions with a statistical significance (p < 0.05) are assigned a value one and the rest of

the frequencies a value zero by the FDR-corrected mask.

FIGURE 7 | The steady-contraction ERSP averaged over time,
∼

ERSP
FatgCond

, portrays how the PSD for IC Cluster 7 modulates across MinFatg, ModFatg, and

SevFatg, as a function of frequency (left panel). The FDR-corrected mask indicates that a statistically significant (p < 0.05) difference in PSD between the three fatigue

conditions is maintained throughout the EEG frequency spectrum except the delta band. The brain sources (ICs) marked as equivalent dipoles (blue dots) in Cluster 7

and the cluster centroid (red dot) are located in vicinity to the right paracentral lobule (right panel).
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FIGURE 8 | The PSD values in ERSP
FatgCond
j were averaged over the post-contraction interval of 0.25 s to 1.25 s to obtain the mean and std of time-averaged PSD for

frequencies from 3Hz to 90Hz for the EEG channel C3 (left panel) and C5 (right panel). The FDR-corrected mask illustrates that the PSD values differ between the

fatigue conditions at theta-, alpha-, and beta-band frequencies with a statistical significance (p < 0.05).

FIGURE 9 | The post-contraction ERSP averaged over time,
∼

ERSP
FatgCond

, shows the PSD variations across the fatigue conditions for the frequency range 3Hz to

90Hz in IC Cluster 5 (left panel). The FDR-corrected mask indicates that the time-averaged ERSP differs between fatigue levels with a statistical significance

(p < 0.05) in the entire frequency range except in the delta and high gamma band. The equivalent dipoles corresponding to ICs (blue dots) in Cluster 5 and its centroid

(red dot) are seated within the right paracentral lobule or SMA (right panel).

The subject-wise baseline PSD averaged over the trials

in a given fatigue condition B
FatgCond
j was log-transformed

as 10 log10[B
FatgCond
j − BAVG]. The quantity thus expressed

in dB was averaged over the task-related (steady or post-
contraction) baseline time interval and a specific frequency band,

denoted as
≈
B
FatgCond

collectively for N subjects (components).
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FIGURE 10 | To study the modulation of band-specific ERSP values across the fatigue conditions, the time-averaged PSD values for the steady contraction and

baseline were averaged over the EEG frequency bands of interest. The box plots of
≈
B
FatgCond

and
≈

ERSP
FatgCond

in the theta, alpha, and beta frequency band for CP1

(row 1) and CP3 (row 2) affirm that the theta-, alpha-, and beta-band PSD scale with the fatigue level during the baseline (B) and steady-contraction (Cs) interval.

Likewise, the theta-, alpha-, and beta-band PSD computed for IC Cluster 7 proportionally vary with fatigue during B and Cs period (row 3).

In Figures 10, 11, the box plot of band-specific
≈
B
FatgCond

for a
fatigue condition is displayed beside the respective box plot of

≈
ERSP

FatgCond

for the steady contraction and post-contraction,
respectively. In IMT-related EEG channels and IC clusters,
≈
B
FatgCond

increases as the fatigue grows in concordance with the

changes observed in
≈

ERSP
FatgCond

across the fatigue conditions.
A reasonable explanation could be that the fatigue task affects the
brain activity at rest in the same manner as during the steady or
post-contraction, suggesting either a compensatory mechanism
to reduce inhibition for facilitatingmotor planning and execution
or a direct manifestation of neural fatigue. Recall from Section 4
that a common baseline BAVG is derived using Equation (4)
in our analysis in order to counteract the changes induced by

fatigue in the baseline. To summarize,
≈

ERSP
FatgCond

as well as

≈
B
FatgCond

remain proportional to the fatigue level as portrayed in
Figures 10, 11.

