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Harnessing invariant natural
killer T cells to control
pathological inflammation

Nikhila S. Bharadwaj and Jenny E. Gumperz*

Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, United States
Invariant natural killer T (iNKT) cells are innate T cells that are recognized for

their potent immune modulatory functions. Over the last three decades,

research in murine models and human observational studies have revealed

that iNKT cells can act to limit inflammatory pathology in a variety of settings.

Since iNKT cells are multi-functional and can promote inflammation in some

contexts, understanding the mechanistic basis for their anti-inflammatory

effects is critical for effectively harnessing them for clinical use. Two

contrasting mechanisms have emerged to explain the anti-inflammatory

activity of iNKT cells: that they drive suppressive pathways mediated by other

regulatory cells, and that they may cytolytically eliminate antigen presenting

cells that promote excessive inflammatory responses. How these activities are

controlled and separated from their pro-inflammatory functions remains a

central question. Murine iNKT cells can be divided into four functional lineages

that have either pro-inflammatory (NKT1, NKT17) or anti-inflammatory (NKT2,

NKT10) cytokine profiles. However, in humans these subsets are not clearly

evident, and instead most iNKT cells that are CD4+ appear oriented towards

polyfunctional (TH0) cytokine production, while CD4- iNKT cells appear more

predisposed towards cytolytic activity. Additionally, structurally distinct

antigens have been shown to induce TH1- or TH2-biased responses by iNKT

cells in murine models, but human iNKT cells may respond to differing levels of

TCR stimulation in a way that does not neatly separate TH1 and TH2 cytokine

production. We discuss the implications of these differences for translational

efforts focused on the anti-inflammatory activity of iNKT cells.
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Introduction

iNKT cells are innate T lymphocytes that are present in all individuals and use a unique

“semi-invariant” TCR, comprised of a canonically rearranged TCRa chain (TRAV10-

TRAJ18) paired with TCRb chains utilizing TRBV25-1 in diverse rearrangements (1–3).

The TCRs of iNKT cells are specific for CD1d, a non-classical antigen presenting molecule
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that has minimal polymorphism at the amino acid level in human

populations (4). CD1d molecules are constitutively expressed by

professional APCs, including B cells, monocytes, macrophages, and

DCs (5), and also by non-hematopoietic cells (particularly epithelial

cells) in a variety of tissues (6). CD1d molecules are specialized for

presenting lipidic antigens, which are structurally conserved

molecules that are not highly mutable (7). Antigens recognized by

iNKT cells derive from both self and microbial sources (8). Self-

lipids recognized by iNKT cells are constitutively presented by

CD1d+ APCs, and may also be up-regulated during inflammation

or cellular stress (9). Hence, because of their status as ‘donor-

unrestricted’ T cells that recognize conserved antigens and do not

mediate alloreactivity, iNKT cells are ideal candidates for allogeneic

cellular immunotherapies. Due to their self-lipid recognition iNKT

cells can be used for adoptive cellular immunotherapies without

added antigens. Alternatively, they can be specifically activated by

synthetic mimetics of their lipid antigens.

Extensive studies have demonstrated remarkable potency of

iNKT cells in limiting TH1-driven pathology in multiple settings,

including autoimmune diseases, inflammation associated with

obesity, and graft versus host disease (GVHD) [reviewed in (10–

12)]. However, a central conundrum about iNKT cells is that they

can also potently promote TH1 responses. Their TH1-promoting

functions have been associated with enhanced defense against

infections and cancer (reviewed in (13, 14)), but also appear to

play pathological roles in certain contexts, including atherosclerosis,

sickle cell disease, and endotoxic shock (reviewed in (15–17)). Thus,

in order to successfully exploit the potential of iNKT cells to treat

inflammatory disease, it may be important to selectively engage

their anti-inflammatory pathways.
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How are the anti-inflammatory
effects of iNKT cells mediated?

