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Objectives: Autism spectrum disorders (ASD) are diagnosed based on early-manifesting clinical symptoms, in-
cluding markedly impaired social communication. We assessed the viability of resting-state functional MRI
(rs-fMRI) connectivity measures as diagnostic biomarkers for ASD and investigated which connectivity features
are predictive of a diagnosis.
Methods:Rs-fMRI scans from59 high functioningmaleswith ASD and 59 age- and IQ-matched typically develop-
ing (TD) males were used to build a series of machine learning classifiers. Classification features were obtained
using 3 sets of brain regions. Another set of classifiers was built from participants3 scores on behavioral metrics.
An additional age and IQ-matched cohort of 178 individuals (89 ASD; 89 TD) from the Autism Brain Imaging Data
Exchange (ABIDE) open-access dataset (http://fcon_1000.projects.nitrc.org/indi/abide/) were included for repli-
cation.
Results: High classification accuracy was achieved through several rs-fMRI methods (peak accuracy 76.67%).
However, classification via behavioral measures consistently surpassed rs-fMRI classifiers (peak accuracy
95.19%). The class probability estimates, P(ASD|fMRI data), from brain-based classifiers significantly correlated
with scores on ameasure of social functioning, the Social Responsiveness Scale (SRS), as did themost informative
features from2 of the 3 sets of brain-based features. Themost informative connections predominantly originated

from regions strongly associated with social functioning.
Conclusions:While individuals can be classified as having ASDwith statistically significant accuracy from their rs-
fMRI scans alone, this method falls short of biomarker standards. Classification methods provided further evi-
dence that ASD functional connectivity is characterized by dysfunction of large-scale functional networks, partic-
ularly those involved in social information processing.
Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Autism spectrum disorders (ASD) are clinically characterized by
marked social and communication impairments as well as restricted in-
terests and repetitive behaviors. Diagnosis is typically made in early
childhood based on clinical interviews and observation of behavior.
There is significant need for biomarkers to improve diagnostic precision
when behavioral symptoms are equivocal and to identify infants or
young children who might be at risk for ASD before reliable behavioral
symptoms manifest (Yerys and Pennington, 2011).

Recent studies applied multivariate classification techniques to neu-
roimaging data to characterize ASD using features that are predictive of
a diagnosis on the level of individuals. These classifier studies achieved
, Bldg. 10, 4C214, Bethesda, MD
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relatively high classification accuracy (~60–85%) using multiple imaging
modalities including structural MRI (Sato et al., 2013; Ecker et al., 2010),
diffusion tensor MRI (DTI) (Ingalhalikar et al. 2012; Lange et al., 2010),
magnetoencephalography (Roberts et al., 2011) and resting-state func-
tional MRI (rs-fMRI; which measures “functional connectivity”, correla-
tions between spontaneous BOLD signal fluctuations in different brain
regions) (Uddin et al., 2013; Nielsen and Zielinski, 2013; Anderson et al.,
2011). Rs-fMRI is a particularly interesting technique as it can investigate,
in a task-independent manner, the hypothesis that ASD involves the dis-
ruption of large-scale brain networks (Castelli et al., 2002; Belmonte et al.,
2004). Thesemultivariate techniques have provided convergent evidence
about brain differences that underlie ASD and unveiled additional infor-
mative brain features.

Given the recent success of these neuroimagingmethods, it is tempt-
ing to cite these findings as grounds for establishing a neuroimaging-
based diagnostic biomarker for ASD. However, several benchmarks
must be met to fulfill the promise of neuroimaging-based biomarkers
including: establishing standard analytic techniques, as such methodo-
logical factors influence connectivity measures (Jo et al., 2013; Gotts
nse (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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et al. 2013; Power et al., 2014); demonstrating biomarkers3 robustness
to variability across larger numbers of individuals and sites—to date,
only one multisite classifier study exists (Nielsen, and Zielinski, 2013);
and addressing the diagnostic potential of brain-based biomarkers by
comparing their diagnostic or prognostic accuracy to that of simpler,
more easily obtained ratings of behavior. The present study examines
each of these issues.

In this study, we determined the best methods for performing
classification of ASD vs. TD participants using rs-fMRI data by applying
several popular classification techniques to three separate sets of
brain-based features.We also addressed classifier generalizability by in-
cluding a large in-house cohort of high-functioning ASD individuals and
typically developing (TD) individuals (118 total participants) and a rep-
lication cohort obtained from the ABIDE dataset (178 individuals).
Given similar accuracies achieved using different methods in previous
rs-fMRI ASD classification studies (Uddin et al., 2013; Nielsen, and
Zielinski, 2013; Anderson et al., 2011) we expected that there would
be little effect of classifier method or brain region set.