A critical aspect of this analysis stems from the fact that
human EEG signals are inherently non-stationary due to noise
and voluntary neural dynamics (Raza et al., 2019; Yang et al.,
2021). In the current study design, since the ERSP representing
MinFatg, ModFatg, and SevFatg state is estimated from EEG
data acquired chronologically in time, it is highly probable that
the fatigue-induced changes in ERSP overlap the signal non-

stationarities. Furthermore, as shown in Figures 10, 11,
≈
B
FatgCond

exhibits a trend similar to
≈

ERSP
FatgCond

as fatigue progresses.
In order to empirically tease out the confounding factor owing
to the non-stationarity of EEG signals, we repeated the same
analysis with motor/fatigue-unrelated channels and IC sources to
inspect if the ERSP-fatigue proportional relationship still persists.
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FIGURE 11 | Given a frequency band of interest, the PSD values were averaged over the post-contraction and the respective baseline interval. From the box plots of
≈
B
FatgCond

and
≈

ERSP
FatgCond

for the theta, alpha, and beta frequency band, one can infer that the band-specific time-averaged PSD scales with fatigue for C3 (row 1),

C5 (row 2), and IC Cluster 5 (row 3) during the baseline (B) and post-contraction (Cp) period.

In the strictest sense,
≈

ERSP
FatgCond

computed for the brain
sources dissociated frommotor areas is not expected to scale with
fatigue, given that the results reported are noncontingent on EEG
signal non-stationarities. Interestingly enough, as exemplified
in Figure 12, the brain sources not confined to motor-related
cortical areas did fail to maintain the monotonically increasing
trend with growing fatigue, thus mitigating this dilemma.
Nevertheless, the discussion on why the ERSP computed for
unrelated channels and neural sources in practice may still carry
the traces of fatigue-induced changes is deferred to Section 7.

The F- and p-values of ANOVA and p-values quantifying
the statistical significance of pairwise ERSP differences between
the fatigue groups—Min-Mod Fatg, Min-Sev Fatg, and Mod-Sev
Fatg—for theta, alpha, and beta band are reported in Table 1

(steady contraction) and Table 2 (post-contraction). We remark
that a majority of pairwise differences—MinFatg vs. SevFatg and
MinFatg vs.ModFatg—remain statistically significant (p < 0.05

and p < 0.01). Of note, the ERSP difference between ModFatg
and SevFatg is seldom marginally significant (p < 0.1) and yet
the ERSP-fatigue proportional relationship is well preserved. We
conjecture that it could be because some subjects would not
have encountered extreme fatigue and the EEG suffers from a
large inter-subject variability. Based on this premise, we conclude
that during the steady as well as post-contraction, as fatigue
progresses due to a prolonged IMT involving upper extremities,
the PSD estimates from EEG channels and IC clusters associated
with sensory and motor cortex have the tendency to increase in
proportion to the fatigue level.

6.5. Can ERSP Help Classify Fatigue
Levels?
As reported earlier, the ERSP pertaining to a fatigue condition
exhibits a large inter-subject variability, which would pose
challenges if ERSP is regarded as a standalone biomarker
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TABLE 1 | A one-way repeated measures ANOVA was conducted with the time-averaged theta-, alpha-, and beta-band PSD values
≈

ERSP
FatgCond

deduced from the

scalp EEG and neural sources during the steady contraction.

