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IHD is a significant cause of mortality and morbidity worldwide. In the acute phase,

it’s demonstrated as myocardial infarction and ischemia-reperfusion injury, while in

the chronic stage, the ischemic heart is mainly characterised by adverse myocardial

remodelling. Although interventions such as thrombolysis and percutaneous coronary

intervention could reduce the death risk of these patients, the underlying cellular and

molecular mechanisms need more exploration. Mitochondria are crucial to maintain the

physiological function of the heart. During IHD, mitochondrial dysfunction results in the

pathogenesis of ischemic heart disease. Ischemia drives mitochondrial damage not only

due to energy deprivation, but also to other aspects such as mitochondrial dynamics,

mitochondria-related inflammation, etc. Given the critical roles of mitochondrial quality

control in the pathological process of ischemic heart disease, in this review, we will

summarise the efforts in targeting mitochondria (such as mitophagy, mtROS, and

mitochondria-related inflammation) on IHD. In addition, we will briefly revisit the emerging

therapeutic targets in this field.
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INTRODUCTION

AMI is myocardial necrosis due to acute obstruction of a coronary artery or induced hypoperfusion
of myocardial tissue, which is attributed to millions of deaths worldwide every year. The longer
duration of ischemia usually leads to much more severe myocardial damage. Therefore, timely
reestablishment of blood flow is the critical factor for rescuing the ischemic tissue. However,
another form of strike, called IRI is also responsible for local damage (1, 2) (Figure 1). According
to previous evidence, IRI describes tissue ischemia with inadequate oxygen supply after successful
reperfusion of the culprit artery. Currently, there are no efficient strategies to prevent the damage
caused by IRI (3). Thus, more explorations of the underlying molecular mechanisms are urgent to
foster the identification of novel agents to improve outcomes following MI or IRI.

Adverse myocardial remodelling is a significant feature of acute myocardial infarction,
characterised by various gradual changes of left ventricular morphology, such as infarcted zone
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FIGURE 1 | Procedures from myocardial infarction to post-infarction

remodelling. Myocardial infarction and reperfusion attributed mitochondria

damage, mitochondria function, and structure disorders are involved in various

pathophysiological processes, such as cardiac fibrosis, compensated

hypertrophy, and final heart failure.

expansion and chamber dilatation. HF is the end stage of
myocardial remodelling after AMI. It’s diagnosed in ∼13% of
patients at 30 days and 20–30% at 1 year after discharge for MI
(4, 5) (Figure 1). In addition, accumulated evidence indicated
that myocardial inflammation and myocardial fibroblasts play
critical roles in the process of cardiac repairment after AMI,
but excessive inflammation and fibrosis also lead to cardiac
remodelling (6, 7). Cardiac fibrosis has been an independent
risk factor in HF, which attributed HF patients to sudden
cardiac death and increased overall mortality independently of
the ejection fraction (8). Although various studies focus on the
underlying mechanisms of this pathological process, there are
still many unsolved problems in this field, and there are no
effective strategies to reverse this process.

Mitochondria is the energy house of cardiomyocytes,
generating ATP to maintain normal heart contractile
function (9). Mitochondria metabolic dysfunction is a key
characteristic of ischemic heart disease. In addition, with
more studies focusing on mitochondria, it’s reported that
mitochondria is not only an energy organelle, but also closely
connected with apoptosis (10), ROS generation (11–13),
lipid metabolism (14–16), and inflammation (17). All these
mechanisms contribute to acute phase and post-infarction
remodelling (18). In this review, we discuss the roles of
mitochondria in the pathological of ischemic heart disease and
the potential in translating mito-protective strategies into the
clinical setting.

MITOCHONDRIAL REMODELLING IN
ISCHEMIC HEART DISEASE

Mitochondrial remodelling in ischemic heart disease includes
structural and metabolic changes, both of which are identified
to play key roles through each stage of the pathogenesis of
ischemic heart disease. In cardiomyocytes, mitochondria are
highly dynamic organelles, in response to environmental or

metabolic changes, they underwent continuous fission, fusion
and cristae remodelling (Figure 2). Fusion is an essential
dynamic process to maintain the equilibration of matrix
metabolites, intact mtDNA, and even membrane components
(19–21). In reverse, mitochondrial fission exerts the function
to segregate dysfunctional mitochondria to clean damaged
proteins and mtDNA (19, 22). These mitochondrial activities
are strictly regulated by a group of GTPases related to the
dynamin family (23). Through the control of these proteins,
mitochondria can maintain a dynamic fission-fusion balance to
exert physiological functions. The structural disequilibrium
is closely related to acute and chronic heart diseases,
involving various molecular mechanisms (discussed in the
following parts).

