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Abstract: The electronic, structural and optical properties (including Spin–Orbit Coupling) of metal
nitrosyl complexes [M(CN)5(NO)]2− (M = Fe, Ru or Os) are investigated by means of Density
Functional Theory, TD-DFT and MS-CASPT2 based on an RASSCF wavefunction. The energy profiles
connecting the N-bound (η1-N), O-bound (η1-O) and side-on (η2-NO) conformations have been
computed at DFT level for the closed shell singlet electronic state. For each structure, the lowest singlet
and triplet states have been optimized in order to gain insight into the energy profiles describing
the conformational isomerism in excited states. The energetics of the three complexes are similar—with
the N-bound structure being the most stable—with one exception, namely the triplet ground state
of the O-bound isomer for the iron complex. The conformation isomerism is highly unfavorable
in the S0 electronic state with the occurrence of two energy barriers higher than 2 eV. The lowest bands
of the spectra are assigned to MLCTNO/LLCTNO transitions, with an increasing MLCT character going
from iron to osmium. Two low-lying triplet states, T1 (MLCTNO/LLCTNO) and T2 (MLCTNO/ILNO),
seem to control the lowest energy profile of the excited-state conformational isomerism.

Keywords: nitrosyl complexes; electronic structure; conformational isomerism; density functional
theory; wavefunction approach

1. Introduction

Metal-Nitrosyl coordination compounds are of great interest because they exhibit two essential
photo-induced primary reactions, namely NO/ON linkage isomerism and NO release (Scheme 1),
which are of crucial importance in cardiovascular treatments and cancer therapies [1].
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[9–14]. The co-existence of several structural isomers related to different M-NO binding modes 
(Figure 1) were evidenced upon irradiation of M-NO complexes [14]. 

Alongside their interest in the understanding of important biological processes implicating nitric 
oxide [3], these molecules possess the potential for efficient optical data storage based on long-lived 
metastable states (MS) [15,16]. 

Under visible irradiation, a number of {MNO}6 (M = Fe, Ru, Os; formally d6), {MNO}8 (M = Pt; 
formally d8) and {MNO}10 ( M = Ni; formally d10) nitrosyl complexes reversibly switch between the 
so-called N-bound (η1-N) ground states (standard), O-bound (η1-O) (reverse) and side-on (η2-NO) 
(flat) conformations (Figure 1) [17]. For optimal efficiency, MS states should be sufficiently long-lived 
and the process must be thermally or photo-chemically reversible, not only at the molecular level but 
also in solid-state. 
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Figure 1. Schematic structures of the investigated [M(CN)5(NO)]2− (M = Fe, Ru, Os) complexes in their 
standard N-bound (η1-N) (a) and metastable (MS) structures: flat side-on (η2-NO) (b) and reverse O-
bound (η1-O) (c). 

Scheme 1. Concurrent deactivation pathways of Metal-Nitrosyl complexes (Adapted from [2] with
permission of Elsevier).
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Metal-nitrosyl coordination compounds characterized by high quantum yields of NO release
are particularly adapted to site-specific delivery in tumor cells within photodynamic therapy (PDT).
Photo-activated nitrogen-monoxide-releasing moieties (PhotoNORMs) have been developed on
the basis of Fe and Ru complexes already in the late 1990s [3] and recent reviews are dedicated to these
complexes [4–7].

The discovery in the late 1970s of metastable isomers of sodium nitroprusside Na2[Fe(CN)5(NO)] [8]
and the synthesis of related complexes, opened the way to a wealth of experimental and theoretical studies
based on the development of both spectroscopic techniques and quantum chemical methods [9–14].
The co-existence of several structural isomers related to different M-NO binding modes (Figure 1) were
evidenced upon irradiation of M-NO complexes [14].
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Figure 1. Schematic structures of the investigated [M(CN)5(NO)]2− (M = Fe, Ru, Os) complexes in their 
standard N-bound (η1-N) (a) and metastable (MS) structures: flat side-on (η2-NO) (b) and reverse O-
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Figure 1. Schematic structures of the investigated [M(CN)5(NO)]2− (M = Fe, Ru, Os) complexes in their
standard N-bound (η1-N) (a) and metastable (MS) structures: flat side-on (η2-NO) (b) and reverse
O-bound (η1-O) (c).