Channel/ Frequency ANOVA ANOVA Min-Mod Fatg Min-Sev Fatg Mod-Sev Fatg

IC cluster band F-Value p-Value p-Value p-Value p-Value

θ 4.72e+00 1.78e-02 6.83e-02 8.93e-02 9.71e-01

FC3 α 7.67e+00 2.41e-03 2.16e-01 5.31e-03 2.12e-01

β 7.70e+00 2.36e-03 3.86e-01 2.40e-02 2.79e-02

θ 4.56e+00 2.01e-02 2.09e-01 9.02e-02 3.90e-01

C1 α 1.09e+01 3.61e-04 3.73e-02 2.87e-03 1.61e-01

β 9.06e+00 1.04e-03 1.02e-01 1.53e-02 4.94e-02

θ 5.82e+00 8.14e-03 1.74e-02 5.64e-02 7.94e-01

C3 α 1.08e+01 3.87e-04 2.72e-02 3.36e-03 2.27e-01

β 6.24e+00 6.13e-03 1.99e-01 4.57e-02 1.38e-01

θ 7.00e+00 3.70e-03 6.48e-03 3.15e-02 7.46e-01

C5 α 7.91e+00 2.08e-03 1.42e-01 9.66e-03 1.88e-01

β 5.86e+00 7.93e-03 7.60e-01 5.82e-02 8.31e-02

θ 4.36e+00 2.32e-02 6.10e-02 8.92e-02 8.83e-01

CP1 α 1.23e+01 1.74e-04 1.34e-03 2.87e-03 2.72e-01

β 1.07e+01 4.14e-04 3.46e-03 1.11e-02 1.54e-01

θ 5.70e+00 8.85e-03 1.62e-02 6.07e-02 5.93e-01

CP3 α 1.37e+01 8.63e-05 1.47e-03 1.89e-03 2.06e-01

β 9.63e+00 7.43e-04 1.42e-02 1.30e-02 1.29e-01

θ 1.80e+00 1.88e-01 –– –– ––

Cls 3 α 2.69e+00 8.85e-02 –– –– ––

β 2.92e+00 7.35e-02 –– –– ––

θ 5.87e+00 7.05e-03 6.26e-02 2.86e-02 4.16e-01

Cls 4 α 1.16e+01 1.89e-04 3.14e-04 3.91e-03 2.37e-01

β 8.92e+00 9.13e-04 5.50e-02 1.62e-02 5.82e-02

θ 5.14e+00 1.21e-02 6.55e-02 8.63e-02 1.00e+00

Cls 7 α 1.04e+01 3.63e-04 1.50e-02 7.29e-03 1.00e+00

β 1.88e+01 5.16e-06 1.11e-03 1.10e-03 1.00e+00

θ 1.71e+00 2.09e-01 –– –– ––

Cls 9 α 5.49e+00 1.37e-02 2.06e-01 1.84e-02 5.17e-01

β 3.90e+00 3.93e-02 9.34e-01 6.67e-02 4.41e-01

The F- and p-values of ANOVA and the p-values from the post-hoc analysis (if p < 0.05 from ANOVA) are listed. The light, medium, and dark shades of red denote that the PSD

increases with fatigue with a statistical significance of p < 0.1, p < 0.05, and p < 0.01, respectively. The counter cases, where the PSD decreases as the fatigue increases without a

statistical significance, are shaded in gray.

or feature to detect the level of fatigue within a multi-class
classification framework. To further explore, we attempted to
classify 12-D ERSP feature vectors deduced from the steady- and
post-contraction EEG data into MinFatg, ModFatg, and SevFatg
with a linear support vector machine (SVM). Each feature
vector comprises the ERSP from individual trials computed
for six EEG channels (FC3, C1, C3, C5, CP1, and CP3) and
two frequency bands (alpha and beta) of interest. The accuracy
(Ac) of binary classification (MinFatg and SevFatg) from a
10-fold cross validation is 78.22% for the steady-contraction

and 71.72% for the post-contraction EEG data. When all
the three classes were taken into account, as anticipated, Ac
deteriorated to 55.78% and 55.23% for the data acquired during
the steady- and post-contraction interval, respectively. The
confusion matrices for the binary and three-class classification
are presented in Supplementary Figure S3. This means that the
classifier could perform only marginally better than a chance-
level assignment (33%) if three fatigue levels are considered.
Interestingly, the classification results corroborate with the p-
values from the post-hoc analysis (recorded in Tables 1, 2),
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FIGURE 12 |
∼

ERSP
FatgCond

for IC Cluster 8 computed with the steady-contraction EEG data bears evidence to the fact that the time-averaged PSD fails to scale with

the fatigue level throughout the frequency range of interest (row 1: left panel) since the brain source is not located inside a motor-related cortical area (row 1: right

panel). The time-averaged band-specific PSD remains disproportional to the fatigue level as can be noted from the box plots of
≈
B
FatgCond

and
≈

ERSP
FatgCond

for the

theta, alpha, and beta frequency band (row 2).

which reflect significant ERSP differences between MinFatg and
SevFatg and not so between the remaining pairs—MinFatg
vs.ModFatg and ModFatg vs. SevFatg. We remark that neither
were the SVM hyperparameters tuned nor were an appropriate
kernel function and the optimal feature set sought to enhance
the classifier performance. In conclusion, even though our
findings underscore that the ERSP during the steady- and post-
contraction period in the alpha and beta EEG frequency band
scales with fatigue levels, thus serving as a reliable proxy for
central fatigue, implementing a machine learning approach to
accurately predict the fatigue level from ERSP values is not a
trivial extension and hence beyond the scope of our study.