The double-membrane mitochondria mediate OXPHOS,
coupling the substrate oxidation to ATP generation, which is
also known as the electron transport chain, ETC (24, 25).
Mitochondrial energy remodelling is a key characteristic of
myocardial ischemia. In the early ischemia stage, FAO, the
main metabolic way of heart, increases slightly and provides
60–90% of cardiac ATP production. In addition, the rapid
depletion of oxygen switches mitochondria metabolism to
glycolysis (26), resulting in pyruvate and lactate accumulation,
followed by intracellular acidification. After reperfusion, the
restoration of oxygen may initiate the burst of ROS, resulting
in severe intracellular damage. ROS, combined with calcium
overload, will trigger the opening of the mPTP. Despite various
researches on this topic, the exact molecular composition
of mPTP is still controversial (Figure 3). Previous evidence
indicated that mPTP includes ANT, VDAC, CyPD and PiC
(27, 28), but genetic ablation of these proteins revealed that
they are the regulators but not the pore of mPT (29, 30).
Mitochondrial F1F0 ATP synthase is known to form dimers
in the inner mitochondrial membrane (31, 32). Some studies
indicated that the ablation of the main membrane-embedded
component of ATP synthase, c-subunit, resulted in no change
of the sensitivity of mPT (33, 34), however, other evidence
found that c-subunit knockout lead to attenuate mPT (35,
36). Previous studies found that mitochondrial F1F0 ATP
synthase dimers were essential to form the inner mitochondrial
membrane channel, maintaining their physical function (37,
38). However, Nelli et al. found that ATP synthase monomer
is sufficient, and dimer formation is not required, for mPTP
activity (39). Anyway, despite the controversial components
of mPTP, current evidence indicated that mPTP opening
could lead to the depolarization of mitochondrial membrane
potential followed by cell death. Upon heart failure, FAO and
mitochondrial OXPHOS decrease, resulting in cardiac ATP
behind the requirement. Although the slight increase of glucose
uptake and glycolysis could exert a compensatory response,
this upregulation is insufficient to restore ATP production
(40–42). Accumulating evidence suggest that mitochondrial
respiration disturbance is a potential contributory factor to
ischemic heart disease due to its generation of ROS (43).
Mitochondrial remodelling participates in many regulating
processes in ischemic heart disease, which will be discussed in
the following parts.
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FIGURE 2 | Mechanisms of mitochondria dynamics and mitophagy. Mitochondria are highly dynamic organelles undergoing coordinated cycles of fission and fusion.

A series of GTPase-related proteins are involved in the dynamic process. Drp1 is the main regulator of mitochondrial fission, and Mfn1/2, combined with OPA1

regulate the fusion process. After mitochondrial fission, the mitochondrial fragments could be cleared out via PINK/Parkin-mediated mitophagy pathway.

FIGURE 3 | Structure of mPTP. mPTP is a non-specific and -selective channel composed of multiple proteins, which is voltage-dependent and spans cytoplasm,

OMM, IMM, and mitochondrial matrix. F1F0 (F)-ATP synthase is the main component of the pore and that the regulatory molecule CypD is a protein modulator

of the mPTP.

MITOCHONDRIA MITOPHAGY IN
ISCHEMIC HEART DISEASE

Mitophagy is a specific subtype of autophagy, which is
also an important mitochondria quality control system to
maintain mitochondrial homeostasis (44, 45). The mechanisms

of mitophagy induced by mitochondrial stress are complicated
(Figure 2). Mitophagy impairment causes the accumulation of
defective organelles, leading to cell and tissue damage. Previous
studies focused on autophagosome-mediated mitophagy via
LC3 adapters. Recently, many studies have investigated a
PINK/Parkin pathway involved in mitophagy. PINK and Parkin
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were first reported as genetic factors of Parkinson’s disease (46).
PINK is a mitochondrial serine/threonine-protein kinase and
Parkin is a cytosolic E3-ubiquitin ligase (47, 48). Under physical
conditions, PINK is transported to the inner mitochondrial
membrane and cleaved by MPP. The auto-phosphorylation of
PINK recruited Parkin translocation to themitochondrial surface
(49, 50). Pathological stresses cause mitochondrial membrane
depolarization and reduce the cleavage of PINK. Accumulated
PINK could be self-phosphorylated and activated, recruiting
Parkin to damaged mitochondria and triggering its E3 ligase
activity (51, 52). PINK could also phosphorylate ubiquitin
(Ub), forming poly-Ub chains on dysfunctional mitochondria.
Parkin would be activated by PINK after binding with
phospho-Ub, amplifying mitophagy signals (53). Parkin could
polyubiquitinate its substrates, such as VDAC1 and Mfn1/2,
leading to their degradation by the proteasomes (54, 55), followed
by mitochondria fission and mitophagy (Figure 2). PINK-Parkin
pathway also interferes with other mitochondrial quality control
mechanisms, mitochondrial fusion, and fission play an essential
role in mitophagy, mediating by dynamics-related proteins (the
fission and fusion proteins) (56). Mitochondrial fission results in
small fragmented mitochondria while fusion forms the elongated
interconnected network. Mitochondria are divided into polarised
and depolarised daughter mitochondria. Mitochondrial fission
is usually considered as the prerequisite for the occurrence
of mitophagy. Drp1 knockout disrupts mitochondria fission,
promotes elongated mitochondria, and inhibits mitophagy,
which aggravates cardiac dysfunction during IR injury (57).
Fission inhibition resulted in the progression of cardiac injury
due to impaired mitophagy, in addition, overexpression of Drp1
could promote mitophagy-mediated cell death (58, 59). Song
et al. reported that Drp1 ablation interrupts mitochondrial fission
and increases the activation of Parkin-mediated mitophagy,
and Parkin deletion in Drp1-knockout mice rescues heart
function and alleviates cardiac remodelling (60). NR4A1 could
aggravate IR injury via increasing mitochondrial fission through
Drp1 translocation and mitophagy suppression, NR4A1 ablation
could protect against pathological fission and mitochondrial
dysfunction. Novel therapeutic targeting the balance among
NR4A1, fission, and mitophagy may improve cardiac function
following IR injury (61).