Second, to determine the upper bounds of diagnostic performance
using machine learning classification, we determined whether classifi-
cation algorithms based on rs-fMRI data perform comparably to classi-
fiers based on questionnaire data from the Social Responsiveness Scale
(SRS) (Constantino, and Gruber, 2005). This questionnaire was expect-
ed to be highly predictive of ASD diagnoses as it is a measure of social
functioning, the hallmark deficit in ASD. While SRS has been validated
relative to “gold standard” interview and observation schedules, this
measure is independent of the actual diagnosis criteria (Lord et al.,
1994; Lord et al., 2000). The action of classifying participants as having
a disorder characterized by social functioning deficits based on a mea-
sure of social functioningmay be somewhat circular in its logic; howev-
er, the simplicity of the SRS and the ease of its administrationmake it an
important benchmark of diagnostic utility for rs-fMRI based classifica-
tion. In addition, such a behavioral classifier provides a more realistic
ceiling of classifier performance that is tailored to the dataset in ques-
tion. It is important to clarify that the SRS cannot be a biomarker as it
is a clinical measure of social impairment designed to interrogate autis-
tic symptoms. Performing classification on thesemeasures simply gives
an estimate of how well these individuals can be distinguished using a
continuous measure of behavior that is independent of the diagnosis
itself.

Finally, we investigated which connectivity features and brain net-
works are most predictive of ASD and further, which connections
track individual symptom expression. We identified a disperse set of
connections throughout the brain that were highly predictive of an
ASD diagnosis. Classification accuracy increased by including regions
beyond those seen in meta-analyses of task-based fMRI studies.

2. Methods and materials

2.1. Participants

2.1.1. NIMH
Fifty-nine typically developing (TD) male participants (mean age ±

standard deviation (SD)=18.3±3.05) and 59 high-functioning partic-
ipants with an autism spectrum disorder (ASD, mean age ± SD =
17.66± 2.72) took part in the study, including 29 ASD and 28 TD partic-
ipants previously described (Gotts et al., 2012). Participants with ASD
were recruited from theWashington, DC,metropolitan area andmetDi-
agnostic and Statistical Manual-IV diagnostic criteria as assessed by an
experienced clinician. Scores on the SRS (Constantino, and Gruber,
2005), an informant-based rating scale used to assess social and com-
munication traits quantitatively, were obtained from parents for all
ASD participants and 45 TD participants. Participant groups did not dif-
fer in termsof full-scale IQ or age (Table 1). Informed assent and consent
were obtained from all participants and/or their parent/guardian when
appropriate in accordance with the National Institutes of Health
Institutional Review Board approved protocol. See Appendix A.1 and
Table 1 for further details.

2.1.2. ABIDE
The ABIDE dataset is an open-access multi-site image repository

comprising structural and rs-fMRI scans from ASD and TD individuals
(Di Martino et al., 2014). Acquisition parameters and protocol informa-
tion can be found at http://fcon_1000.projects.nitrc.org/indi/abide/.
Data from three of the five sites with themost subjects that met the fol-
lowing criteria were included in our analyses: males with a full-scale
IQ N 80 and age within one standard deviation of the range of our in-
house sample. Other sites were excluded due to excessive difficulties
with anatomical FreeSurfer parcellation. The included sites were New
York University (NYU), University of Utah School of Medicine (USM),
and University of California Los Angeles 1 (UCLA_1). Participants were
included if their scans met quality assurance standards (see Appendix
A.2). These inclusion criteria and an additional step for matching ASD
and TD prevalence resulted in a cohort of 178 individuals (89 TD; 89
ASD). Participant demographic and clinical data are provided in Inline
Supplementary Table S1.

Inline Supplementary Table S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2014.12.013.

2.2. fMRI acquisition

Functional MRI data were collected using a GE, Signa 3T whole-body
MRI scanner at the NIH Clinical Center NMR Research Facility. For each
participant, a high-resolution T1-weighted anatomical image (MPRAGE)
was obtained (124 axial slices, 1.2 mm slice thickness, field of view =
24 cm, 224 × 224 acquisition matrix). Spontaneous brain activity was
measured during functionalMRI using a gradient-echo echo-planar series
with whole-brain coverage while participants maintained fixation on a
central cross and were instructed to lie still and rest quietly (repetition
time = 3500 ms, echo time = 27 ms, flip angle = 90°, 42 axial inter-
leaved slices per volume, 3.0 mm slice thickness, field of view = 22 cm,
128 × 128 acquisition matrix, single-voxel volume = 1.7 × 1.7 ×
3.0mm). Each resting scan lasted 8min, 10 s for a total of 140 consecutive
whole-brain volumes. A GE 8-channel send–receive head coil was used
for all scans, with a SENSE factor of 2 used to reduce gradient coil heating
during the session.

2.3. fMRI preprocessing

fMRI data were preprocessed using AFNI software package (Cox,
1996) in accordance with pipelines recommended by Jo et al. (2013)
with one exception: we did not employ cardiac and respiratory denoising
so that a common preprocessing pipeline could be used on ABIDE data
that lacked physiological measures. See Appendix A.2 for further details.