7. DISCUSSION

Cortical Regions/Channels of Interest. For the ERSP analysis,
we have selected the EEG signals recorded from the electrodes,
namely FC3, C1, C2, C3, CP1, and CP3, that overlay the following

brain regions: (i) motor cortex comprising M1 (Brodmann area
4), premotor cortex, and SMA (Brodmann area 6); (ii) primary
somatosensory cortex (Brodmann area 1, 2, 3); and (iii) superior
parietal lobule (Brodmann area 5) (Donoghue and Sanes, 1994;
Rosenbaum, 2009). The motor cortex is responsible for executing
motor activities, especially contralateral upper-extremity muscle
contractions as well as learned motor sequences. The premotor
and SMA offer sensory guidance of movement, control
proximal and trunk muscles, and plan complex and coordinated
motor actions. The primary somatosensory cortex is associated
with sensory perception involving arms and hands and
helps with motor learning. The superior parietal lobule
plays a crucial role in planned movements, receives sensory
inputs from peripheral sources, and coordinates fine motor
skills (Donoghue and Sanes, 1994; Rosenbaum, 2009). Since
all the 14 individuals are right-handed, the EEG electrodes
on the motor areas of the left (contralateral) hemisphere
were selected.

Frontiers in Human Neuroscience | www.frontiersin.org 16 March 2022 | Volume 16 | Article 770053

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Suviseshamuthu et al. EEG-Spectral-Power Modulation in Motor-Task-Induced Fatigue

TABLE 2 | A one-way repeated measures ANOVA and the post-hoc analysis (if p < 0.05 from ANOVA) resulted in the following F- and p-values for the time-averaged

theta-, alpha-, and beta-band
≈

ERSP
FatgCond

computed from the EEG signals and IC sources during post-contraction.

