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Aim: The search for prognostic biomarkers and the construction of a prognostic riskmodel
for hepatocellular carcinoma (HCC) based on N7-methyladenosine (m7G) methylation
regulators.

Methods: HCC transcriptomic data and clinical data were obtained from The Cancer
Genome Atlas database and Shanghai Ninth People’s Hospital, respectively. m7G
methylation regulators were extracted, differential expression analysis was performed
using the R software “limma” package, and one-way Cox regression analysis was used to
screen for prognostic associations of m7G regulators. Using multi-factor Cox regression
analysis, a prognostic risk model for HCC was constructed. Each patient’s risk score was
calculated using the model, and patients were divided into high- and low-risk groups
according to the median risk score. Cox regression analysis was used to verify the validity
of the model in the prognostic assessment of HCC in conjunction with clinicopathological
characteristics.

Results: The prognostic model was built using the seven genes, namely, CYFIP1, EIF4E2,
EIF4G3, GEMIN5, NCBP2, NUDT10, and WDR4. The Kaplan–Meier survival analysis
showed poorer 5-years overall survival in the high-risk group compared with the low-risk
group, and the receiver-operating characteristic (ROC) curve suggested good model
prediction (area under the curve AUC = 0.775, 0.820, and 0.839 at 1, 3, and 5 years). The
Cox regression analysis included model risk scores and clinicopathological characteristics,
and the results showed that a high-risk score was the only independent risk factor for the
prognosis of patients with HCC.

Conclusions: The developed bioinformatics-based prognostic risk model for HCC was
found to have good predictive power.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary
malignancy of the liver and the fifth most common malignancy
worldwide (Hiraoka et al., 2021). HCC kills about 400,000 people in
China each year, accounting for more than 50% of all HCC deaths
globally,making it the country’s second leading cause of cancer-related
death (Zhang et al., 2021a; Zheng et al., 2021). Despite advances in the
clinical management of HCC, the general prognosis of patients with
HCC remains extremely poor due to the high rate of metastasis (Wu
et al., 2019). RNAmethylation is a common RNAmodification found
in both eukaryotes and prokaryotes. Depending on the different sites
of methylation, RNA methylation includes m6A, m5C, m7G, and 2-
O-methylation modifications (Zhang et al., 2021b). m7G is a
modification in which a methyl group is added to the seventh
N-position of RNA guanine (G) (Zhang et al., 2021b). The m7G
modification is one of the most common forms of base modification
in post-transcriptional regulation, and it is widely distributed in the 5′
cap region of tRNA, rRNA, and eukaryoticmRNA (Guy andPhizicky,
2014; Sloan et al., 2017; Lin et al., 2018). It is important formaintaining
RNA processing metabolism, stability, exit from the nucleus, and
protein translation (Furuichi et al., 1977; Qin et al., 2020). It is also
important for themaintenance of RNA processing andmetabolism as
well as stability, nucleation, and protein translation (Furuichi et al.,
1977). METTL1 catalyzes the m7G modification of tRNAs(Orellana
et al., 2021). METTL1 has not been functionally linked to
tumorigenesis but is frequently overexpressed and amplified in
tumor; it has recently been found to be highly expressed in HCC
and associatedwith poor prognosis (Tian et al., 2019). Previous studies
have found that abnormal RNA modifications can influence tumor
initiation and progression (Rapino et al., 2018; Delaunay and Frye,
2019; Deb et al., 2020). Although many studies have reported that
m6A influences the development of HCC(Qi et al., 2020; Huang et al.,
2021a; Xie et al., 2021), the use of m7G as a molecular marker to
predict the prognosis of patients with HCC has not been reported
before. Because m7G-related genes are still not known to be linked to
the prognosis of patients with HCC, there is a strong need to
investigate the use of m7G-related genes as molecular markers to
predict the prognosis of HCC patients.