2.4. Connectivity measures and feature matrices

Three sets of regions of interest (ROIs) were used to create three
separate fMRI timecourse correlation matrices for subjects3 processed
EPI time series. These ROI sets included one set of 49 spherical regions
(5 mm radius) derived from coordinates in Di Martino et al.
(2009), one set of 264 spherical regions (5 mm radius) from Power
et al. (2011) and one set of 162 cortical and subcortical ROIs from
each subject3s FreeSurfer Destrieux atlas anatomical segmentation.
Timecourses were extracted and averaged within each region. Linear
correlations were computed between the average timecourses of
each region in a ROI set and Fisher transformed. For each ROI set,
this process yielded a Ns × Nf feature matrix, F, for use in classifica-
tion, where Ns = number of subjects and Nf = number of features
(Fisher transformed correlation values). F has an associated label
vector, L, containing the diagnoses of the participants (ASD or TD)
coded as a binary variable.

http://fcon_1000.projects.nitrc.org/indi/abide/
http://dx.doi.org/10.1016/j.nicl.2014.12.013
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Table 1
Demographic characteristics of in-house cohort.

TD (N = 59) ASD (N = 59)

Mean SD Mean SD

Age 18.3 3.05 17.66 2.72
IQ 115.76 11.70 111.02 15.87
ADOS: soc + comm 11.69 4.16
SRS 19.82 11.54 91.75 30.20
Whole brain tSNR 324.59 53.66 314.37 36.94
Average head movement (per TR) 0.047 .0019 0.069 .042

Table 2
Cross-validation performance for the in-house cohort using the DiMartino, Power, and
Destrieux ROI sets as well as a behavioral classifier.

Classifier type Accuracy Sensitivity Specificity PPV NPV

LOO-cross-validation
DiMartino ROI set
RF 66.67 71.67 64.67 65.15 68.52
KNN 60.83 70.00 51.67 59.15 63.27
L-SVM 69.17 71.67 66.67 68.25 70.18
RBF-SVM 66.67 76.67 56.67 63.89 70.83
GNB 60.83 73.33 48.33 58.67 64.44
LDA 66.67 68.33 65.00 66.13 67.24
L1LR 61.67 58.33 65.00 62.50 60.94
L2LR 67.50 66.67 68.33 67.80 67.21
ENLR 72.50 70.00 75.00 73.68 71.43
Destrieux Atlas
RF 66.67 70.00 63.33 65.63 67.86
KNN 68.33 65.00 71.67 69.64 67.19
L-SVM 74.58 69.49 79.66 77.36 72.31
RBF-SVM 76.67 70.00 83.33 80.77 73.53
GNB 60.00 68.33 51.67 58.57 62.00
LDA 74.17 71.67 76.67 75.44 73.02
L1LR 70.83 75.00 66.67 69.23 72.72
L2LR 76.67 75.00 78.33 77.59 75.81
ENLR 72.50 71.67 73.33 72.88 72.13
Power ROI set
RF 65.00 65.00 65.00 65.00 65.00
KNN 65.00 73.33 56.67 62.86 68.00
L-SVM 75.83 75.00 76.67 76.27 75.41
RBF-SVM 70.83 73.33 68.33 69.84 71.93
GNB 60.83 70.00 51.67 59.15 63.27
LDA 69.17 73.33 65.00 67.69 70.91
L1LR 65.83 70.00 61.67 64.62 67.27
L2LR 75.83 75.00 76.67 76.27 75.41
ENLR 72.50 75.00 70.00 71.43 73.68
Behavior
RF 91.35 91.53 91.11 93.10 89.13
KNN 93.26 91.53 95.56 96.43 89.58
L-SVM 90.38 83.05 100.00 100.00 81.82
RBF-SVM 91.35 84.75 100.00 100.00 83.33
GNB 95.19 93.22 97.78 98.21 91.67
LDA 88.46 81.36 97.78 97.96 80.00
L1LR 93.27 93.22 93.33 94.83 91.30
L2LR 94.23 93.22 95.56 96.49 91.49
ENLR 95.19 94.92 95.56 96.55 93.48
Stratified-10-fold cross-validation
DiMartino ROI set
L-SVM 69.39 66.33 73.00 73.57 68.24
L2LR 67.65 67.67 67.33 66.95 69.52
Destrieux atlas
L-SVM 74.55 71.67 77.00 81.51 75.12
L2LR 79.09 73.33 85.00 83.33 77.38
Power ROI set
L-SVM 75.30 73.00 78.00 79.55 76.26
L2LR 73.56 72.67 74.00 77.67 76.07
Behavior
L-SVM 91.36 84.67 100.00 100.00 84.81
L2LR 94.27 93.33 95.50 96.90 92.33
Stratified-3-fold cross-validation
DiMartino ROI set
L-SVM 72.05 79.56 64.56 69.19 75.98
L2LR 65.34 67.72 62.54 66.18 65.94
Destrieux atlas
L-SVM 72.93 71.40 74.65 73.70 73.00
L2LR 73.68 69.47 77.98 75.69 72.85
Power ROI set
L-SVM 76.26 76.14 76.32 77.01 77.34
L2LR 74.57 78.07 71.23 74.17 77.25
Behavior
L-SVM 94.26 93.33 95.56 96.75 92.98
L2LR 94.23 94.91 93.33 94.91 93.33

RF = Random Forests, KNN = K-Nearest Neighbor, L-SVM= Linear Support Vector Ma-
chine, RBF-SVM = Gaussian Kernel Support Vector Machine, GNB = Gaussian Naïve
Bayes, LDA=LinearDiscriminant Analysis, L1LR=L1 Logistic Regression, L2LR=L2 Logis-
tic Regression, ENLR = Elastic-net Logistic Regression.
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Subjects3 clinical and demographic data (age, IQ, and scores fromSRS
sub-scales for: social awareness, social cognition, social communication,
socialmotivation, and autismmannerisms)were used to create an addi-
tional feature matrix for the NIMH cohort. TD participants who did not
have an SRS score were excluded from this classifier.