Channel/ Frequency ANOVA ANOVA Min-Mod Fatg Min-Sev Fatg Mod-Sev Fatg

IC cluster band F-Value p-Value p-Value p-Value p-Value

θ 6.30e+00 5.88e-03 3.21e-01 5.79e-03 3.49e-01

FC3 α 1.29e+01 1.26e-04 8.02e-03 1.47e-03 5.11e-01

β 1.01e+01 5.66e-04 1.13e-01 4.17e-03 8.39e-02

θ 7.61e+00 2.50e-03 1.58e-01 7.91e-03 2.38e-01

C1 α 1.55e+01 3.62e-05 4.17e-03 5.20e-04 3.72e-01

β 9.90e+00 6.34e-04 4.06e-02 5.42e-03 2.29e-01

θ 1.04e+01 4.82e-04 6.87e-02 1.14e-03 1.90e-01

C3 α 1.64e+01 2.48e-05 3.22e-03 1.87e-04 3.77e-01

β 1.37e+01 8.70e-05 5.34e-02 1.59e-03 2.94e-02

θ 7.82e+00 2.19e-03 6.71e-02 5.16e-03 3.98e-01

C5 α 1.81e+01 1.19e-05 5.74e-03 1.18e-04 1.51e-01

β 1.77e+01 1.39e-05 1.36e-02 9.77e-04 1.20e-02

θ 1.02e+01 5.47e-04 1.35e-01 3.51e-03 7.67e-02

CP1 α 1.55e+01 3.77e-05 9.38e-03 1.77e-04 3.08e-01

β 1.12e+01 3.10e-04 4.79e-02 5.13e-03 6.85e-02

θ 1.01e+01 5.58e-04 2.05e-02 3.69e-03 3.24e-01

CP3 α 2.09e+01 3.81e-06 1.58e-03 2.07e-05 2.88e-01

β 1.55e+01 3.63e-05 3.74e-02 1.08e-03 1.53e-02

θ 2.88e+00 6.77e-02 –– –– ––

Cls 4 α 1.31e+01 4.16e-05 1.16e-03 2.23e-03 2.54e-01

β 9.64e+00 3.82e-04 1.38e-02 5.32e-03 1.68e-01

θ 4.22e+00 2.25e-02 2.11e-01 6.79e-02 8.51e-01

Cls 5 α 1.29e+01 5.84e-05 1.22e-02 1.44e-03 2.34e-01

β 1.68e+01 6.89e-06 4.80e-03 1.57e-04 5.64e-01

θ 2.38e+00 1.16e-01 –– –– ––

Cls 6 α 8.87e+00 1.50e-03 3.43e-02 4.49e-03 4.94e-01

β 9.30e+00 1.18e-03 1.67e-01 3.32e-03 1.65e-01

θ 1.01e+01 6.69e-04 1.61e-02 1.90e-02 1.00e+00

Cls 7 α 1.33e+01 1.27e-04 1.47e-02 6.12e-03 1.00e-01

β 8.79e+00 1.37e-03 3.47e-02 2.96e-02 3.39e-01

The light, medium, and dark shades of blue mark the increase in PSD as fatigue escalates with a statistical significance of p < 0.1, p < 0.05, and p < 0.01, respectively.

Relevance of IC Cluster Locations to Motor Task/Fatigue.

The task-relevant IC clusters obtained from the steady and
post-contraction EEG data point to neural sources residing in
the following four regions: left cingulate gyrus, left superior
parietal gyrus/left precuneus, right paracentral lobule (SMA),
and left transverse temporal gyrus. These brain regions were
found to have an association with the upper-extremity motor
task performance and/or fatigue by the previous studies. The
dorsal anterior cingulate cortex is responsible for the mediation
of task-related motor control and has connections to premotor
and sensorimotor areas (Asemi et al., 2015). In an fMRI study

on the submaximal fatigue task, a steady increase of the BOLD
signal in the cingulate gyrus has been observed during both
the sustained and intermittent muscle contractions (Liu et al.,
2003). The superior parietal cortex has been demonstrated to
play a crucial role in the reach-to-grasp action that involves the
elbow flexion movement (Cavina-Pratesi et al., 2010). An MEG
study with the bimanual load-lifting task showed the involvement
of precuneus, which is contralateral to the load-lifting forearm,
in the elbow-joint flexion movement (Di Rienzo et al., 2019).
The SMA is an important source of upstream drive to M1
and sends projections to M1 (Muakkassa and Strick, 1979). It
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has an extensive transcallosal connectivity and plays a critical
role in uni/bimanual muscle activation (Grefkes et al., 2008).
Reportedly, the fatiguing tasks reduce the SMA activity, which
in turn decrease the excitatory drive to the corticospinal neuron
pool (Sharples et al., 2016).

Frequency Bands of Interest. We investigated the ERSP
measure computed in the theta, alpha, and beta band across three
fatigue conditions for the following rationale. Theta Frequency

Band. An increase in the region-specific theta-band activity
has been observed with sensorimotor processing (Cruikshank
et al., 2012). The theta activity on the contralateral motor
cortex is modulated by acceleration and associated with adaptive
adjustments during upper limb movements (Ofori et al., 2015).
The theta-band power in the contralateral motor cortex serves
as a marker for enhanced control engagement across cortical
regions. Moreover, theta synchrony observed at the start of
movement in the premotor cortex and anterior cingulate
cortex is critical for motor execution (Paus, 2001; Ofori
et al., 2015). Therefore, the theta-band power is thought to
be linked to the upper limb movement and the acceleration
of the movement (Ofori et al., 2015). Alpha Frequency

Band. A decrease in the alpha-band activity is commonly
encountered during movement [referred to as event-related
desynchronization (ERD)], which reflects the excitability of
neurons due to activation in a specific cortical region (Toro et al.,
1994; Babiloni et al., 1999; Neuper and Pfurtscheller, 2001). A
suppression in the alpha-band activity is interpreted as a release
from the inhibition caused by alpha ERD (Klimesch, 2012). This
phenomenon has been observed in the ipsilateral motor and
somatosensory areas near the movement cessation in proportion
to the task demands (Ofori et al., 2015). Beta Frequency Band.
The beta-band spectral power tends to reduce over bilateral
motor cortex at the beginning of movement (Cruikshank et al.,
2012; Gwin and Ferris, 2012; Pastötter et al., 2012; Kilavik et al.,
2013). However, the beta-band activity in the contralateral motor
area is not altered at the acceleration phase of movement but it
increased during the deceleration phase (Ofori et al., 2015).