MATERIAL AND METHODS

Data Acquisition
The Cancer Genome Atlas (TCGA) database (https://tcga-data.nci.
nih.gov/tcga/) was used to retrieve publicly available RNA-seq
expression data and the corresponding clinical data of 374 HCC
samples. The training cohort was the TCGA cohort. Meanwhile, the
validation group was created using gene expression data and
corresponding clinical data collected from 72 human patients
with HCC at the Ninth People’s Hospital of Shanghai Jiaotong
University School of Medicine. Before participation in the study, all
patients signed a written informed consent form, and the study
protocol received ethical approval from the Ninth People’s Hospital
of Shanghai Jiaotong University School of Medicine. Age, gender,
and TNM stage were among the clinical data collected for the
training cohort and validation group (Tables 1, 2). From previous

systematic reviews and the MSigDB database, a total of 29 m7G-
related genes were extracted (Tomikawa, 2018; Dai et al., 2021; Ma
et al., 2021; Zhou et al., 2021).The workflow chart was shown in
Supplementary Figure S1. The flowchart was drawn with Figdraw
(www.figdraw.com).

Development and Validation of the
m7G-Related Genes Prognostic Model
In the TCGA cohort, the “limma” package in R was used to identify
differentially expressed genes (DEGs) between the tumor and
adjacent normal tissue, with FDR <0.05 and |log2FC| ≥1.
Additionally, m7G-related genes that met the above filtering
conditions were considered to be differential. To screen the
prognosis of HCC related m7G-related genes, extract survival
data of patients with HCC from clinical information files,
including survival time and survival status, merge m7G-related
genes expression files with survival data, and use of the R
software “survival” package coxph function to perform univariate
Cox regression analysis. To obtain a generalized linear model and
reduce error, the R package glmnet was used to perform 1,000 Cox
LASSO regression iterations and 10 cross-validations to obtain a
generalized linear model and reduce the error. Further, a multi-
factor Cox proportional risk regression analysis was performed to
obtain risk genes and construct a risk prognostic model. The disease
risk score, which is determined by the parameter β frommultivariate
Cox proportional risk regression analysis, and the expression of each
gene in the sample was used as a predictor of prognosis status in the
model. Based on the median risk index, the prognostic model was
used to calculate risk scores for the validation and training sets as
well as to classify the validation and training sets into high- and low-
risk groups. The ability of the regression model to predict survival at
1, 3, and 5 years was assessed using the R software package “survival
ROC” to calculate time-dependent subject operating curves (ROC
curves). We also evaluate the accuracy of the model using the
following statistical metrics: Precision: TP/TP + FP, where TP
stands for the number oftrue positive samples and FP stands for
the number of falsepositive samples. Accuracy: TP + TN/TP + TN +
FP + FN, Recall = TP/TP + FN, where TN is the number of samples
that labels and predictions are both negative. FN is the number of
samples that labels are positive but predictions are negative. The risk
scores obtained were justified by plotting scatter plots and high- low-
risk heat maps using survival time and genetic risk models, and
validating the value and stability of the regression models in
predicting patients’ survival prognosis using a validation set.

Enrichment Analysis of DEGs and Drug
Sensitivity Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were used to assess the
functional analysis of m7G-related DEGs. In the form of
enrichment analysis, GO covers molecular function (MF), cellular
components (CC), and biological process (BP) and provides a
comprehensive overview of the functional information of a given
gene (Harris et al., 2004). KEGG is a database that integrates genomic,
chemical, and systemic functional information and systematically
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analyzes gene function in terms of genetic and molecular networks to
identify functional and metabolic pathways (Du et al., 2014). The
Drug Response Gene Signature Database (DSigDB), which integrates
drug response microarray data from public databases and scientific
literature (Yoo et al., 2015) is accessible through the online
enrichment analysis platform Enrichr. Additionally, it also
provides drug and target information by creating a DSigDB by
screening the top 500 upregulated and downregulated genes for
drug signatures. Over 1,300 drugs, 7,000 microarrays, and 800
targets are currently in the DSigDB, enabling computational drug
repositioning to develop novel drugs targeting core genes (Federer
et al., 2016). In this study, DSigDBwas used to screen drug candidates
that interact with DEGs to provide a reference for disease-specific
therapy. p< 0.05was considered as a statistically significant difference.

Analysis of Immune Infiltration
Infiltration of the immune system has been associated with cancer
survival and progression (Wu et al., 2021). We assessed the
correlation between risk score and immune infiltration level.
The R package “GSVA” was used to quantify the infiltration
of each immune cell type in the HCC using a single-sample gene
set enrichment analysis (ssGSEA) algorithm.