2.5. Classification of region × region correlation matrices

Classification algorithms were implemented using Scikit-learn
(Pedregosa et al., 2011). Leave-one-out (LOO) cross-validationwas per-
formed on each F using the following classification algorithms: Random
forest (RF), K-Nearest Neighbor (KNN), Linear Support VectorMachines
(L-SVM), Gaussian kernel support vector machines (rbf-SVM), L1-
regularized logistic regression (L1LR), L2-regularized logistic regression
(L2LR), Elastic-net-regularized logistic regression (ENLR), Gaussian
Naïve Bayes (GNB), and Linear Discriminant Analysis (LDA). For each al-
gorithm we report accuracy, sensitivity (proportion of ASD individuals
correctly classified), specificity (proportion of TD individuals correctly
classified), positive predictive value (PPV), and negative predictive
value (NPV). Statistical significance was estimated using permutation
tests. For the highest performing classifiers, cross-validationwas repeated
using stratified-3-fold and stratified-10-fold techniques. See Appendixes
A.3 and A.4 for descriptions of cross-validation, hyperparameter tuning,
and permutation testing.

3. Results

3.1. Comparison of classifier and feature set performance

In order to determine the best methods for classifying of ASD vs. TD
participants using rs-fMRI, we performed LOO cross-validation on our
in-house cohort using nine popular classification algorithms and fea-
tures derived from three different ROI sets. High LOO cross-validation
accuracy was achieved through several machine-learning algorithms
across all three ROI sets (Table 2). However, two classification algo-
rithms, L2LR (average accuracy 73.33%) and L-SVMs (average accuracy
73.89%), consistently performed the best. Additionally, the two larger
ROI sets, the Power (264 regions) and Destrieux (162 regions) sets,
yielded higher performing classifiers than the DiMartino (49 regions)
ROI set.

LOO cross-validation has high variance in its estimates of a classifier3s
true prediction error (Hastie et al., 2009), so we additionally performed
stratified-10-fold and stratified-3-fold cross-validation for L2LR and L-
SVM. Classifier performance remained stable (Table 1). All L2LR and L-
SVM cross-validation accuracies were significant for eachmethodological
variant (p b .001; chance accuracy 47.27–51.24%).

Behavioral features alone outperformed fMRI classifiers across all
learning algorithms (peak accuracy 95.19%; Table 2). Once again, classi-
fication accuracy was highly significant (p b 0.001; chance accuracy
50.50–51.84%).

It is possible that the lower accuracies seenwith fMRI-based classifiers
were due to insufficient data to train the classifiers (“underfitting”). To
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address this problem, we repeated the analysis with a combined data
pool of our in-house cohort and amatched cohort from the ABIDE dataset
(combined Ns =296). Cross-validation accuracy did not improve (Inline
Supplementary Table S2). Cross-site differences, in either true underlying
correlations or in nuisance variables, caused problems for these classifiers
(see Inline Supplementary Fig. S1). Removing linear effects of site identity
fromcorrelationmatrices or correcting for global level of correlation prior
to cross-validation did not improve performance. There were no differ-
ences in temporal signal-to-noise ratio (tSNR) between ASD and TD
scans in either the NIMH or the ABIDE cohorts. Cross-validation perfor-
mance on the ABIDE dataset was markedly lower than on the combined
datasets or in-house dataset (Inline Supplementary Table S3). This sug-
gests that sample sizemay not be the sole factor limiting accuracy; across
all methods rs-fMRI-based classifiers plateaued around ~75% accuracy.

Inline Supplementary Tables S2 and S3 and Fig. S1 can be found on-
line at http://dx.doi.org/10.1016/j.nicl.2014.12.013.

Another possible explanation for the plateaued performance of the
rs-fMRI classifiers is the high number of uninformative features includ-
ed in the model. However, neither dimensionality reduction of the fea-
ture matrices (principal components analysis) nor univariate feature
selection (t-test filters) markedly improved cross-validation accuracy
(Inline Supplementary Table S4 & S5).