Alongside their interest in the understanding of important biological processes implicating nitric
oxide [3], these molecules possess the potential for efficient optical data storage based on long-lived
metastable states (MS) [15,16].

Under visible irradiation, a number of {MNO}6 (M = Fe, Ru, Os; formally d6), {MNO}8 (M = Pt;
formally d8) and {MNO}10 (M = Ni; formally d10) nitrosyl complexes reversibly switch between
the so-called N-bound (η1-N) ground states (standard), O-bound (η1-O) (reverse) and side-on (η2-NO)
(flat) conformations (Figure 1) [17]. For optimal efficiency, MS states should be sufficiently long-lived
and the process must be thermally or photo-chemically reversible, not only at the molecular level but
also in solid-state.

Most of the theoretical studies dedicated to Fe and Ru nitrosyl photo-isomerizable complexes
that have recently been investigated experimentally have focused on the structural and electronic
investigation of the ground state and MS isomers coupled to an analysis of the potentially photo-active
states in terms of frontiers orbitals [12,18–26]. However, because of the non-innocent character
of the nitrosyl ligand, the photo-active excited states accessible upon irradiation between 330 and 550 nm
vary from pure MLCT to pure LLCT—with intermediate situations such as mixed LLCT/MC/MLCT
or MC/LLCT/LC—as functions of the spectator ligands.

Light-induced linkage NO isomerism has to be initiated in the absorbing state and fast enough
to compete with direct NO release or other ligands dissociation (Scheme 1). The electronic density
alteration is governed by the bending of the Metal-N-O bond angle to form the intermediate MSinter.
This can only be accomplished if the absorbing singlet state possesses a significant metal contribution
(MC) that will weaken the strong M-N bond. This fragile bond will allow the isomerization
and facilitate the stabilizing metal–oxygen bonding interaction in the excited state [2]. Indeed,
three competitive deactivation channels of [Fe(CN)5(NO]2− dissolved in methanol, namely Fe-NO
linkage isomerism, NO release and CN dissociation, have been evidenced within the first 500 fs
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after 400 nm pump irradiation using transient IR spectroscopy [11]. These experiments indicate that
population of the absorbing states detected at 393 nm and 520 nm at room temperature in methanol,
most probably corresponding to LLCTNO/MLCTNO/MC excited states, opens the route to both ligand
dissociation and Fe-NO linkage isomerism. Ultra-fast ISC to the associated low-lying triplet states
cannot be excluded at this stage. However, the usual wavelength dependence of the measured
quantum yields is in favor of singlet photo-reactivity. Consequently, by adjusting the initial wavelength
of irradiation, it should be possible to target specific photo-active states and to control the branching
ratio between the different primary reactions.

The present work aims at comparing the electronic, structural and optical properties
of the [M(CN)5(NO)]2− (M = Fe, Ru, Os) series of complexes (Figure 1). Energy profiles and critical
geometries characterizing the conformational isomerism in the three molecules are investigated for the S0

electronic ground states, as well as for the low-lying excited states, in order to gain some insight on
the mechanisms of inter-conversion.

2. Computational Details

Three series of calculations were undertaken. A first set was computed using ADF2013
software [27–29]. The structures of various isomers of the three complexes [M(CN)5(NO)]2− (M = Fe,
Ru, Os) (Figure 1) have been fully optimized for the electronic ground state 1A’ under the Cs symmetry
constraint at the density functional theory (DFT) [30,31] level with the B3LYP functional [32] and triple-ζ
basis sets [33] on all atoms. Scalar relativistic corrections were included through the zero-order relativistic
approximation (ZORA) [34] and solvent effects were considered by means of the COnductor-like
Screening Model COSMO [35] of methanol (ε= 32.7). Electronic ground state minima were characterized
by a complete set of real frequencies. The low-lying electronic excited states were optimized at the same
level of theory. The theoretical absorption spectra were computed by means of time-dependent DFT
(TD-DFT) [36] performed on the ground state optimized structures. The spin–orbit coupling (SOC) has
been included at a perturbative level [37]. The Tamm–Dancoff approximation (TDA) [38] was used
to avoid over stabilization of the lowest triplet states.