fMRI Studies with Corroborating Findings. The study
findings corroborate with the inferences drawn from many
fatigue studies. Imaging studies conducted during fatigue tasks
involving single-limb contractions induced changes in the
activity of motor cortex and other brain regions. Engaging
in prolonged submaximal contractions with dominant hand
muscles progressively increased the fMRI BOLD signal from
the contralateral and ipsilateral sensorimotor cortex, SMA, and
cingulate motor cortex (Liu et al., 2003; Benwell et al., 2007;
Van Duinen et al., 2007). The activation in the motor cortex (Post
et al., 2009) and sensorimotor cortex (Liu et al., 2002; Steens et al.,
2012) increased during sustained maximal efforts as inferred
from the BOLD signal. The increase in the BOLD signal due
to submaximal and maximal tasks is attributed to simultaneous
excitatory and inhibitory activity, recruitment of neurons to
engage muscles noncritical to the task, and effects induced by
the modified sensory feedback (Post et al., 2009). However, in the
case of submaximal efforts, an augmented BOLD signal implies
an increase inmotor cortex output due to excitatory input (Taylor
et al., 2016). In a fatigue task study involving repetitive MVCs

of finger flexor muscles (Liu et al., 2005b), the fMRI signal
level in the primary, secondary, and association motor-function
cortices remained unaltered throughout the task as opposed to
the findings from a continuous muscle contraction (Yang et al.,
2010). The fMRI studies suggest that disparate cell populations
might be responsible for controlling sustained and intermittent
voluntary motor activities. Thus, our study offered additional
evidence to support that the motor cortical centers control the
repetitive and continuous fatigue task differently.

MEG Studies. AnMEG-based study concerning the influence
of physical fatigue due to submaximal contractions on the
PMBR and movement-related beta decrease (MRBD) within
the contralateral sensorimotor cortex concluded the following:
the physical fatigue gives rise to (i) an enhanced PMBR
and (ii) cancellation of attenuation in MRBD related to task
habituation (Fry et al., 2017). The MEG beta- and gamma-
band power reduction with respect to relaxation period was
less pronounced during the execution of a non-fatiguing motor
task performed after producing muscle fatigue (Tecchio et al.,
2006). In contrast to our findings, a fatigue-inducing task session
with repetitive handgrips at MVC led to a decrease in the MEG
alpha-band power in the ipsilateral sensorimotor and prefrontal
areas (Tanaka et al., 2015).

EEG Studies with Corroborating Findings. Submaximal
handgrip isometric contractions inducing progressive fatigue
resulted in a significant increase in MRCP at the precentral (Cz
and FCz) and central contralateral (C3) electrode sites (Johnston
et al., 2001). In like manner, the central fatigue induced by
submaximal (Guo et al., 2014) and lower limb (Berchicci et al.,
2013) isometric contractions increased the amplitude of MRCP
in M1, prefrontal cortex, SMA, and premotor cortex. The muscle
fatigue was reported to increase the MRCP amplitude during
movement execution (De Morree et al., 2012). A significant
increase in EEG power within the alpha and beta band was
noticed as fatigue developed from a high-intensity cycling
exercise in the following cortical regions: parietal and limbic
regions (Schneider et al., 2009); Brodmann area 11 (both alpha
and beta bands) and parietal lobe (only beta band) (Hilty et al.,
2011); SMA, frontal, and parietal lobes (Enders et al., 2016).
During repetitive force grip submaximal contractions, the area
under the curve of readiness potential4 doubled at electrode
Cz and increased fourfold at electrodes C3’ and C4’ (1 cm
anterior to C3 and C4, respectively) that cover the motor cortex
(Schillings et al., 2006).

EEG Studies with Contradictory Findings. Contrary to
what we have observed in the submaximal contractions, the
intermittent handgrip MVCs were reported to have significantly
decreased the MRCP with fatigue during the sustained phase
of muscle contractions. A significant fatigue-related EEG power
decline was observed at alpha 2 (C3), beta 1 (C3 and Fz), and beta
2 (C3, Cz, and C4) bands (Liu et al., 2005a). Similar contradictory
outcome was reported from a sustained (submaximal) voluntary
handgrip contraction to fatigue (Nishihira et al., 1995); a decrease
in alpha 1 and alpha 2 power was observed at Cz, C4, P3, and

4A negative movement-related cortical EEG potential appearing over the scalp
about 1 s prior to a self-paced motor act.
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P4 during the second half of the contraction compared to the
first half, whereas the power increased at the frontal position.
Moreover, the mean EEG power measured during the rest, pre-
fatigue, and post-fatigue state from a sustained Adductor pinch
task until fatigue performed at two different target values did not
produce a significant difference across the three states in alpha,
beta, or gamma band (Sh et al., 2020).