Inline Supplementary Tables S4 and S5 can be found online at http://
dx.doi.org/10.1016/j.nicl.2014.12.013
Fig. 1. Optimal feature subsets chosen via recursive feature elimination (RFE) for each ROI set
Spheres are centered at theROI3s center ofmass, and sphere radius represents thenumber of fea
the difference in the number of regions, in the number of features chosen, and in the cross-valid
in the L-SVM, and color indicates the sign of the feature. ‘Hotter’ edges indicate stronger connec
individuals.
3.2. Selection of most informative features

In order to determine which rs-fMRI features were most predictive
of ASD or TD classification, we performed Recursive Feature Elimination
(RFE) with stratified-10-fold cross-validation for the top performing
classifiers (see Appendix A.5 for further details). L2LR and L-SVM per-
formed comparably in cross-validation (Table 2, Inline Supplementary
Tables S2 & S3). Feature weights for these two algorithms were also
highly correlated (r N .97, Appendix B and Inline Supplementary
Fig. S2) allowing us to choose one method for feature selection. As the
variance in feature weights across cross-validation folds was smaller
for L-SVM (4.68 × 10-5) than for L2LR (1.47 × 10-2), we only show fea-
ture weights associated with L-SVM (Fig. 1). The Power ROI set features
(57 features, 0.164% of Nf; 85.10% accuracy) and Destrieux ROI set fea-
tures (42 features, 0.322% of Nf ; 87.71% accuracy) showed the highest
discriminability. We did not use RFE to boost classification accuracy,
thus accuracies in this section simply measure the optimal feature sub-
set’s ability to discriminate the two classes; they do not reflect the over-
all cross-validation accuracy. This measure is more akin to classifier
training accuracy and does not directly estimate how predictive these
features would be in a novel dataset. For the behavioral classifiers, we
found that SRS social motivation, social cognition, and autism manner-
isms sub-scales scoreswere themost predictive across all learning algo-
rithms that weight features (Inline Supplementary Table S6). In
by L-SVM. The feature weights shown are the average weights from LOO cross-validation.
tures coincident on that region. Comparing sphere radii across ROI sets is not adviseddue to
ation accuracy stated in the text. Edge thickness indicates absolute value of feature weight
tivity in ASD individuals while ‘cooler’ edges represent indicate stronger connectivity in TD

http://dx.doi.org/10.1016/j.nicl.2014.12.013
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Table 3
Ranking of regions from the Power ROI set based on the sum of the absolute value of the
feature weights coincident on that region chosen by RFE.

Region
rank

Talairach
coordinates

Region label (103)∑ |RFE
feature
weights|

Sign of
feature
weights to
regiona

x y z

1 −46 −60 16 L posterior STS/TPJ 31.61 −
2 36 10 1 R Insula 18.77 −
3 −42 44 1 L IFG 17.23 +
4 31 31 25 R MFG 15.58 +
5 10 −20 67 R SMA 13.97 −
6 13 −4 64 R SMA 13.71 −
7 −44 0 42 L precentral gyrus 13.35 +
8 −51 −61 2 L posterior MTG 11.94 −
9 −42 36 21 L MFG 11.92 −
10 5 21 35 R ACC 11.85 +
11 33 −53 38 R IPS 11.44 ±
12 54 −45 32 R supramarginal gyrus 11.44 +
13 −57 −29 −5 L STS 11.33 −
14 36 21 4 R anterior insula 11.03 −
15 27 −35 −13 R parahippocampal gyrus 10.91 −
16 37 −82 8 R MOG 10.79 −
17 −11 −55 12 L PCC 10.52 ±
18 −46 31 −9 L IFG 10.32 −
19 −3 23 42 L dorsomedial prefrontal

gyrus
10.32 +

20 −3 40 17 L ACC 10.21 +
21 6 65 0 R ventromedial prefrontal

cortex
9.34 +

22 −52 −49 37 L supramarginal gyrus 9.07 −
23 11 −66 35 R precuneus 8.96 +
24 43 −71 22 R MOG 8.78 ±
25 46 17 −24 R temporal pole 8.13 −
26 −28 49 22 L SFG 8.05 +
27 −20 42 38 L SFG 8.05 +
28 55 −45 8 R posterior STS 7.42 −
29 57 −51 −14 R posterior ITG 6.80 −
30 44 −54 41 R IPL 6.62 +
31 6 61 23 R SFG 6.36 +
32 22 −65 41 R superior parietal lobe 6.28 −
33 22 36 38 R MFG 6.17 +
34 −35 17 48 L SFG 6.10 +
35 51 −1 −14 R MTG 6.04 −
36 −55 −49 7 L MTG 5.91 −
37 65 −9 23 R precentral gyrus 5.83 −
38 27 −57 −10 R fusiform gyrus 5.78 −
39 −20 61 21 L MFG 5.75 +
40 38 41 16 R MFG 5.64 +
41 −15 −69 −10 L lingual gyrus 5.60 +
42 −33 −76 −15 L fusiform gyrus 5.60 +
43 −17 −60 56 L superior parietal lobe 5.56 +
44 46 −57 1 R posterior MTG 5.45 −
45 −8 45 23 L medial frontal gyrus 5.34 +
46 49 8 0 R Insula 5.30 −
47 48 21 10 R IFG 5.30 −
48 46 −45 −17 R fusiform gyrus 5.28 −
49 37 −65 34 R angular gyrus 5.21 +
50 52 32 3 R IFG 5.21 +
51 53 −43 18 R TPJ 5.18 −
52 24 44 −10 R lateral orbitofrontal