Two distinct mechanistic processes have been identified that

may explain how iNKT cells limit TH1-driven inflammation. The

first is a regulatory axis characterized by iNKT cell production of

TH2 (IL-4, IL-13) or regulatory (IL-10, TGFb) cytokines, and by

activation of anti-inflammatory cells including M2-polarized

macrophages, myeloid-derived suppressor cells (MDSCs), and

Tregs (Figure 1A). The second is a cytolytic pathway involving

iNKT-mediated killing of inflammatory antigen presenting cells

(APCs) that activate TH1 effectors (Figure 1B).
iNKT regulatory axis

Studies investigating insulitis in non-obese diabetic (NOD)

mice were amongst the first to elucidate the regulatory activity of

iNKT cells, with early work revealing a critical link to IL-4 and

IL-10 production (18–21), and further analysis showing that

they promote the differentiation of tolerogenic APCs that limit

the activation of autoreactive T cells (22–25). A similar axis has

been observed in murine models of diet-induced obesity, where

adipose-resident iNKT cells play a powerful role in glucose

tolerance by promoting macrophage polarization into a non-

inflammatory M2 phenotype through secretion of IL-4 and IL-

10 (26, 27), and by transactivating regulatory T cells via secretion

of IL-2 (28). iNKT cells also contribute to the resolution phase of

sterile inflammation in the liver by promoting monocyte

transition into an anti-inflammatory phenotype through
BA

FIGURE 1

iNKT cell anti-inflammatory mechanisms. (A) iNKT cells interact with myeloid cell types to initiate the activation of regulatory pathways.
Recognition of antigens presented by CD1d molecules expressed by myeloid cells induces iNKT cells to produce cytokines like IL-4, IL-10, or
IL-13, that in turn act on the APCs. IL-4 and IL-10 promote macrophage differentiation into an M2 phenotype. IL-13 promotes monocyte
differentiation into APCs that express suppressive cytokines such as IL-10 and TGF-b. Secretion of ATP by iNKT cells leads to upregulation of the
checkpoint inhibitors PD-L1 and PD-L2, and iNKT interaction with monocytes induces secretion of PGE2 by mechanisms that have not yet been
determined. Additionally, IL-2 produced by iNKT cells helps to drive the expansion of Tregs. (B) iNKT cells can lyse pro-inflammatory APCs,
leading to reduced T cell activation. In this case, recognition of antigens presented by CD1d molecules activates iNKT cells to release cytolytic
granules that induce apoptosis of pro-inflammatory APCs.
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secretion of IL-4 (29, 30). In murine models of allogeneic

hematopoietic transplantation, iNKT cells protect against

GVHD through IL-4 dependent mechanisms (31–33), and by

promoting the regulatory functions of myeloid-derived

suppressor cells (MDSCs) while driving Treg expansion via

secretion of IL-2 (34–36).

Analyses of human iNKT cells have suggested that they may

participate in similar regulatory processes. IL-10 producing

iNKT cells recently identified in the intestinal lamina propria

of Crohn’s Disease patients showed suppressive activity towards

pathogenic CD4+ T cells, and the frequency of IL-10 producing

iNKT cells in colon tissue of these patients correlated inversely

with TH1 and TH17 cell frequency, and was associated with

reduced disease severity, higher TGFB gene expression, and

lower levels of inflammatory proteins (37). Moreover, co-

culture of human Tregs with iNKT cells led to increased Treg

FOXP3 expression, enhanced IL-10 secretion, and more

profound inhibition of conventional T cell proliferation (38).

Human iNKT cells can also mediate potent suppression of T

cell IFN-g production by modulating the functions of monocytic

cells. Our research group showed that GM-CSF and IL-13 secretion

by human iNKT cells induced monocytes to differentiate into

tolerogenic APCs that produced high levels of IL-10, expressed

the checkpoint inhibitors PDL-1 and PDL-2, and potently

suppressed T cell proliferation and IFN-g secretion (39, 40). The

regulatory phenotype of the APCs was due to iNKT cell release of

extracellular ATP, which signaled through the P2X7 receptor on the

monocytes to induce upregulation of PD-L1 and PD-L2 (41). This

iNKT-monocyte interaction resembles a pathway observed in a

murine model in which IL-13 secreted by CD1d-restricted T cells

promoted monocyte expression of TGFb, which led to suppression

of T cell effector responses (42, 43), although the role of TGFb in the
human iNKT-monocyte pathway remains unclear.