Quantitative Real-Time PCR
Tumor tissue and normal tissue specimens (>4 cm from the tumor
specimen) were collected from 72 HCC patients admitted to the
Ninth People’s Hospital of Shanghai Jiaotong University School of
Medicine, and all the specimens were diagnosed pathologically. Total
RNAwas extracted using the Trizol method, and the tested RNAwas
subjected to reverse transcription and PCR reactions according to the
instructions on the reverse transcription kit (Takara, batch:

AJ60796A) and PCR reagent (Roche, batch: 41472600). The
relative expression levels of mRNA were calculated using the 2̂-
ΔΔCt method (ΔCt = Ct (target gene-internal reference gene);
ΔΔΔCt = ΔCt–Δctmin), and the paired t-test was used to
compare the differences in gene expression in tumor tissues and
normal paracancerous tissues. p < 0.05 was considered statistically
significant. The primers used in this study were obtained from
TsingKe biological technology (Nanjing, China). The primers used
are as follows: CYFIP1 (forward 5′- TCCCCATTGAGATGTCGA
TGC -3′, reverse 5′- ACTGCTTGTTGAACCTGGTGA -3′), EIF4E2
(forward 5′- ACAACAAGTTCGACGCTTTGA -3′, reverse 5′- TCT
CTTGCTACTGCTCTGATTCT -3′), EIF4E2 (forward 5′- ACA
ACAAGTTCGACGCTTTGA -3′, reverse 5′- TCTCTTGCTACT
GCTCTGATTCT -3′), EIF4G3 (forward 5′- CCTAGAGCTACC
ATCCCGAAC -3′, reverse 5′- GGGCCACTATGACGGTACTG
-3′), GEMIN5 (forward 5′- CCTCCGTCTTCCTTGTCCG -3′,
reverse 5′- CAGAGACCCTTTCGGTGTGTC -3′), NCBP2
(forward 5′- AAAACGCCATGCGGTACATAA -3′, reverse 5′-
GCCTGCCCTCCTTAAAGCC -3′), NUDT10 (forward 5′- CGG
TCCGAGAGGTGTACGA -3′, reverse 5′- AATCTTCCCAATCCT
CCAGCA -3′), WDR4 (forward 5′- CCACCTCCATAGCAAGCA
GTG -3′, reverse 5′- ACGCTTACTGTCATCGGTTAAAG -3′).

RESULTS

Identification of Prognostic m7G-Related
DEGs and Construction of a Prognostic
Model
Fifty normal tissue samples and 374 tumor tissue samples of HCC
were obtained from the TCGA database. Most m7G-related genes

TABLE 1 | Clinical characteristics of the HCC patients used in the derivation
cohort.

Characteristic Levels Overall

n — 374
T stage, n (%) T1 183 (49.3%)

T2 95 (25.6%)
T3 80 (21.6%)
T4 13 (3.5%)

N stage, n (%) N0 254 (98.4%)
N1 4 (1.6%)

M stage, n (%) M0 268 (98.5%)
M1 4 (1.5%)

Pathologic stage, n (%) Stage I 173 (49.4%)
Stage II 87 (24.9%)
Stage III 85 (24.3%)
Stage IV 5 (1.4%)

Gender, n (%) Female 121 (32.4%)
Male 253 (67.6%)

Age, n (%) ≤60 177 (47.5%)
>60 196 (52.5%)

Histologic grade, n (%) G1 55 (14.9%)
G2 178 (48.2%)
G3 124 (33.6%)
G4 12 (3.3%)

OS event, n (%) Alive 244 (65.2%)
Dead 130 (34.8%)

Age, median (IQR) — 61 (52, 69)

TABLE 2 | Clinical characteristics of the HCC patients used in the validation
cohort.