cortex
5.17 +

53 48 23 26 R MFG 5.15 −
54 −42 −55 39 L IPL 5.07 +
55 −16 −76 28 L cuneus 5.07 +
56 26 47 27 R SFG 5.03 −
57 −38 −33 14 L posterior insula 4.89 −
58 51 8 −25 R temporal lobe 4.89 −
59 29 −20 64 R precentral gyrus 4.78 −
60 24 −85 18 R MOG 4.77 −
61 −2 −35 27 L PCC 4.73 +
62 −41 4 31 L inferior frontal junction 4.73 +
63 8 47 −10 R ventromedial prefrontal

gyrus
4.71 −

64 −39 −75 37 L angular gyrus 4.70 +
65 −53 −24 38 L postcentral gyrus 4.67 +
66 64 −22 −17 R ITG 4.67 +
67 −47 −73 −12 L fusiform 4.65 +

Table 3 (continued)

Region
rank

Talairach
coordinates

Region label (103)∑ |RFE
feature
weights|

Sign of
feature
weights to
regiona

x y z

68 −40 −85 −9 L inferior occipital gyrus 4.65 +
69 −59 −25 12 L STG 4.60 +
70 29 −76 19 R MOG 4.50 −
71 −42 23 29 L MFG 4.48 +
72 53 −29 30 R IPL 4.47 −
73 −10 51 39 L SFG 4.47 −
74 17 −76 −32 R cerebellum lobule VIIa 4.41 −
75 −50 −34 22 L IPL 4.36 +
76 34 37 −8 R lateral orbitofrontal

cortex
4.36 −

77 17 −88 −16 R occipital pole 4.22 +
78 22 −55 −22 R cerebellum lobule VI 4.22 +
79 6 −71 19 R cuneus 3.81 −
80 8 −70 7 R cuneus 3.81 −
81 −3 −1 49 L SMA 3.79 −

IFG = inferior frontal gyrus, MFG = middle frontal gyrus, SFG = superior frontal gyrus,
ITG = inferior temporal gyrus, MTG = middle temporal gyrus, STG = superior temporal
gyrus, SMA= supplementary motor area, ACC= anterior cingulate cortex, PCC= poste-
rior cingulate cortex, IPS= intraparietal sulcus, IPL= inferior parietal lobule,MOG=mid-
dle occipital gyrus.

a While the majority of regions were associated with feature weights of the same sign
(indicated by+ or−), some regions were associatedwith both positive and negative fea-
ture weights (indicated by ±).
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addition, demographic features (age and IQ) were not predictive of di-
agnosis. In thenext section,we characterize these highly informative re-
gions and features on the level of interacting large-scale networks.

Inline Supplementary Table S6 and Fig. S2 can be found online at
http://dx.doi.org/10.1016/j.nicl.2014.12.013.

3.3. Functional networks associated with top features

In the DiMartino and Power ROI sets but not the Destrieux ROI set,
each ROI is associatedwith a functional network or task label. DiMartino
et. al. labeled ROIs as being derived from either social or non-social tasks
and by direction of group differences, yielding 4 possible labels for each
region. Power et al labeled ROIs as belonging to 1 of 13 functional net-
works. In order to test whether functional networks, or connections be-
tween networks, were overrepresented in the optimal subset of
features, we ran a χ2 test with permutations testing (see Appendix A.6
for further details). No regions or connections across regions were sig-
nificantly overrepresented in the DiMartino feature set. For the Power
ROI set, regions designated as the ‘default-mode network’ and the ‘fron-
tal-parietal control network’weremore prevalent in the optimal subset
of features (p b .01) (Inline Supplementary Fig. S3). See Table 3 for a list
of the most diagnostic ROIs from the Power ROI set.

Inline Supplementary Fig. S3 can be found online at http://dx.doi.
org/10.1016/j.nicl.2014.12.013.

3.4. Classifier Results Correlate with Behavioral Ratings

In this final section, we test whether classifier techniques are sensi-
tive to symptom expression beyond a binary ASD vs. TD decision by
assessing whether feature weights correlated with participants’ SRS
total sum scores.

The probability estimate of a scan coming fromanASD or TD individ-
ual from the fMRI connectivity data alone derived from LOO cross-vali-
dation, P(ASD|fMRI data), was highly correlated subjects’ SRS sum
scores (Table 4). L-SVMs trained and tested on the Power ROI set
achieved the highest correlation with the SRS sum score (r = .51,
p = 2.79 × 10-8). Many top predictive features from the Power and
Destrieux ROI sets also strongly correlated with SRS scores (Fig. 2). Cor-
relation significance values were corrected for multiple comparisons
(FDR25 b .05). The Power ROI set yielded a higher proportion of

http://dx.doi.org/10.1016/j.nicl.2014.12.013
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Table 4
Spearman3s correlation of classifier3s probability of labeling a scan as ASD (P(ASD|fMRI
data)) and participants3 SRS scores.