A second set of calculations was undertaken in order to compute the Gibbs Free Energy surface
leading from the standard structure to the reverse one and to locate the transition states using
the GAUSSIAN 09 quantum chemistry package [39]. These calculations were carried out at the DFT
level of theory with the B3LYP functional using the 6-31+G** basis set for C, N and O [40] and
the Stuttgart–Dresden SDD basis sets and associated small core pseudopotentials for Fe, Ru and Os
atoms [41]. Solvation (methanol) was included through a PCM model [42]. Calculations were performed
without symmetry on the S0 electronic ground state singlet state. For comparison, calculations with
the 6-311+G* basis set are provided in ESI. The results are very similar, except for one structure that we
were not able to optimize using this basis set.

For the iron complex, Restricted-Active Space Self-Consistent field (RASSCF) [43], including
ten electrons correlated in ten active orbitals, supplemented by multi-state complete active space
perturbation theory 2nd order (MS-CASPT2) [44] calculations have been performed (on the ADF
optimized structures), including solvent corrections by means of the polarized continuum model
(PCM) for MeOH and using quadruple-ζ quality atomic natural relativistic correlated corrected basis
sets (ANO-RCC) [45] and the Molcas 8.2 quantum chemistry package [46].

3. Structural and Electronic Properties

3.1. Structures

Some important optimized bond distances and angles of [M(CN)5(NO)]2− (M = Fe, Ru, Os)
computed with ADF in their so-called standard structure (Figure 1a) are reported in Table 1 and
compared to the X-ray data for the iron [47] and ruthenium [48] complexes. Whereas the agreement
between the calculated values and the experimental data is rather good for the 1st-row transition metal
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complex, some discrepancies are observed for 2nd-row transition metal compound, especially for
the Ru-N distance, which is overestimated by 0.051 Å at this level of calculation. The structures
of the 2nd- and 3rd-row complexes are very similar.

Table 1. Important bond distances (in Å) and bond angles (in ◦) of [M(CN)5(NO)]2− (M = Fe, Ru, Os)
in their so-called standard structure (Figure 1a) computed with ADF. (Atoms numbers according to Figure 1).

Bonds
Angles Fe Fe (RX) a Ru Ru (RX) b Os

M-N 1.66 1.65 1.81 1.75 1.79
M-C1 1.96 1.93 2.09 2.07 2.08
M-C2 1.96 1.93 2.09 2.07 2.08
M-C3 1.96 1.93 2.09 2.07 2.08
M-C4 1.96 1.94 2.09 2.07 2.08
M-C5 1.95 1.93 2.08 2.07 2.10
NO 1.13 1.13 1.14 1.15 1.14

M-N-O 179.8 178.2 179.9 177.0 179.9
N-M-C1 94.1 95.9 94.1 94.3 94.2
N-M-C2 94.0 95.5 94.1 93.3 94.1
N-M-C3 93.9 94.1 94.1 95.9 94.0
N-M-C4 94.0 96.1 94.1 95.3 94.1

a Ref [47] b Ref [48].

Selected optimized bond distances and angles of [M(CN)5(NO)]2− (M = Fe, Ru, Os) in their
so-called flat (Figure 1b) and reverse (Figure 1c) structures computed with ADF are reported in Table 2,
together with their energy gap ∆E (in eV), with the standard structures reported in Table 1. For the iron
complexes, both the lowest singlet and triplet states are reported. All the Cs-optimized structures are
characterized by real frequencies in the singlet ground state. In the triplet state, symmetry is broken
and the reverse structure was optimized without symmetry.

Table 2. Important bond distances (in Å) and bond angles (in ◦) of [M(CN)5(NO)]2− (M = Fe, Ru, Os)
in their so-called flat structure (Figure 1b) and reverse structure (Figure 1c) and associated energy gap
∆E (in eV) with the standard structures. (Atoms numbers according to Figure 1).