We also used a xenotransplantation model of hematopoietic

engraftment to investigate the impact of the human iNKT-

monocyte pathway in vivo. The addition of allogeneic adult

iNKT cells to human cord blood mononuclear cell grafts resulted

in dramatically improved engraftment, which was due to iNKT

cells inducing cord blood monocytes to secrete prostaglandin E2,

which potently suppressed T cell IFN-g production (44). Since

hematopoietic engraftment is suppressed by excessive IFN-g
(45), this analysis shows that human iNKT cells can engage

powerful regulatory pathways that limit adverse effects of human

TH1 activation in vivo.
iNKT cytolytic activity

A number of studies have suggested that iNKT cells may also

control inflammation by eliminating pro-inflammatory APCs

through a mechanism involving CD1d-dependent activation of

the iNKT cells and lysis of APCs by cytotoxic granule deposition

(46–50). Human iNKT cells were found to kill monocyte-derived
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DCs and blood DCs, but did not kill monocytes or plasmacytoid

DCs, suggesting they specifically target certain types of APCs (46,

49). In another analysis, human iNKT cells preferentially eliminated

monocyte-derived DCs that produced high levels of IL-12 while

those that produced mainly IL-10 were spared, resulting in a DC

population that limited TH1 activation (48). Together these studies

suggest that this cytolytic pathway selectively targets pro-

inflammatory APCs, and might thereby limit pathological

inflammation. Consistent with this, in mice infected with a highly

pathogenic strain of influenza A virus, iNKT cells were associated

with reduced accumulation of inflammatorymonocytes in the lungs

(50). iNKT cell activity in this model was associated with reduced

levels of MCP-1 (a chemokine that recruits monocytes and CD4+ T

cells), reduced damage to lung tissue, and improved survival even

though viral loads were not affected (50). The effect of iNKT cells

was thought to be due to their cytolytic activity against influenza-

infected monocytes, suggesting that iNKT cells may limit

pathological inflammation during viral infections by eliminating

inflammatory APCs. However, an important note is that in all of

these studies the iNKT cells were experimentally exposed to strong

TCR stimulation prior to analysis of their cytolytic activity.

Therefore, the physiological conditions that might lead to APC-

targeted cytolytic activity by iNKT cells remain unclear.
How are iNKT cells activated,
physiologically?

iNKT cells can be activated in two ways: either through TCR-

mediated recognition of antigen presented by CD1d, or through

TCR-independent pathways such as exposure to the cytokines IL-

12 or IL-18, or LFA-1 ligation by high-density ICAM-1 (51–54).

These TCR-independent pathways selectively induce iNKT cells to

produce IFN-g and not TH2 or regulatory cytokines (52, 54).

Additionally, iNKT cells require a TCR signal for cytolysis

of target cells (55–57). Thus, the anti-inflammatory activities of

iNKT cells are probably highly dependent on TCR-recognition

of antigens presented by CD1dmolecules. Since it is clear that iNKT

cells can mediate regulatory effects in the absence of infectious

challenges, the antigens required for their anti-inflammatory

pathways must be constitutively or chronically present. However,

the sources and nature of the antigens that physiologically activate

iNKT cells, and correspondingly the processes that contribute to

their increased or decreased activation in different contexts, remain

an ongoing area of inquiry.
Sources of antigen

Due to their shared use of a canonical TCRa chain, all iNKT

cells recognize an unusual type of glycolipid in which the sugar head

group is present in an a-anomeric configuration. Certain microbes
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produce glycolipids of this type that are potent antigens for iNKT

cells (reviewed in (8)). Recent studies indicate that bacterial species

that can be found within the normal gut microbiota can produce

similar antigenic lipids (58, 59), although these may be counter-

regulated by related forms produced by other bacteria that are

antagonists (60). These studies suggest that, particularly at mucosal

sites, TCR-dependent activation of iNKT cells may fluctuate

according to the composition of the microbial community.

iNKT cells can also recognize self-lipids as antigens.