In addition to increased mitochondrial fission during
I/R injury, the decreased mitochondrial fusion promoted
mitochondrial fragmentation, resulting in cardiac cell death
and dysfunction. Mitochondrial fusion, mediated by mitofusin
1/2 and OPA1, could prevent damaged mitochondria from
fusing with healthy ones. The dynamin-related protein OPA1,
located on the inner mitochondrial membrane, protects against
apoptosis by preventing the release of cytochrome c from the
mitochondria (62). Chen et al. found that OPA1 decreased
in samples from human hearts with ischemic cardiomyopathy
(63). Increased ROS reduced the expression of OPA1 and
aggravated cardiomyocytes apoptosis in response to I/R injury
(64). OPA1 overexpression protected cardiomyocytes against
hypoxia-induced damage and enhanced cell viability by inducing
mitophagy (65), andmelatonin could attenuate IRI via improving
mitophagy and activating the AMPK-OPA1 signalling pathway

(66). Additionally, Lichun et al. (67) found that increased
expression of MCU induced calpain activation, down-regulating
OPA1 and leading to myocardial IRI.

Current evidence indicated that impaired mitophagy
participated in cardiac IRI. PTENα deficiency could disrupt
mitophagy and lead to the accumulation of damaged
mitochondria, followed by the higher risk of IR injury
(68). WDR26 is a scaffolding protein that was found to
increase after cardiac ischemia. Increasing the expression
of WDR26 could increase mitochondria potential, thereby
inhibit cardiomyocyte apoptosis via promoting Parkin-mediated
mitophagy (69). Many agents such as antioxidants from
grapes were reported to exert protection against IR injury by
promoting the PINK/Parkin pathway (70, 71). Zinc ion also
demonstrated cardiac protection from IR injury via promoting
PINK-dependent mitophagy through the MAPK/ERK pathway,
the activation of PINK/Parkin-dependent mitophagy could
significantly decrease mitochondrial superoxide generation
and oxidative stress (72). Cardiac Drp1 heterozygous knockout
mice suffer disturbed mitophagy and are more susceptible to
IR injury (57). FUNDC1 is a mitophagy receptor after hypoxia
(73), exerting a protective property in cardiac IR injury. A
decrease of FUNDC1 could increase ROS levels and promote
apoptosis, leading to an increase in cardiac IR injury via
MAPK/ERK-CREB pathway. Restoration of FUNDC1 levels
could reduce myocardial infarct size (74). In addition, platelet
activation and thrombosis formation is the key step in cardiac
ischemia (75). Platelet-specific FUNDC1 ablation induces
worse cardiac damage via mitophagy interruption and platelet
activation (76, 77).

In addition to Parkin, there are several other ubiquitin E3
ligases, such as SMURF1, SIAH1, Gp78 also involve inmitophagy
regulation (78, 79). All these factors could generate ubiquitin
chains after being located on the mitochondrial surface, followed
by the recruitment of autophagy adaptors such as optineurin,
nuclear dot protein 52, and p62. These adaptors interact
directly with LC3, anchoring Ub-tagged mitochondria into
autophagosomes. PINK1 ubiquitin kinase mediates optineurin,
nuclear dot protein 52 recruitment on damaged mitochondria,
stimulating mitophagy. The serine/threonine-protein kinase
TBK1 modulates the phosphorylation status of the adaptors,
followed by their increasing binding affinity to Ub chains,
and promoting mitochondrial removal (80–82). Choong
et al. (83) reported that damaged mitochondria could release
into extracellular space in free naked form or in membrane-
surrounded vesicles. Mitochondrial stress may enhance this
extracellular release process. Extracellular mitochondrial
release acts as an alternative pathway to PRKN-dependent
and independent mitophagy to help with the clearance of
damaged mitochondria.

Macrophages are the most heterogeneous immune cell
population, which could be activated by a variety of cytokines.
A recent work examining macrophage transcriptome in the mice
heart post- MI showed a robust reprogramming of mitochondrial
genes, suggesting that mitochondrial function may lie at the
heart of macrophage function and cardiac remodelling. Another
primary function of macrophages is to eliminate unwanted
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material through phagocytosis (84). Nicolás-Ávila et al. (85)
identified a non-canonical route of elimination of abnormal
mitochondria from cardiomyocytes in vesiculated structures
(exophers). The exophers is then taken up and processed by
macrophages surround cardiomyocytes through the phagocytic
receptor Mertk. In cardiac stress such as AMI and hypertrophy,
failure to eliminate mitochondria-laden exophers results in
activation of the inflammasome and autophagy arrest, ultimately
compromising mitochondrial fitness.