Influence of Age and Gender on the PSD-Fatigue

Relationship. Even though the participants’ age falls within
the range 26 − 72 years, only two of them exceeded 65 years.
This means that the rest of the subjects were middle-aged
(26 − 59 years). Therefore, we refrain from comparing the
fatigue-related PSD modulation across different groups based
on the age criterion, e.g., two groups consisting of young (< 65
years) and old (≥ 65 years) participants. Nevertheless, we
repeated the analyses by excluding the EEG signals from older
(≥ 65 years) subjects to verify whether the results could have
been impacted by the data from the two outliers—subjects of
age 70 and 72 years—in the former analyses. Interestingly, the
outcome of both the channel- and source-level-analysis with the
data from the remaining 12 subjects is in total agreement with
what we have already inferred from the original dataset. Recall
that the dataset consists of EEG from six male and eight female
volunteers. To make sure that the conclusions arrived at are
gender-independent, we carried out the channel-level analysis
with the male and female participants separately and examined
the outcome. Notwithstanding the gender difference, the spectral
power varies relative to the fatigue level for the data from the
channels of interest, provided theta-, alpha-, and beta-band
frequencies are considered for statistical inferences (refer to
Supplementary Figure S4).

Future Perspectives. Past studies have reported the
association of fatigue with the following frequency bands
in pathological conditions: theta, alpha, or beta band in chronic
fatigue syndrome (Siemionow et al., 2004; Flor-Henry et al., 2010)
and multiple sclerosis (Leocani et al., 2001; Vecchio et al., 2017);
alpha and/or beta band in burnout syndrome (Luijtelaar et al.,
2010); theta, alpha, beta, and gamma band in cancer (Allexandre
et al., 2020). In this respect, our study outcome will provide
a reference and help investigate how fatigue would alter
the spectral power in pathologies in comparison to healthy
individuals. In particular, our future research direction would be
to investigate how the EEG-based spectral power changes due
to fatigue compare between cancer or multiple sclerosis patients
and healthy volunteers, thus enhancing our understanding of the
effect of a brain pathology on the central fatigue mechanism.

Furthermore, in lieu of the common baseline considered in
this work that takes into account the rest period corresponding to
all the trials, the common baseline derived from only theMinFatg
trials may be used. We tested both the baseline options and the
findings were consistent.

Study Limitations. Although the EEG data represent brain
activities related to fatigue conditions derived from the scalp
electrodes and underlying source regions, the data are influenced
by connectivity with other cortical and subcortical areas (Jiang
et al., 2012, 2016), which could not be determined by this
study. Aside from a small sample size, a major limitation of

this study is the inter-subject variability in terms of the ERSP
measure. For instance, 1-D ERSP plots from two subjects are
portrayed in Supplementary Figure S5, where the PSD changes
with respect to fatigue levels within a frequency band of interest
are quite dissimilar. Admittedly, in a few subjects as exemplified
in these plots, we failed to notice a monotonous increase of
PSD in a specific motor-related cortical area (or EEG channel)
within the theta, alpha, or beta frequency band as the perceived
fatigue increases. One plausible explanation could be that the
availability of multiple cortical centers that control one motor
task or muscle group makes it possible to “shift the activation
center” to compensate for fatigue as demonstrated in Liu et al.
(2007). However, this phenomenon was not widely observed and
the avoidance of central fatigue by shifting neuron populations
linked to a fatiguing motor task requires further investigation.