Mammalian cells do not directly synthesize the a-linked
glycolipids recognized by iNKT cells, but the b-linked forms

they produce may be converted at low frequencies to a-linked
forms that are strongly antigenic (61, 62). Additionally, iNKT

cells can recognize mammalian b-linked glycolipids as weak

agonists (63). Some antigenic self-l ipids, including

lysophospholipids, glycosylated sphingolipids, and neutral

lipids, are specifically upregulated during inflammation or

cellular stress (64–70). Conversely, some non-antigenic self-

lipids, such as sphingomyelin, can inhibit presentation of

antigenic species (66). Together, the available data suggest that

antigenic self-lipids are constitutively present, but are

maintained in a manner that is only weakly agonistic for

iNKT cells, and that during inflammation or cellular stress the

abundance or nature of the antigenic self-lipids changes in a way

that provides stronger TCR signals to iNKT cells. Additionally,

as discussed below, activation by self antigens can be markedly

enhanced by TCR-independent signals (71, 72).
What determines the nature of the
functional response mediated by
iNKT cells?

Exposure to inflammatory cytokines (IL-12, IL-18) or

elevated levels of the adhesion ligand ICAM-1 selectively

promotes iNKT cell IFN-g secretion (51, 52, 54, 71, 72). Thus,

when these signals are present, such as during inflammation,

iNKT cells probably predominantly promote inflammatory

responses. In contrast, the TCR-dependent activation pathway

can promote either pro-inflammatory or anti-inflammatory

outcomes (reviewed in (73)), and it has been of considerable

interest to understand how TCR-mediated activation of iNKT

cells leads to these contrasting effects. Two central factors have

emerged: first, that the iNKT cell population contains multiple

functionally distinct subsets; and second, that iNKT cell

functional responses vary according to antigen characteristics.
Distinct subsets

In contrast to conventional T cells that become polarized into

different effector phenotypes by priming in the periphery, iNKT
Frontiers in Immunology 04
cells are already cytokine competent as they exit the thymus (74).

Murine iNKT cells are segregated into four functionally distinct

subsets based on their expression of master-regulator transcription

factors that govern cytokine production (Tbet, GATA3, RORgT,
E4BP4) and on differences in expression levels of PLZF

(promyelocytic leukemia zinc finger), a transcription factor that

promotes cellular characteristics associated with innate lymphocytes

(28, 75–78). NKT1 cells have a TH1 cytokine profile, often express a

cytotoxic effector program, and are PLZFloTbethi; NKT2 cells are

characterized by high levels of IL-4 secretion and are

PLZFhiGATA3+; NKT17 cells produce IL-17 and express RORgT
with intermediate levels of PLZF; NKT10 cells produce IL-10, are

preferentially found within adipose tissues, and are negative for

PLZF but express E4BP4 (Figure 2A). NKT1, NKT2, and NKT17

lineages are generated during thymic selection, and are thought to

home to distinct tissues (79). In contrast, NKT10 cells may originate

from other subsets and differentiate into a regulatory phenotype as a

result of exposure to factors in adipose tissues (27). The

identification of these iNKT sub-lineages has led to the paradigm

that the anti-inflammatory effects of iNKT cells are due to NKT2 or

NKT10 cells, which become activated in different situations than

NKT1 and NKT17 subsets as a result of differences in

tissue localization.