Characteristic levels Overall

n — 72
Age, n (%) <=60 40 (55%)

>60 32 (45%)
Gender, n (%) Female 27 (36%)

Male 45 (64%)
T stage, n (%) T1 22 (30%)

T2 18 (25%)
T3 18 (25%)
T4 14 (20%)

N stage, n (%) N0 68(95%)
N1 4 (5%)

M stage, n (%) M0 70(97%)
M1 2 (3%)

Pathologic stage, n (%) Stage I 36(50%)
Stage II 18 (25%)
Stage III 14 (20%)
Stage IV 4 (5%)

Histologic grade, n G1 9(12%)
G2 35 (48%)
G3 25 (35%)
G4 3 (4%)

Age, median (IQR) — 61.5 (51, 74.25)
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were found to be differentially expressed between the cancer and
paracancerous tissues (19/29, 65.5%, Figure 1A green: low
expression level; red: high expression level). The relationship
between the m7G-related DEGs is shown in Figure 1B. In the
univariate regression analysis, 17 DEGs were associated with overall
survival (OS) prognosis (Figure 1C), and Lasso regression analysis
identified seven key genes (Figures 2A,B). Therefore, we selected the
seven genes mentioned above to construct a multifactorial Cox
regression model and calculated risk scores. The risk score was
calculated using the following formula: -0.09187 * expression level of
CYFIP1 + 0.04210 * expression level of EIF4E2 + 0.10574 *
expression level of EIF4G3 + 0.20427 * expression level of
GEMIN5 + 0.04164 * expression level of NCBP2 −0.26358 *
expression level of NUDT10 + 0.07544 * expression level of
WDR4. According to the median scores, patients were divided
into high- and low-risk groups (Figure 3A). Patients in the high-

risk group had a higher chance of dying than patients in the low-risk
group (Figure 3B). When survival analysis was performed, the
Kaplan–Meier curve showed that the low-risk group had a
significantly higher survival rate than the high-risk group, with
p < 0.005 (Figure 3C). The predictive performance of the OS
risk score was assessed using the ROC curve, the area under the
curve (AUC) of the prognostic risk assessment model for the seven
m7G-related genes was 0.775, 0.820, and 0.839 at 1, 3, and 5 years,
respectively (Figure 3D). Supplementary Table S1 shows the results
of the precision, recall and accuracy metric of the model.

Validation of Prognostic Models
Patients in the validation cohort were calculated using the same
risk score formula as the TCGA cohort, and the median of the
calculation was divided into a high-risk group and a low-risk
group to validate the robustness of the prognostic model built for

FIGURE 1 | Identification of the candidate genes. (A) Heatmap of the differentially expressed genes in the two groups. *** denotes p < 0.001, ** denotes p < 0.01,
and * denotes p < 0.05. (B) The relationship between necroptosis-related differentially expressed genes. A positive correlation is indicated by red, while a negative
correlation is indicated by blue. (C) Forest plots showing the results of a univariate Cox regression analysis between gene expression and overall survival.
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FIGURE 2 | Processes of LASSO Cox model fitting. (A). The log(lambda) sequence was used to plot the profile of coefficients in the model at varying levels of
penalization. (B). Cross-validated error tenfold (the first vertical line equals the minimum error, whereas the second vertical line shows the cross-validated error within a
minimum of 1 standard error).

FIGURE 3 | The seven m7G-related genes signature model’s prognostic value in the test (TCGA) cohort. (A) The risk score distribution and median values. (B)
overall survival status, overall survival, and risk score distributions in the derivation cohort. (C) Kaplan–Meier curves show the overall survival of patients in the high-risk
and low-risk groups. (D) The area under the curves of time-dependent ROC curves shows the risk score’s prognostic performance.
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the TCGA cohort. The high-risk group had a worse prognosis
than the low-risk group, similar to the TCGA findings
(Figure 4A). Furthermore, the AUC of the 7-genes signature
was 0.869, 0.904, and 0.808 at 1, 3, and 5 years, respectively
(Figure 4B). NUDT10, CYFIP1 were highly expressed in normal
tissues by qRT-PCR, and the remaining five genes were highly
expressed in the validation group tumors (Figure 4C).
Supplementary Table S1 shows the results of the precision,
recall and accuracy metric of the model in validation set.

Independent Prognostic Value of the Risk
Model
The prognostic model was subjected to Cox univariate and
multifactorial analyses to see if the 7-gene marker model was
independent of other clinical variables. The 7-genes marker
model was found to be an independent factor affecting OS in
patients with HCC in both univariate and multifactorial Cox
regression analyses (p < 0.05, Table3).