Cardiac remodelling is also a canonical pathological process
after myocardial infarction, characterised with a large number
of cardiomyocytes undergoing cell death. To maintain normal
cardiac output, surviving cardiomyocytes will increase in cellular
size, mass, and volume. In addition to cardiomyocytes, cardiac
fibroblasts are also activated to secret components of the
ECM, which promotes the differentiation to myofibroblasts and
exert increased migratory, proliferative and secretory properties
(86). BNIP3 is an apoptosis-inducing protein, Diwan et al.
(87) and Dorn et al. (88) reported that BNIP3 ablation in
unstressed mice reveals no essential function, but BNIP3
specific knockout mice suffered reduced apoptosis and cardiac
remodelling after myocardial infarction. It is possible that
BNIP3 regulates mitochondrial quality throughmitophagy under
baseline conditions. However, during cardiac injury, BNIP3 may
act as a death promoter. Pingjun and colleagues found that
RIPK3 mediated cardiomyocyte necroptosis via AMPK/Parkin-
mitophagy axis in post-MI heart failure (89). Moshi et al. (90)
found that conditional ablation of Drp1 in mouse embryonic
fibroblasts promoted mPTP-mediated mitophagy. In summary,
mitophagy is indispensable for physiological mitochondrial
function, interruption of which may reduce mitochondrial
dysfunction both in ischemia and post-ischemic reperfusion.

MITOCHONDRIAL ROS IN ISCHEMIC
HEART DISEASE

It’s undoubtful that ROS is a toxic product of aerobic metabolism,
involving in various physiological and pathological processes
(91, 92). Mitochondria is the major cellular source of ROS. On
the one hand, mitochondria consume more than 95% of the
oxygen to generate the energy required to sustain life (93). During
ischemia, oxygen transported to mitochondrial ETC reduced
sharply, after blood restoration bring back oxygen, an electron
back-up primer the soluble ubiquinone component of the ETC
(especially complex I and complex III) to generate oxygen free
radicals. On the other hand, NADPH oxidase was another source
of ROS. NADPH oxidase could not deal with the superfluous
ROS, causing damage to DNA, proteins, lipids or modulate
cellular signalling pathways (Figure 4).

Increased ROS levels could activate various second message
pathways, such as the ERK, P38, protein kinase C, and PI3-
kinase pathways (94–96). Zorov et al. reported that mtROS
could dissipate the mitochondrial membrane potential and lead
to mPTP opening (97). In the following study, Aon et al.
(98) demonstrated that during ischemia-reperfusion injury,
excessive ROS from ETC could activate the inner mitochondrial

FIGURE 4 | Mitochondria oxidative stress in ischemic heart disease.

Mitochondria is the main source of ROS, after oxidative stress, the respiratory

chain could generate ROS, the imbalance level of ROS could attribute to

mtDNA damage, initiate the open of mPTP, leading to cell death.

anion channel, causing the release of ROS into the cytoplasm
and simultaneous dissipation of the membrane potential. As
mentioned above, Nox is another important source of ROS.
Braunersreuther et al. reported that in Nox1/Nox2 knockout
mice, myocardial infarct size was significantly smaller than that
in wild-type mice subjected to IR (30min of ischemia and 24 h of
reperfusion), the underlying pathways include Akt/ERK inNox1-
knockout mice and STAT3/ERK in Nox2-knockout mice (99).
Matsushima et al. (100) aimed to figure out the role of Nox-4 in
mediating IR injury and they found that Nox-4 knockout mice
suffered reduced ROS production and attenuation of the infarct
size after IR via the HIF-1α/PPARα pathway.

In addition to the harmful aspects, redox signalling also
contributes to protective or adaptive responses during IR injury
(101, 102). Many potential signal pathways have been reported in
this process, HIF signalling is one of the most important ones.
During ischemia, cardiomyocyte energy metabolism switches
from FAO to glycolysis, under control of HIF, followed by
the activated expression of several glycolytic genes (103–105).
In addition, it’s reported that oxidative stress following IR
injury is neutralised by the CNC -bZIP transcription factor
Nrf2, which could regulate intracellular redox homeostasis.
With the accumulation of intracellular oxidants, the levels
of Nrf2 increased in the nucleus, binding to ARE in the
upstream regulatory regions of genes encoding detoxification
and antioxidant enzymes, enhancing their transcription. This
has been shown to protect the heart from IR injury (106, 107).
Recently, some studies investigated that MAOs, including MAO-
A and MAO-B, is another source of ROS. Located on the
OMM, MAOs could generate O2 and H2O2 (108). During IR
injury, the increased activity of the MAO-A isoform significantly
deteriorated myocardial injury (109, 110) and promoted the
cardiac remodelling (110).
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Cardiac fibrosis is a significant feature of adverse cardiac
remodelling after myocardial infarction, sustained fibrosis could
result in myocardial stiffness, decrease of heart function, and
increased risk of arrhythmias (111). After myocardial infarction,
cardiac fibroblasts transform to a proinflammatory state,
secreting cytokines and MMPs, later post-MI phase, fibroblasts
transform to anti-inflammatory phenotype and generate ECM
(112). It’s reported that ROS is an important regulator of
MMPs, the increased levels of ROS could increase the activity
of MMPs, decrease tissue inhibitors of MMPs and increase
collagen synthesis (113, 114). In vitro tests indicated that ROS
could decrease collagen synthesis and increase transcriptional
and posttranslational levels of MMPs (115, 116). In vivo, mice
receiving ROS scavengers after MI could preserve left ventricular
function via decreasing the activity of MMPs (117, 118). The
evidence indicated that MMPs are key regulators in the process
that ROS influences cardiac fibrosis. Gpx is an antioxidant
enzyme, which could scavenge H2O2, meanwhile prevent the
formation of other kinds of toxic radicals. Gpx transgenic mice
presented improved heart function via attenuating apoptosis,
fibrosis, and decreasing MMP-9 activation after MI (119). Some
studies also identified the effect of mitochondrial oxidative
stress on remote myocardium after MI. Overexpression of
Prx3, a mitochondrial antioxidant enzyme, could inhibit cardiac
remodelling and failure (120). Cardiolipin inhibition could
prevent adverse cardiac remodelling in the non-infarcted MI
border zone via the restoration of ETC and reduced ROS (121).
In addition, another study demonstrated that increased lipid
peroxidation products could be detected in post-MI heart failure
(122). These studies indicated that mitochondrial oxidative stress
is an important factor regulating ischemic heart disease.