In the channel-level ERSP analysis, the EEG recordings do
not entirely represent the electrical potential generated by the
cortical tissues right beneath the respective scalp electrodes
due to the volume-conduction effect (Nunez et al., 1997).
The scalp EEG signals will further be linearly combined
when they are reconstructed with the neural ICs extracted via
IC pruning. On the other hand, the source-level analysis is
carried out with IC clusters produced by k-means algorithm,
which does not guarantee that the ICs in each cluster are in
close proximity to each other and located in one functional
area of cerebral cortex. Furthermore, the source localization
is performed with the DIPFIT toolbox in EEGLAB, which
introduces inaccuracies—deviation between the location of
estimated dipoles and true sources—in the order of around
10mm (Knyazev, 2013). Also, the lack of subject-specific MRIs
and 3-D-digitized EEG electrode locations in the present study
would interfere with the precise estimation of dipole positions.
The aforementioned factors would have led to the overlapping of
information borne by different scalp electrodes or IC clusters in
the channel- or source-level analysis, respectively. Consequently,
the traces of fatigue-induced alterations in ERSP are likely to be
present even in channels and sources that are not directly linked
to motor tasks.

Pointers for Improvement. The inherent shortcomings of
EEG can be overcome by performing the analysis with other
neuroimaging techniques having a better spatial resolution,
e.g., electrocorticography and fMRI. To enhance the source
localization accuracy, the future studies may investigate
distributed source modeling methods recommended in Handiru
et al. (2018) as well as incorporate individual MRIs and
3-D-digitized EEG positions (Shirazi and Huang, 2019).

We remark that the ERD—decrease of cortical spectral power
in the alpha and beta frequency bands during contractions in
relation to the baseline period—was not conspicuous, which is
contrary to the observation reported in Cremoux et al. (2013)
with the EEG data from an isometric elbow flexion task at
different force levels. We speculate that it could be because
of our experimental design dedicated to study the effect of
fatigue on the cortical spectral power during the steady5- and

5This duration is 1–3 s after the task onset, whereas the ERD should attain the peak
value right after the onset.
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post-contraction period. Finally, we opine that the source-
level analysis can be further improved by employing more
sophisticated source-separation approaches instead of traditional
ones that assume that the underlying sources have a large
kurtosis, whereas the distributions of EEG/MEG sources tend to
be multimodal (Knuth, 1998).

8. CONCLUSIONS

In the present study, by dividing the EEG data from intermittent
submaximal elbow flexions until subjective exhaustion into
three equal segments, each one representing progressive levels
of fatigue—minimum, moderate, and severe—the changes in
various EEG band power with regard to fatigue levels were
studied. Key Findings in a Nutshell. Our channel- and source-
level analyses offer insights into the effect of progressive fatigue
during a prolonged intermittent contraction task on the EEG
cortical rhythms: (i) The theta, alpha, and beta PSDs scale with
fatigue in cortical motor areas. These signal changes most likely
are associated with progressively increasing the effort to continue
the motor task to compensate for progressive fatigue. The
fMRI (Dai et al., 2001) and EEG-measured MRCP (Siemionow
et al., 2000) studies have reported a linear relationship between
fMRI/MRCP signals and level of effort (level of voluntary
force). (ii) The pairwise PSD differences between the fatigue
conditions maintain a statistical significance—especially in
minimum vs. severe fatigue. (iii) The relationship described in (i)
and (ii) between the band-specific spectral power and the fatigue
level is exhibited by the steady- and post-contraction EEG data.
(iv) The source-level analysis reveals that the fatigue effect on
PSD is prevalent in SMA, superior parietal cortex, and cingulate
gyrus during the steady and post-contraction period. (v) The
age-related and gender-based differences do not seem to have an
influence on the fatigue-PSD behavior.

To the best of our knowledge, the spectral power changes
in relation to graded fatigue levels were not investigated by
past studies. Furthermore, as mentioned earlier, the inferences
drawn would help clarify the inconsistencies and contradictions
among the findings from fMRI, MEG, and EEG fatigue
studies involving intermittent/sustained maximal/submaximal
contractions. Importantly, since the results point to fatigue-
induced changes in the cortical activation in healthy individuals,
they would serve as a reference to evaluate the alterations in
spectral power caused by fatigue in pathological conditions
such as cancer and multiple sclerosis. We envisage that the
neural underpinnings of graded fatigue would provide pointers
to design effective rehabilitation therapies for patients suffering
from movement disorders and related fatigue symptoms.
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