Bonds
Angles

Fe Ru Os

Flat
S0

Reverse
S0

Reverse a

T1

Flat
S0

Reverse
S0

Flat
S0

Reverse
S0

M-N 1.92 2.04 2.01
M-O 2.04 1.77 2.28 2.21 1.95 2.20 1.92
M-C1 1.96 1.96 1.96 2.09 2.08 2.09 2.08
M-C2 1.97 1.96 1.96 2.09 2.08 2.08 2.08
M-C3 1.95 1.96 1.95 119.3 2.08 2.08 2.08
M-C4 1.97 1.96 1.96 2.09 2.08 2.08 2.08
M-C5 1.91 1.91 1.89 2.01 2.02 2.02 2.02
NO 1.15 1.11 1.15 1.16 1.12 1.18 1.13

M-N-O 79.3 82.8 82.9
M-O-N 67.0 179.8 128.2 65.9 179.8 64.9 179.9
N-M-C1 79.7 92.6 87.3 78.0 92.6 77.8 92.0
N-M-C2 91.0 92.6 87.2 91.5 92.4 90.9 92.0
N-M-C3 120.4 92.7 90.5 119.3 92.5 119.4 92.0
N-M-C4 91.0 92.6 88.4 91.5 92.6 90.9 92.1

EDFT 1.46 1.65 1.49 1.33 1.67 1.59 2.05
a The structure was computed without symmetry.

While the standard structures remain the most stable structures at this level of calculation,
the reverse ones in which the nitrosyl ligand is bound to the metal center by the O atom are less stable
(∆E = 1.5–2.0 eV or 145–193 kJ Mol−1) for all compounds. The flat structures, where both N and O are
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bound to the metal atom, are at about 1.5 eV above the standard ones, as well as the reverse structure
in the lowest triplet state of [Fe(CN)5(NO)]2−. This latter structure, at 1.49 eV above the standard
isomer, is characterized by a bent geometry with a Fe-N-O bond angle of 128◦ and is nearly degenerate
with the flat structure calculated at 1.46 eV.

According to the energetics reported in Table 2, the adiabatic conformational isomerism on
the electronic ground state S0 potential energy surface (PES) seems to be easier for the ruthenium
complex than for the osmium complex for which the flat and reverse structures are highly destabilized.
An S0/T1 crossing characterizes the conformational isomerism pathway of the iron complex.

3.2. Electronic Structures and Potential Energy Profiles

One important point concerns the validity of DFT at describing correctly the electronic structure
of 1st-row transition metal complexes. In particular, metal-nitrosyls may be the seat of near-degeneracies
and unusual spin densities. A DFT-based theoretical study coupled to Mossbauer spectroscopy
of a series of iron compounds, including nitrosyl-substituted complexes, by Ghosh A. et al. [49] has
concluded that experimental isomer shifts are effectively reproduced. To further support our approach,
MS-CASPT2 calculations were undertaken. At this level of theory, the S0 electronic state of the standard
isomer is again the global energy minima of the three isomers of [Fe(CN)5(NO)]2−. The stability
of the flat and reverse isomers is similar to that found at the DFT level, the flat being 1.62 eV and
the reverse being 1.50 eV above the standard structure, the reverse structure is now slightly more
stable than the flat one at the MS-CASPT2 level. This difference between DFT and MS-CASPT2 results
may come from a greater multi-reference character of the reverse structure. Indeed, the standard
and flat isomers are described, respectively, by one electronic configuration, weighting 81% and 85%
of the total wavefunction. This weight significantly drops to 70% in the reverse case, showing a greater
multi-reference character of the electronic ground state. This may be the source of the different stability
of the flat and reverse isomers, with the mono-reference DFT approach being unable to evidence
this contribution. The reasonable agreement between MS-CASPT2 and DFT results validates our
computational scheme.