MITOCHONDRIA-RELATED
INFLAMMATION IN ISCHEMIC HEART
DISEASE

Current evidence demonstrated that inflammatory cell
recruitment, together with the activation of innate and
adaptive immune reactions, are the features of MI and IR
injury (123, 124). Inflammation is an important component of
tissue repair. However, recent studies suggested that excessive
inflammation-related processes contributed to poor outcomes.
In a steady-state, leukocytes and macrophages are the most
prevalent subset in adult mouse hearts. After MI, B-, and
T-cells were recruited to myocardium, leading to their increase
of 5–10-folds. Circulating blood monocytes migrate into the
infarcted heart and differentiate into macrophages. Many
signalling pathways have been identified to be involved in
mediating inflammation in acute and chronic myocardial
injury. In this section, we mainly focused on the relationship
between mitochondria and inflammation during cardiac injury
(Figure 5).

The inflammasome is a cytoplasmic multiprotein complex
that contributes to the release of mature cytokines during the
innate immune response. Inflammasome could recognise PAMPs

or host-derived DAMPs, recruiting, and activating the pro-
inflammatory protease caspase-1. NLRP3 inflammasome consists
of NLRP3, ASC, and caspase-1 proteins, which play important
roles in the pathophysiology of MI. Mitochondrial events and
NLRP3 inflammasome activation are tightly bounded. The
NLRP3 inflammasome could induce mitochondrial damage via
mtROS (125), decreased production of mtROS could effectively
inhibit the activation of NLRP3 inflammasome (126). In addition,
the insufficiency of damaged mitochondria clearance due to
disturbed mitophagy flow would strengthen the activation of the
NLRP3 inflammasome. mtDNA is a potential pro-inflammatory
trigger for immune cells and is widely accepted as a member
of DAMPs (127). Kiichi et al. (128) indicated that mtDNA
released into cytoplasm might activate NLRP3 inflammasome,
mitophagy could clear damaged mitochondria, followed by the
inhibition of NLRP3 inflammasome. Depleting the autophagic
proteins LC3B and beclin 1 increased the activation of caspase-
1along with secretion of IL-1 β and IL-18. Calcium homeostasis
is a critical factor for maintaining mitochondrial function.
NLRP3 stimulators (such as ATP) may result in calcium inflow
and lead to mitochondrial damage, followed by an increase
of mtROS and depletion of mitochondrial membrane potential
(129). cGAS/STING is another reported cytosolic mtDNA-
sensing pathway, when mitochondria damage leads to the release
of fragmented mtDNA into the cytosol, cGAS activates STING,
followed by the activation of TBK1, resulting in the translation
of interferon genes (130). The inflammatory process initiated by
mtDNA is a critical mechanism of ischemic heart disease.

Emerging evidence suggests that macrophage function is
closely associated with its mitochondrial metabolism (131,
132). Changes in mitochondrial function have been observed
in activated macrophages. In pro-inflammatory macrophages,
impairment of TCA flux leads to the accumulation of metabolic
intermediates such as succinate and malate (133), overload
of succinate is linked to abnormal ROS production (134).
The generation of αKG from glutaminolysis is important for
alternative M2 activation of macrophages via JMJD3-dependent
epigenetic reprogramming of M2 genes (135). Shuang et al.
(136) reported a new mechanism of macrophage in the
process of myocardial repair after MI, in which efferocytosis
increased the level of cellular fatty acids, the increased fatty
acids fueled mitochondrial respiration and activated an NAD+-
dependent signal transduction cascade, and this process is
positive for wound healing. In 2015, Xu et al. (137) reported
that the NOTCH signalling pathway is involved in mitochondrial
metabolism remodelling, resulting in mtROS generation and
pro-inflammatory gene expressions, such as TNF α and IL-1β.

There are other participants reported to be related to the
mitochondria-related inflammation process. Mst1 is a stress-
activated, pro-apoptotic kinase, Jing et al. (138) reported that the
SRV2 deletion inactivated the Mst1-mROS signalling pathway
in cardiomyocytes, which could regulate the inflammation and
oxidative stress. Another regulator of inflammatory process-
S100a8/a9 caused cell death in the early stage of IR injury via
mitochondrial respiratory dysfunction (139). Mechanistically,
S100a8/a9 downregulated NDUF gene expression which will
inhibit the activity of mitochondrial complex I via Toll-like
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FIGURE 5 | Mitochondria-related inflammation in ischemic heart disease. Many factors in mitochondria could initiate mitochondria-related inflammation, ROS from

mitochondrial respiratory chain could directly activate HIFα and NLRP3, which are vital regulators in inflammation process. In addition, metabolites from mitochondria,

such as succinate, citrate, and itacoriate also cause inflammation. mtROS could lead to mtDNA damage, which trigger the inflammation response via NLRP3,

cGAS/STING, and TLR9 pathways. NAD(H) redox is another initiator of inflammation response via the regulation of oxidation flux, sirtuins function, and one carbon

metabolism.

receptor 4/Erk–mediated Pparg coactivator 1 alpha/nuclear
respiratory factor 1 signalling suppression.