ROI set L2LR L-SVM

r p r p

DiMartino 0.3195 b.001 0.3169 b.001
Power 0.4775 ≪.001 0.5119 ≪.001
Destrieux 0.4187 ≪.001 0.4928 ≪.001
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predictive features that were relevant to subject behavior (56.14% of
most predictive features) than did the Destrieux ROI set (28.57% of
most predictive features).

Inline Supplementary Fig. S3 can be found online at http://dx.doi.
org/10.1016/j.nicl.2014.12.013.
3.4. Classifier results correlate with behavioral ratings

In this final section, we test whether classifier techniques are sensi-
tive to symptom expression beyond a binary ASD vs. TD decision by
assessing whether feature weights correlated with participants3 SRS
total sum scores.

The probability estimate of a scan coming fromanASDor TD individ-
ual from the fMRI connectivity data alone derived from LOO cross-
validation, P(ASD|fMRI data), was highly correlated with the subjects3
SRS sum scores (Table 4). L-SVMs trained and tested on the Power ROI
set achieved the highest correlation with the SRS sum score (r = .51,
p = 2.79 × 10−8). Many top predictive features from the Power and
Destrieux ROI sets also strongly correlated with SRS scores (Fig. 2). Cor-
relation significance values were corrected for multiple comparisons
(FDR (Benjamini, andHochberg, 1995) b .05). The Power ROI set yielded
a higher proportion of predictive features that were relevant to subject
Fig. 2. The most predictive features from the Power and Destrieux ROI sets correlate with subj
represents the number of significantly correlated features coincidenton that region. Edge thickn
the r-statistic. Cooler colors indicate a negative correlation while warmer colors indicate a pos
behavior (56.14% of most predictive features) than did the Destrieux
ROI set (28.57% of most predictive features).

4. Discussion

In this study,we addressed the impact of classifier algorithmand ROI
set on classification accuracy of rs-fMRI applied to ASD. Contrary to our
prediction that there would be little effect of ROI or classifier choice on
classification performance, these factors substantially impacted classifi-
cation accuracy. L2LR and L-SVMs were the most successful in classify-
ing ASD individuals from TD individuals. Further, restricting analysis
to loci of group differences in task-based studies of ASD populations
greatly impaired accuracy.

We also found that accuracy achieved using simple behaviormetrics,
the SRS, far exceeded accuracy achieved with rs-fMRI. Nonetheless,
classification techniques applied to rs-fMRI data still had demonstrable
utility. These data-driven methods identified aberrant connections in
ASD participants, revealing connections within specific networks that
were predictive of an ASD diagnosis and correlated with symptom
expression.

4.1. Implications for rs-fMRI as a diagnostic ASD biomarker

Despite promising results using rs-fMRI data to classify ASD and TD
individuals3 scans, we exercise substantial caution in heralding this
technique as a potential ASD biomarker at this time for several reasons.
The first reason is that rs-fMRI classification lacks the sensitivity and
specificity of simple behavioral metrics (Table 1). We do not conclude
that the SRS is a better “biomarker” than rs-fMRI metrics because SRS
is in fact a behavioral measure of social impairment validated against
“gold-standard” ASD clinical measures. By comparing rs-fMRI and be-
havioral classifiers, we show that a set of highly informative features in-
dependent of the diagnosis criteria can distinguish the individuals with
high accuracy using the same statistical techniques. This procedure
ects3 SRS sum scores. Spheres are centered at each ROI3s center of mass, and sphere radius
ess indicates absolute value of the r-statistic. Edge color indicates the sign andmagnitudeof
itive correlation. All correlations are significant at FDR b .05.
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provides a classification benchmark more realistic than 100% accuracy.
Thus, there is a gap in classification performance between the brain
and behavior for which we must account. This gap remains when
attempting to reduce the rs-fMRI classifiers to only the most relevant
features (Fig. 1 and Inline Supplementary Table S5). The observed dis-
crepancy between performance of brain-based and behavior-based
classifiers does not appear to be specific to our cohort or methods. Our
best-performing brain-based classifier (peak accuracy = 77%) per-
formed on par with the two single-site rs-fMRI classifiers in the litera-
ture (peak accuracy (Anderson et al., 2011) = 78%; peak accuracy
(Castelli et al., 2002) = 79%). This advantage of behavioral metrics
may be due to many methodological and measurement factors includ-
ing thermal scanner noise, stubborn head motion artifacts, non-
uniform signal quality across the brain, and classifier overfitting. More
intriguingly, however, the behavioral advantage may reflect neurobio-
logical heterogeneity of ASD. The wide-range of symptom expression
profiles seen in an ASDdiagnosismay be due to neurobiological changes
that are as variable or even more variable than the disorder itself, thus
yielding an extremely difficult classification problem.