The mechanism of NO isomerism in the S0 electronic ground state has been studied using
GAUSSIAN. The potential energy profile describing the conformational isomerism for the iron complex
is depicted in Figure 2. The data for the three complexes are gathered in Table 3.Molecules 2019, 24, x FOR PEER REVIEW 6 of 13 
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Table 3. Calculated low-lying S0 potential energy profiles of the conformational isomerism for the three
complexes in methanol and in the triplet state for iron. For the latter, the reference energy is the S0

standard structure. Gibbs Free energies are in eV.

Metal Standard TSSF Flat TSFR Reverse

Fe 0.0 1.90 1.33 2.42 1.64
Fe (triplet) 0.42 0.87

Ru 0.0 2.00 1.33
Os 0.0 2.30 1.54 3.01 2.02

The potential energy profiles are energetically similar for the three molecules, while no transition
state connects the flat to reverse structures of the ruthenium complex. The transition state energies
between the standard to the flat (TSSF) structures exceed 1.9 eV. These high energies, associated to
the TSSF structure, result from the breaking of the Cs symmetry and the significant lengthening
of the M-N bond (from 1.66 to 2.03 Å in TSSF for Fe, for instance). The overall shape of the TSSF is
a lacunar octahedron in which the NO ligand is close to de-coordinating from the complex. The same
features characterize the structures of the obtained two transition states that connect the flat to the reverse
structure (TSFR) with a lengthening of the M-O bond of roughly 0.5 Å ([M-O] = 2.27 Å; [M-N] = 2.94 Å).
The need for a significant metal cation-NO bond weakening for ensuring the interconversions between
the isomers is at the origin of the high barrier. This probably explains the difficulty in locating the TSFR

in the ruthenium complex. The barrier approaches the dissociation channel and all attempts to locate
this transition state led either to dissociation of NO or to the rotation of the ligand around the M-O axis.

We tentatively computed the NO isomerization pathway in the lowest triplet state of the Fe complex.
As mentioned above, in this state, the Cs symmetry is broken and the Fe-N-O angle is no longer linear,
with a value of 138.8◦ for the Fe-N-O angle. The minimum standard structure in the triplet state is very
similar to that of the TSSF in the singlet state (0.42 eV above the singlet state). A minimum was also
found for the binding through the O atom (at 0.87 eV, Table 3)—like in the reverse isomer but again
in a bent structure with a Fe-O-N angle of 130.0◦. Our attempts at finding a triplet state equivalent
to the singlet state flat isomer converge either to the standard or reverse structure with no evidence
of a transition state connecting these two structures. A scan performed on the triplet potential energy
surface (PES) following the bending of the Fe-N-O angle starting from triplet standard structure did not
lead to the triplet reverse isomer. At some point, a discontinuity appears on the PES and the structure
evolved, resulting in the de-coordination of the NO. Starting from this structure, geometry optimization
leads to a degenerate structure, with the triplet O-bound isomer at 0.87 eV above the standard one
(this structure still presents imaginary frequencies, despite fulfilling the convergence criteria, which we
were unable to get rid of). Searching transition states on the triplet potential energy surface requires
multiconfigurational approaches in order to locate the multiple surface crossings. This is beyond
the scope of the present study.

4. Optical Properties

4.1. Absorption Spectra of the Standard Structures

The TD-DFT absorption spectra of [Fe(CN)5(NO)]2−, [Ru(CN)5(NO)]2− and [Os(CN)5(NO)]2−

are represented in Figure 3. The three standard complexes of C4v symmetry absorb between 200 and
500 nm, with a very weak absorption starting at 500 nm. Whereas the Spin-Orbit Coupling (SOC)
effects are negligible for the Fe and Ru complexes, SO splitting of the lowest band in three peaks (490,
420 and 375 nm) is observed for the Os compound. The lowest bands of the Fe and Ru complexes are
calculated at 450 and 425 nm, respectively.
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Figure 3. TD-DFT absorption spectra including spin–orbit coupling (SOC) of [Fe(CN)5(NO)]2− (black),
[Ru(CN)5(NO)]2− (blue) and [Os(CN)5(NO)]2− (red). Bottom: a zoom in the visible domain.
Each transition is represented by a Gaussian function centered on the value of the transition with
a width of 10 nm.