MITOCHONDRIAL PROTEIN
POST-TRANSLATIONAL MODIFICATION IN
ISCHEMIC HEART DISEASE

PTMs are alterations of proteins occurring after the translational
process catalysed by numerous enzymes. Protein PTMs are
important in various physiological and cellular processes, such as
differentiation (140), protein degradation (141), gene expression
(142, 143). PTMs of proteins have been identified to affect
mitochondrial quality control, leading to the exacerbation, or
alleviation of ischemic heart disease (144–146) (Figure 2).

Protein phosphorylation plays a critical regulatory role in
cardiomyocytes via mediating protein activation or deactivation.
Phosphorylation of mitochondrial proteins is vital to maintain
mitochondrial function. Phosphorylation of mitochondrial
complex IV subunit mediated its physical function in myocardial
mitochondria. During IR injury, protein kinase A-dependent
phosphorylation of complex IV increased and resulted in a
decrease of its activity, followed by an increase in ROS production
(147, 148). The STAT3 is a key regulator of mitochondrial
metabolism via the interaction with mitochondrial proteins.
In ischemic conditions, STAT3 phosphorylation improved
mitochondrial function via preserving mitochondrial complex

I, preventing mPTP opening with the result of infarction area
reduction (149–151).

In eukaryotic cells, the UPS is a primary system of
protein degradation. The ubiquitination occurred via ubiquitin-
binding its COOH group with the target protein (152,
153). Ubiquitination has been widely accepted as one of the
major ways of protein degradation to maintain mitochondrial
quality. As we presented previously, PINK/Parkin-mediated
mitophagy is a critical pathway for mitochondrial quality
control. Parkin is an E3 ligase, which can ubiquitinate several
mitochondrial outer membrane proteins via E3 ligase activity
to recruit the p62 protein. CypD ubiquitinated by Parkin could
inhibit mPTP opening, alleviating myocardial injury (154). In
the process of heart remodelling after IR injury, exogenous
ubiquitin supplement could reduce caspase-9 expression in
the mitochondrial death pathway, increasing mitochondrial
production, reducing infarct area, and finally restoring heart
function (155). Wangxing et al. (156) demonstrated that leptin-
overexpressing hMSCs into the infarcted heart could improve
cardiac function. Further mechanical exploration indicated
that leptin restored mitochondrial respiratory function via
enhancing OPA1 expression by inhibiting the activity of OMA1,
a mitochondrial protease. In addition, phosphorylation of GSK3
is a prerequisite for ubiquitination-depended degradation of
OMA1 and attenuation of long-OPA1 cleavage.

SUMO is a member of the large family of ubiquitin-like
proteins. SUMOylation is a classic ubiquitination-like PTMs,
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linking the SUMO protein to the lysine residue of the substrate
protein (157). In heart IR injury, the binding of SUMO with
Drp1 increased to form a complex, increasing the acidification of
the complex could maintain mitochondrial quality and improve
cardiac function (158). Another deSUMOylation-related enzyme,
SENP3 could alleviate IR injury via the inhibition of Drp1
localisation in the mitochondria (159). Acetylation is one of
the major PTMs in cell biology, SIRT3 and SIRT5 are sirtuins
found in mitochondria. Angela et al. reported that SIRT3
could reduce the activity of CypD, inhibiting the opening
of mPTP. Increasing SIRT3 expression in the failing heart
could improve cardiac function (160). Studies showed that
decreased expression of SIRT3 in heart increased susceptibility
to IR injury (161, 162). In addition, SIRT1 was also found to
be involved in cardiac IR injury, study found that increased
expression of SIRT1 could restore left ventricular function
during the construction of myocardial IR models (163). Zhao
et al. invested the role of HDACs inhibition in myocardial IR
injury and found that HDACs inhibition protected the heart
against I/R injury (164). Moreover, SIRT5 (–/–) mouse hearts
are more tendentious to suffer IRI due to the increase of lysine
succinylation followed by the accumulation of mitochondrial
ROS, and mtROS scavenged by SDH inhibition could reverse
this process (165). Accordingly, the exploration of the interaction
of PTMs in ischemic heart disease by modulating mitochondrial
quality control has a bright future to investigate novel
therapeutic targets.

MiRNAs are short non-coding RNA binding to the 3’
UTR sequences and regulating targeted gene expression either
by mRNA degradation or translational repression (166).
Mitochondria contain miRNAs that are termed as mitomiRs
in several species and cell types (167). MitomiRs target
either mitochondrial or nuclear proteincoding mRNAs, thereby
influencing mitochondrial metabolism and dynamics through
regulation of the main mitochondrial pathways, such as
OXPHOS, ETC components, TCA cycle (168). Overexpression
of miRNA-34a in AMI patients’ serum enhances cardiomyocyte
apoptosis by down-regulating mitochondrial anti-apoptotic
protein aldehyde dehydrogenase 2 (169). miRNA-1 could enter
mitochondria and regulate mitochondrial ETC via targeting
proteins in ETC networks, while increased miRNA-1 expression
has been found in the remote myocardium of AMI patients (170).
Mitochondrial miRNA-762 regulates cardiomyocyte apoptosis
via impairing the core subunit of mitochondrial complex I
(171). In addition, lncRNAs are also a heterogeneous class of
transcripts involved in the epigenetic regulation of gene and
genome activity (172, 173). Recent data indicated that lncRNAs
localised to mitochondria, regulating mitochondrial function
(174–176). Circulating levels of mitochondrial lncRNA LIPCAR
were downregulated early after AMI and upregulated during
later stages and were associated with adverse cardiac remodelling
and death (175). In addition to lncRNAs, growing evidence
also reports that circRNAs are involved in the regulation of
the mitochondrial dynamics and cardiomyocyte apoptosis. Kun
et al. (177) found that MFACR regulated mitochondrial fission
and apoptosis in the heart by targeting and downregulation
of miR-652-3p. To sum up, mitochondrial non-coding RNAs