Enrichment Analysis
We performed GO enrichment analysis of m7G-related DEGs and
found that BP focusing on translational initiation, regulation of
translation, regulation of cellular amide metabolic process, and CC
mainly enriched in RNA cap-binding complex, mRNA cap-binding
complex, eukaryotic translation initiation factor 4F complex, and MF
focusing on RNA cap binding, RNA 7-methylguanosine cap binding,
and translation initiation factor activity. KEGG analysis showed that
RNA transport, RNA degradation, EGFR tyrosine kinase inhibitor
resistance, the longevity regulating pathway were all significantly
activated (Figure 5). The results of ssGSEA showed the low-risk
group had higher levels of B cells, mast cells, neutrophils, NK cells,
pDCs, T helper cells, and TIL infiltration than the high-risk group
(Figure 6A). Meanwhile, in the low-risk group, immune-related
functions such as cytolytic activity, inflammation-promoting,
parainflammation, type II IFN response, and type I IFN response
were more active (Figure 6B). The above results could also explain
why patients in the low-risk group have a better moral prognosis.
When the seven genes were subjected to multifactorial Cox analysis,

FIGURE 4 | A validation cohort was used to validate the sevenm7G-related genes. (A). Kaplan–Meier curves showing overall survival of patients in the high-risk and
low-risk groups. (B). The area under the curves of time-dependent ROC curves indicates the risk score’s prognostic performance. (C). Results of quantitative real-time
PCR analysis.
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the CYFIP1, EIF4G3, and GEMIN5 were statistically significant,
implying that they could be independent prognostic factors for HCC.

Drug Sensitivity Analysis
Based on DSigDB analysis, this study identified 10 sensitivity drugs
(Supplementary Table S2). Trichostatin A (mechanism of oncogenic
effects via miR-34-mediated pathways (Song et al., 2015)) had the
highest negative correlation score. This suggests that it has a potential
therapeutic effect in HCC. Vorinostat is a histone deacetylase inhibitor
that is effective against HCC in preclinical studies (Hsu et al., 2014).
Cimetidine’s ability to scavenge free radicals, increase the expression
and activity of antioxidant enzymes, regulate the body’s immune
function and protect hematopoietic function may explain why it
can inhibit the growth and metastasis of many experimental
tumors and improve the survival rate of patients with tumors
(Sirota et al., 2011; Massari et al., 2020).

DISCUSSION

The process of transferring methyl groups from one reactive methyl
compound to another is known as methylation. RNA methylation,
DNA methylation, histone modification, non-coding RNA
modification, and chromatin rearrangement are common
epigenetic modifications (Huang et al., 2021b). A methyl group is
added to position N7 of riboguanosine to produce m7G (Cowling,
2009). This capped mRNA modification is facilitated by RNA
guanine-7 methyltransferase and regulates gene expression,
mRNA splicing, transcription, and nuclear export of mRNA, as
well as regulates mRNA translation (Enroth et al., 2019). Recently,
RNA methylation has been associated with a variety of human
physiologies and diseases, particularly with tumor immunity (Zhang
et al., 2021b). For example, impaired m7G tRNAmodification leads

to different forms of microcephalic primordial dwarfism and
Galloway-Mowat syndrome (Dai et al., 2021). Dai demonstrates
the critical function of METTL1-mediated m7G tRNAmodification
in promoting ICC intrahepatic cholangiocarcinoma in vivo (Dai
et al., 2021). In addition to this, impaired m7G tRNA modification
has been shown to be associated with glioblastoma multiforme
(GBM), liposarcoma (LPS), melanoma and acute myelogenous
leukaemia (AML) (Orellana et al., 2021). However, the
relationship between m7G and HCC prognosis is currently unclear.