The lowest absorbing bands in the visible domain are assigned to MLCTNO/LLCTNO transitions
described by HOMO–LUMO excitations (Figure 4), namely dπCN → π*NO. The MLCT character
of these mixed MLCT/LLCT transition increases from Fe to Os, correlating with expanding SOC effects
in the 3rd-row transition metal complex, in addition to the usual heavy atom influence.

The visible band (350–500 nm) of [Os(CN)5(NO)]2− is shifted to the red with respect to the one
of the 1st-row and 2nd-row transition metal complexes and broadened due to SOC effects. The three
complexes present upper absorption peaks between 300 to 200 nm of increasing intensity and
slightly blue-shifted from Fe to Os. These intense peaks are attributed to charge transfer from
the cyanide π orbitals towards the LUMO. Below 200 nm, the most intense computed peak is a mixture
of πCN→ π*MNO and of πMCN→ π*MNO.
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4.2. Low-Lying Singlet and Triplet States

Under a Cs symmetry constraint, the lowest singlet S1 is doubly degenerate with one component
in the A’ symmetry point group and the other in the A” symmetry point group, corresponding
to pure transitions from the HOMO to the doubly degenerate LUMO (Figure 4). The situation is
trickier for the triplet states. In competition with the doubly degenerate triplet counterparts T1

(MLCTNO/LLCTNO) of the previous singlet states, another triplet T2 (MLCTNO/ILNO) of A’ symmetry
is present. This T2 is the most stable in the iron complex and is similar to the upper-T1 in the ruthenium
and osmium complexes. This T2 corresponds to a transition from the HOMO-1 to the LUMO
(Figure 4). The calculated vertical transition energies to these low-lying excited states at Franck–Condon
of the standard structure (Figure 1a) are reported in Table 4.
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Table 4. Calculated TD-DFT vertical transition energies to the low-lying excited states of [M(CN)5(NO)]2−

(M = Fe, Ru, Os) at the standard structure and MS-CASPT2 results for iron (a).

States Fe Fe a Ru Os

T1A’ 2.45 2.41 2.70 2.82
T1A” 2.45 2.33 2.70 2.82
T2A’ 2.31 2.76 2.99
S1A’ 2.79 2.92 3.03
S1A” 2.79 2.92 3.03

Whereas the T1 state calculated at 2.45 eV (Fe), 2.70 eV (Ru) and 2.82 eV (Os) is the lowest state
of the Ru and Os complexes, it is above the T2 excited state calculated at 2.31 eV in the Fe complex.
The MS-CASPT2 results are again in good agreement with the TD-DFT ones validating our approach.

In order to investigate more closely the potential energy profiles of the conformational isomerism
in the excited states, the structures of the five excited states reported in Table 3 have been fully optimized
under Cs symmetry constraint and starting from the standard, flat and reverse geometries. In addition
to the structures depicted in Figure 1, three structures represented in Figure 5 are evidenced, namely the
NO-bent, MNO-bent, and ON-bent conformations.
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The energetics (in eV) obtained for the different optimized structures are reported in Tables 5–7
for the Fe, Ru and Os complex, respectively. The reference energy (0.0) is given by the standard
structure in its S0 electronic ground state.

Table 5. Potential energy (in eV) of [Fe(CN)5(NO)]2− calculated for the different optimized structures
(Figures 1 and 5) with respect to the S0 electronic ground state energy of the standard geometry (Figure 1a).

Structure Standard Flat Reverse NO-Bent MNO-Bent ON-Bent

S0 0.0 1.46 1.65 2.09 a 2.20 b

S1 (A’) 2.42 3.41 2.99
T1 (A’) 2.12 -NO 2.62
T2 (A’) 1.77 1.86 a 2.10 b

S1 (A”) - 2.85 2.22 2.65
T1 (A”) - 1.75 2.25 2.45

a On the S1(A”) optimized structure; b On the T1(A”) optimized structure.