are involved in the pathogenesis of myocardial infarction via
regulating various pathways.

TARGETED THERAPIES

Early reperfusion of occluded coronary arteries is the most
effective strategy of AMI over the past decades. However, there
is no effective therapy for reperfusion injury and alleviation of
cardiac remodellin. Therefore, with a growing understanding of
the molecular mechanisms of ischemia, IR injury, and chronic
remodelling, we may develop more novel therapeutic targets to
protect the heart from IHD and improve clinical outcomes of
these patients. Considering numerous studies in this field, we
only discussed the agents involved in mitochondrial targets in
animal studies or clinical trials.

Over decades, mtROS is one of the most popular targets of
heart protection. A reduced generation or increased scavenge
of mtROS have been reported to increase outcomes. MitoQ is
the first mitochondria-targeted antioxidant, which is bioavailable
orally without toxicity detected. Rat received MitoQ for 2
weeks suffered reduced oxidative stress and resisted heart
ischemia-reperfusion injury (178). SS-31 is a kind of small
artificial peptides with therapeutic potential due to its antioxidant
properties (179–181), in rat tests, SS-31 could attenuate the strike
of ischemia and reperfusion via reducing MI size (180, 182, 183).
SODs are metal-containing antioxidant enzymes, protecting cells
from damage by converting superoxide radicals to H2O2 and
O2. Mito-specific SODmimetics exert protection under oxidative
stress (184). Clinical trials of SS-31 in patients with heart failure
and acute myocardial infarction have been tested, although the
myocardial infarct size did not show an improvement, it showed
acceptable safety and tolerability (185, 186). Cerrato’s group two
analogues of SS-31 (mtCPP-1 and mtgCPP) and reported greater
efficiency and antioxidant capacity than SS-31 (187, 188). In
an animal model of post-infarction heart failure, activation of
ALDH2 with Alda-1 improves the clinical outcomes via the
decrease of reactive aldehydes (189).

mPTP is a mitochondria voltage- and Ca2+-dependent
high-conductance channel. Piot et al. exerted a clinical trial
that included 58 patients who suffered acute ST-elevation
myocardial infarction to receive cyclosporine immediately before
undergoing PCI, it came out that cyclosporine could decrease
the infarct size to some extent (190). Currently, some larger
clinical trials are ongoing to test the effect of mPTP inhibition
on short- and long-term patients’ outcomes. Trehalose is
a small molecule from mushrooms, which could activate
mitophagy. Studies indicated that administration of trehalose
for 4 weeks could reverse cardiac remodelling and fibrosis
in MI model mice (191, 192). Spermidine is another natural
compound that activates autophagy. In the MI rat model, oral
supplementation of spermidine is inversely associated with all-
cause mortality and MI risk via enhancement of mitochondrial
respiration (193). In addition, Jing et al. reported that spermidine
supplement improved MI-induced cardiac dysfunction through
AMPK/mTOR mediated autophagic flux (194). Mdivi-1 is an
inhibitor of mitochondria-related fission protein-Drp1, which is
proved to reduce infarct size, rescue cardiac function in the IRI
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mouse model (195). In addition, mdivi-1 treatment ameliorated
IRI via the inhibition of connexin 43 loss and suppression
of MMP3 (196). UPRmt is critical to maintain mitochondrial
proteostasis under cellular stress, UPRmt induced by oligomycin
or doxycycline has been identified to reduce MI size in mice
models (197). The expression of AMPK increased in failing
heart, metformin is considered as a pharmacological activator
of AMPK, which could reduce cardiac infarct size and improve
heart contractibility in a rat MI model. Artificial compounds
targeting AMPK have been designed, Abbott lab generated an
artificial agent, named A769662, which could reduce infarct size
in rats via specific activating AMPK on β subunit (198, 199).

Although various experimental studies developed effective
cardioprotective strategies, there are few successful clinical
translations. And this has been attributed to different factors:
firstly, there are no effective delivery systems for agents to
carry out their functions. Secondly, animal models are different
from patients with ischemic heart disease, which usually
also suffered from other co-morbidities such as hypertension,
diabetes. Recently, some clinical agents such as DPP-4 and
SGLT2 have been identified to protect cardiomyocytes from
IRI damage via mitochondrial function preservation. GLP-1 is
an incretin hormone with cardioprotective capacities and was
markedly increased in acute myocardial infarction. In physical
conditions, GLP-1 could be degraded by DPP-4, Sebastian
et al. (200) found that DPP-4 inhibitor could maintain the
serum concentration of GLP-1, increasing AMPK activity and
mitochondrial respiratory capacity of non-infarcted tissues.
In addition, GLP-1 agonist, liraglutide could reduce cardiac
infarct size, protected cardiomyocytes from injury and preserved
contractile function via suppressing ROS generation, NADPH
oxidase and proinflammatory signals (201). SGLT-2 inhibitors
are a new generation of anti-diabetic agents, which have been
recommended in cardio-protection (202). Various studies proved
that SGLT-2 inhibitors could ameliorate cardiac remodelling and
increase mitochondrial function (203, 204). Another type of
anti-diabetic agent, metformin is also reported to exert cardio-
protection by restoring mitochondria function and dynamics