In this study, we explored the relationship between m7G-related
genes and the prognosis of HCC patients. Using a prognostic model of
seven m7G-related genes (CYFIP1, EIF4E2, EIF4G3, GEMIN5,
NCBP2, NUDT10, and WDR4), we predicted the prognosis of
patients with HCC. The KM curve and accuracy of the model were
used to verify the model’s validity. Additionally, the model was also
combined with clinical information on HCC to analyze and screen
factors affecting the prognosis of HCC. The findings revealed that a
high-risk score is an independent risk factor affecting the prognosis of
patients with HCC. CYFIP1, a newly discovered tumor suppressor
gene, shows some tumor-suppressive effects in breast, lung, colon, and
bladder cancers (Silva et al., 2009; Teng et al., 2016a; Teng et al., 2016b).
It is also associated with tumor metastasis (Chen et al., 2016). We
found that CYFIP1 is an oncogene in HCC, and its expression in the
tissues of HCC patients was higher than in normal tissues in the
vicinity of the tumor. GEMIN5 can regulate translation and has been
reported to specifically bind to them7Gcap (Xu et al., 2016).We found
that the expression of GEMIN5 was higher in the tissues of patients
with HCC than in normal tissues adjacent to cancer and that patients
with high expression had a poor prognosis. In ovarian carcinoma,
NCBP2 has been reported as a key target gene (Wei et al., 2015). In
contrast,NCBP2was a risk factor for patient prognosis in patients with
HCC.WDR4 is highly expressed in fetal heart, kidney, and brain tissues
and it is important for development (Abedini et al., 2018).

TABLE 3 | The model was found to be an independent factor affecting OS in patients with HCC in both univariate and multifactorial Cox regression analyses.

Characteristics Univariate Analysis Multivariate Analysis

Hazard
Ratio (95% CI)

p Value Hazard
Ratio (95% CI)

p Value

T stage
T1&T2 Reference 0.3 — —

T4&T3 1.27 (1.18–1.45)
N stage
N0 Reference 0.2 —

N1 1.52 (1.32–1.91)
M stage
M0 Reference 0.93 — —

M1 1.86 (1.41–1.91)
Age
≤65 Reference <0.001 2.86 (1.38–4.96) 0.04
>65 4.81 (2.48–5.86)

Pathologic stage
Stage I&Stage II Reference 0.03 1.72 (0.46–2.71) 0.54
Stage III&Stage IV 1.32 (1.16–1.71)

Riskscore
Low Reference <0.001 2.86 (1.38–4.96) <0.001
High 2.59 (1.73–4.05)

Values in bold are significant correlations (P < 0.05)
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The tumor microenvironment plays a crucial role in immune
response suppression or enhancement (Li et al., 2017). The
microenvironment of patients with HCC contains a large number
of inflammatory and immune factors, and the differential expression of
inflammatory and immune cell numbers and phenotypes correlate
with the prognosis of patients with HCC. Immunity modulation may
be an effective means of treating tumors (Wu et al., 2012). We
performed an immune cell infiltration analysis to assess the
relationship between risk scores and overall survival of patients in
the context of immune system response. Our results suggest that
immune cell infiltration levels in low-risk patients were remarkably
higher than those in high-risk patients. T cells are at the center of
immunotherapy for tumors.Mobilization of immune cells to kill tumor
cells is the most effective and safe treatment method. In recent studies,
T cells have ben shown to be closely related to tumor immune escape
mechanisms and can be used as a prognosis indicator to some extent
(Okita et al., 2015; Hirano, 2018). Treg cells are a subset of T cells that
regulates the body’s autoimmune response by secreting anti-

inflammatory cytokines, expressing FoxP3 specifically, and exerting
immunosuppressive effects through interleukin-10 (IL-10), and
promoting transforming growth factor-alpha (TGF-α). Treg cell
numbers were found to be negatively correlated with OS in
patients with tumors, and the prognostic role of Treg cells
was correlated with tumor cell subtype and tumor stage
(Litwin et al., 2021). Drug sensitivity testing revealed
potential drugs that could regulate m7G-related genes.
Notably, drugs like trichostatin A, vorinostat, and rifabutin
were found to have a negative correlation with the expression
of these m7G-related genes. This provides a new drug treatment
option for HCC.

CONCLUSION

In conclusion, this study developed a risk prediction model by
analyzing m7G-related genes. The model has good prediction

FIGURE 5 | Results from gene ontology functional and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses for the identified differentially
expressed genes.
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accuracy and can be used to divide patients withHCC into high- and
low-risk groups, with the high-risk group being an independent risk
factor for the prognosis of HCC. Moreover, we also looked at the
relationship between risk scores and immune activities.
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