The second reason for our qualified excitement is the decline in clas-
sifier accuracy when algorithms are trained on data frommultiple sites.
Though our multi-site classifier (peak accuracy = 75%) substantially
outperformed a previous multi-site classifier (peak accuracy (Belmonte
et al., 2004) = 60%) (Inline Supplementary Tables S2 and S3), large uni-
variate differences in connectivity strength exist between sites (Inline
Supplementary Fig. S1). Further work is needed to isolate causes of
site effects (e.g., hardware, acquisition parameter, or cohort effects).
The third reason is that rs-fMRI classification studies with autism fail
to perform on the same level as ASD classification studies using other
modalities (i.e. behavior (Williams et al., 2013) structural and diffu-
sionMRI, (Ecker et al., 2010; Uddin et al., 2011) andmolecular and genet-
ic screens (Hu, and Lai, 2013)). Finally, prior studies and ours have
focused on individuals who were older than the age of typical diagnosis
(~2–6 years (Kleinmanet al., 2008)) or the age atwhich reliable behavior-
al symptoms are detectable (~1–3 years (Bolton et al., 2012)). Presently, it
is unclear whether existing classifiers are merely detecting circuit-level
consequences of living with ASD for many years. The possible age-
dependence of rs-fMRI based classifiers may hinder the generalizability
of a given classifier across age and underscores the need to evaluate de-
velopmental disorders in a developmental context (Dosenbach et al.,
2010; Karmiloff-Smith, 2013). An ideal biomarker would be measurable
prior to behavioral symptom onset (Yerys, and Pennington, 2011) and
able to distinguish developmental disorders of different etiologies.
4.2. Functional networks disrupted in ASD individuals

Irrespective of the utility of rs-fMRI as an ASD diagnosis biomarker,
classifiermethods remain valuable tools for investigating brain circuitry
in ASD. We found that a disperse set of connections was highly predic-
tive of an ASD diagnosis. Including regions beyond those seen in meta-
analyses of task-based fMRI studies increased classification accuracy
(Table 1). This accuracy increase with increasing coverage is consistent
with the idea that ASD involves disruptions of interacting large-scale
brain networks (Gotts et al., 2012).

While both anatomically-defined (Destrieux) and functionally-
defined (Power) whole-brain ROI sets performed similarly with regard
to classification, the latter resulted in a higher proportion of features
that correlated strongly with behavioral measures (Table 2 & Fig. 2).
Functionally defined brain regions may be essential for characterizing
functional connectivity differences in ASD individuals. Network labels
assigned to regions from the Power ROI set enabled us to investigate ca-
nonical functional networks that showed atypical connectivity in ASD
individuals. Fortuitously, the two best performing algorithms (L2LR
and L-SVM) allow for the ready interpretation of featureweights, some-
thing that was not previously straightforward due to either feature
selection methods (Nielsen, and Zielinski, 2013; Anderson et al., 2011)
or choice of classifier algorithm. (Uddin et al., 2013)

Connections involving the putative ‘default mode’ and ‘frontal-pari-
etal task control’ networks were most predictive of ASD. These results
are consistent with group-level functional connectivity analyses of
high-functioning ASD populations documenting reduced correlation in
ASD among regions of these networks (Just et al., 2012; Schipul et al.,
2012; Kana et al., 2006) many of which are known to be involved in
multiple aspects of social functioning (Frith, and Frith, 2007; Adolphs,
2009). Specifically, regions identified in the present study as most pre-
dictive of ASD included the insula, ventromedial prefrontal cortex, ante-
rior, middle, and posterior regions of cingulate cortex, supplementary
motor cortex, anterior temporal lobes, posterior aspects of the fusiform
gyrus, posterior superior temporal sulcus, temporal parietal junction,
intraparietal sulcus, and inferior and middle frontal gyri, bilaterally.
These results also converge with other imaging and histological investi-
gations of ASD. Structural MRI studies found cortical thickness and vol-
ume differences between ASD and TD individuals in several posterior
temporal and parietal regions of these two networks (Wallace et al.,
2010). A recent post-mortem study also found laminar disorganization
in the posterior superior temporal cortex of children and adolescents
with ASD (Stoner et al., 2014). Finally, atypical activity during theory
of mind and mentalizing tasks has been observed in many of these re-
gions (Castelli et al., 2002; Lombardo et al., 2010). Thus, the general pat-
tern of findings is consistent with the hypothesis that ASD involves a
fractionation of circuits that underlie social processing from other func-
tional networks (Gotts et al., 2012).

4.3. Future directions

The aforementioned limitations of rs-fMRI as a diagnostic biomarker
of ASD should not preclude further exploration of this imaging tech-
nique andmachine-learningmethods. This approachmay bewell suited
for predicting the trajectory of the disorder, identifying clinical sub-
groups on the basis of a functional connectivity phenotype, or identify-
ing individuals who may be more responsive to treatment. Autism is a
heterogeneous developmental disorder with a range of symptom ex-
pression profiles, and rs-fMRI may have a role in explicating the root
of this heterogeneity. Autism studies using other modalities have al-
ready had success using techniques that may accomplish this task
(Ingalhalikar et al. 2012; Hu, and Lai, 2013). We anticipate that basic
and clinical advances will result from studying functional brain net-
works with multivariate techniques.
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