Whereas the S1(A’) and T1(A’) excited states converge to the standard structure, the S1(A”)
and T1(A”) states are more stable in the NO-bent structures and should play an important role
in the conformational isomerism leading to the reverse structure. At some critical geometries, the T2(A’)
excited state is more stable than the S0 electronic ground state, leading to several energy surface
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crossings that are potentially active in the isomerism mechanism. The T1(A’) excited state in the flat
structure leads to de-coordination of the NO ligand.

Table 6. Potential Energy (in eV) of [Ru(CN)5(NO)]2− calculated for the different optimized structures
(Figures 1 and 5) with respect to the S0 electronic ground state energy of the standard geometry (Figure 1a).

Structure Standard Flat Reverse NO-Bent MNO-Bent

S0 0.0 1.33 1.67
S1 (A’) 2.54 3.22 3.10
T1 (A’) - -
T2 (A’) 2.19 2.58
S1 (A”) - -NO 2.37
T1 (A”) - 2.83 2.13 2.66

Table 7. Potential energy (in eV) of [Os(CN)5(NO)]2− calculated for the different optimized structures
(Figures 1 and 5) with respect to the S0 electronic ground state energy of the standard geometry (Figure 1a).

Structure Standard Flat Reverse NO-Bent MNO-Bent ON-Bent

S0 0.0 1.59 2.05
S1 (A’) 2.69 3.41 3.56
T1 (A’) 2.50 3.08 -
T2 (A’) - - 3.03
S1 (A”) - -NO 2.54 3.31
T1 (A”) - - 2.33 3.09 3.31

The excited states energetics of [Ru(CN)5(NO)]2− differ significantly to the one of the Fe
complex. The de-coordination of the NO should occur via the S1 (A”) excited state in its flat
structure. This pathway is not energetically favorable. All the excited states remain above the S0

electronic ground state by more than 1.5 eV for all of the structures. There is no evidence at this
level of calculation of energetically favorable ON-bent structures or S0/T2(A’) potential crossings.
Consequently, the mechanism of conformational isomerism seems to be much simpler for the 2nd-row
complex than for the iron compound for which low-lying triplet excited states play an important role
both for NO dissociation (T1(A’)) and in a non-adiabatic mechanism (T2(A’)).

Similarly to the ruthenium complex, the osmium complex does not exhibit low-lying excited state
critical geometries, with the S0 electronic ground state remaining the lowest state for all the structures.
Likewise, the S1(A”) excited state in the reverse conformation is dissociative for the removal
of NO. When optimizing the T2(A’) state in the standard structure, it converges to the T1(A’) state,
indicating a potential degeneracy of these two excited states in the osmium compound. Again the
mechanism of conformational isomerism in [Os(CN)5(NO)]2−, analogously to the one proposed
for [Ru(CN)5(NO)]2−, should follow an adiabatic process along the S0 electronic ground state potential
energy surface.

5. Conclusions

On the basis of density functional theory (TD)-DFT and MS-CASPT2 based on an RASSCF
wavefunction, we have investigated the electronic, structural and optical properties of the Group 8
metal nitrosyl complexes. The energy profiles connecting the N-bound (η1-N), O-bound (η1-O) and
side-on (η2-NO) conformations show that conformational isomerism is unlikely in the S0 electronic
ground state. The presence of high-energy barriers for NO interconversion (> 2 eV) is due to the fact that
the NO ligand almost decoordinates to ensure the isomerization. We have shown that the energetics
of the three complexes are similar, with the N-bound structure being the most stable; the main
difference is the triplet ground state of the O-bound isomer for the iron complex. The optical spectra
and the low-lying triplet excited states exhibit an important MLCT, LLCT and IL mixed character.
The photo-induced isomerism is certainly controlled by the presence of two competing triplet states,
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T1 and T2. Further studies should include computation of the low-lying triplet potential energy
profiles at the multi-reference level, beyond the capabilities of DFT, as well as dynamics simulation.
Whereas the conformational isomerism is driven by an adiabatic process along the S0 potential energy
surface for the Ru and Os complexes, the mechanism is clearly non-adiabatic in the case of the Fe
compound involving intersystem crossings and low-lying triplet states.
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