in cardiac I/R injury (205). Some natural agents or analogues
such as taurine, fisetin, and humanin also exert cardio-protection
against IRI by reducing mitochondrial dysfunction (206–208).
In summary, despite there is much evidence supporting the
targeting of mitochondria as a therapy strategy in IHD, more
efforts are needed to promote the basic to clinical translation.

CONCLUSIONS

Mitochondrial homeostasis is critical for the maintain of the
mitochondria network. In this review, we summarised the
advances supporting the view that mitochondrial disorder
is a major contributor to cardiac injury, IRI, as well as
chronic remodelling. Mitophagy disorder, increased mtROS,
mitochondria-related inflammation and post-translation
of mitochondrial proteins are considered contributory
factors to mitochondrial dysfunction in ischemic heart
disease. Accordingly, many targeted modulations involved
in mitochondrial quality control provide great chances for the
design of novel therapies. Although there are no drugs with
successful clinical transformation, which are directly targeted
mitochondria-related mechanisms, many regulatory proteins or
peptides and miRNAs possess significant potential.
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GLOSSARY

ALDH2, Aldehyde dehydrogenase 2; ANT, adenosine nucleotide
translocase; AMPK, Adenosine 5′-monophosphate (AMP)-
activated protein kinase; AMI, Acute Myocardial Infarction;
ARE, Antioxidant response elements; ASC, Apoptosis-associated
speck-like protein; α-KG, α-ketoglutarate; ATP, Adenosine
triphosphate; BNIP3, BCL2 Interacting Protein 3; cGAS,
GMP-AMP synthase; circRNA, covalently closed, single-
stranded RNA; CNC, Cap “n” collar; CREB, cAMP-response
element binding protein; CypD, Cyclophilin D; DAMP3,
Danger signalling molecules 3; DPP4, Dipeptidyl peptidase-4;
Drp1, Dynamin-related protein1; ECM, Extracellular matrix;
ETC, electron transport chain; ERK, Extracellular signal-
regulated kinas; FAO, Fatty acid β-oxidation; FUNDC1,
FUN14 Domain Containing 1; GLP1, Glucagon-like peptide
1; Gpx, Glutathione peroxidase; GSK3, Glycogen synthase
kinase-3; GTPase, Guanosine triphosphatases; HDAC, Histone
deacetylases; HF, Heart failure; HIF, Hypoxia-inducible factor;
hMSC, Human mesenchymal stem cells; IHD, Ischemic heart
disease; IL-1β, Interleukin-1β; IRI, Ischemia reperfusion
injury; LC3, Microtubule- associated protein1 light chain
3; lncRNA, Long noncoding RNAs; MAO, Monoamine
oxidases; MAPK, Mitogen - activated protein kinase; MCU,
Mitochondrial Calcium Uniporter; MFACR, Mitochondrial
fission and apoptosis-related circRNA; Mfn1/2, Mitofusin 1/2;
miRNA, MicroRNA; mitomiRs, Mitochondria miRNAs; MMP,

Matrix processing peptidases; MPP, Matrix metalloproteinases;
mPTP, Mitochondrial permeability transition pore; mRNA,
Messenger RNA; Mst1, Mammalian STE20-like protein
kinase 1; mTOR, Mammalian target of rapamycin; NAPDH,
Nicotinamide adenine dinucleotide phosphate; NLRP3,
Nucleotide-binding oligomerization domain-like receptor
family pyrin domain containing 3; Nox, NADPH oxidases;
NR4A1, Nuclear receptor subfamily 4 group A member 1;
OMM, Outer mitochondrial membrane; OPA, Optica atrophy
protein 1; OXPHOS, Oxidative phosphorylation; PAMP,
Pathogen-associated molecular patterns; PCI, Percutaneous
coronary intervention; PINK, PTEN-induced putative kinase
1; PTM, Post-translational modification; RIPK3, Receptor-
interacting protein 3; ROS, Reactive oxygen species; SDH,
Succinate dehydrogenase; SENP3, Sentrin-specific protease
3; SGLT2, Sodium-glucose cotransporter 2; SIRT, Sirtuin;
SIAH1, Siah E3 ubiquitin protein ligase 1; SMURF1, Smad
ubiquitination regulatory factor-1; SOD, Superoxide dismutase;
SRV, Suppressor of ras val-2; STAT3, Signal transducer and
activator of transcription 3; STING, Stimulator of interferon
genes; SUMO, Small ubiquitin-like modifier; TBK1, TANK-
binding kinase 1; TCA, Tricarboxylic acid cycle; TNF-α,
Tumour necrosis factor α; UPRmt, Mitochondrial unfolded
protein response; UPS, Ubiquitin-proteasome system;
UTR, untranslated region; VDAC1, Voltage-dependent
anion-selective channel protein 1; WDR26, WD repeat
domain 26.
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