In contrast, it has thus far not been straightforward to

categorize human iNKT cells into NKT1, NKT2, and NKT17

lineages matching those in mice. Similar to their murine

counterparts, most human iNKT cells express PLZF (80–82),

and are characterized by an innate-like transcriptional profile

that results in a “poised-effector” status allowing them to rapidly

mediate functional responses (83). Multi-parameter flow

cytometric analyses and gene expression studies have revealed

human iNKT cells to express a diverse selection of cytokines and

chemokines (84–88). Human iNKT cells can be segregated into

two major subsets according to CD4 expression (84, 85). Those

that express CD4 often appear to co-produce GM-CSF, IL-13,

TNF-a, IFN-g, IL-4, and IL-2, while those lacking CD4 appear

more specialized for cytolysis (Figure 2C). These two major

populations are sub-divided into further subsets characterized

by additional markers (e.g. CD8a, CD161, CD62L) with

distinctions in functional characteristics, but it is not clear that

these subsets equate to the NKT1, NKT2, or NKT17 lineages

observed in mice (89, 90). It is also not clear whether anti-

inflammatory activity segregates according to CD4+ or CD4-

status of human iNKT cells, although CD4+ iNKT cells are the

ones that have been found to induce regulatory functions in

monocytic cells, and the CD4- subset has appeared more likely to

kill DCs.
Antigenic modulation

The prototypical iNKT antigen is called a-galactosylceramide

(a-GalCer) (91), and synthetic forms of this lipid have proved
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extremely valuable as pharmacological agents that activate iNKT

cells in a highly specific manner (92). Observations that structural

variants of a-GalCer can produce substantially different

immunological outcomes in vivo have led to interest in using

these agents to selectively tune iNKT responses towards pro- or

anti-inflammatory functions (92). Administration of a-GalCer to
mice potently stimulates iNKT cells, and induces a mixed

response where TH1, TH2, and regulatory cytokines are all

produced, although with different kinetics (93). In contrast,

certain analogues of a-GalCer have been shown to produce a

TH2-biased cytokine response (94, 95), while other variants

produce a highly TH1-biased response (96) (Figure 2B). The

mechanisms underlying these differential responses appear

complex. One component may be that certain variants induce

biased cytokine production from iNKT cells themselves (97),

while another important element likely relates to whether or not

antigen-driven interactions between iNKT cells and APCs result

in release of cytokines (e.g. IL-12) that activate a secondary IFN-g
response by NK cells (96, 98). A key factor may be the relative

duration of antigen presentation by CD1d molecules, with more

durable antigens being associated with TH1-biased responses (99).

Additionally, TH1-biasing forms of a-GalCer may be selectively

presented by APCs that produce IL-12, whereas TH2-biasing

forms may be more promiscuously presented and thus less
Frontiers in Immunology 05
likely to produce a secondary wave of IFN-g production by NK

cells (100). It is not clear whether antigen variants selectively

activate different iNKT cell subsets, or bias the cytokine profile

produced within a given subset (for example, by inducing higher

IL-4 production by NKT1 cells, or increased IFN-g by NKT2 or

NKT17 cells), or whether any structural variants selectively

promote IL-10 product ion. Interest ingly , repeated

administration of a-GalCer results in selective loss of its TH1-

promoting features, but under such “anergizing” conditions a-
GalCer retains the ability to induce IL-4 secretion and to promote

control of EAE pathology (101).

Whether human iNKT cell responses can be modulated

similarly using a-GalCer structural variants remains an open

question. It has become clear that TCR differences between

murine and human iNKT cells result in significant discrepancies

in TCR-signaling strength induced by lipid variants (102).

Perhaps more importantly, polyfunctional human iNKT cells

show a hierarchy of cytokine production in response to TCR

stimulation that does not neatly segregate into clear TH1 or TH2

patterns. Weak TCR stimulation of human iNKT cells

preferentially induces production of IL-3, GM-CSF, and IL-13,

with increasing stimulation leading first to IFN-g, then IL-4, then
IL-2 (44, 103, 104) (Figure 2D). Secondary induction of NK cell

IFN-g secretion was associated with activation of human iNKT
B

C D

A

FIGURE 2

Determinants of the nature of the functional response mediated by iNKT cells. In both mice and humans the nature of the response mediated
by iNKT cells may depend on the subset of iNKT cells activated or on the characteristics of the antigenic stimulation leading to activation.
However, there are important differences between mice and humans in each of these parameters. (A, C) Murine iNKT cells can be classified into
four lineages with functionally segregated cytokine profiles; whereas the two major subsets of human iNKT cells are characterized by
comparatively polyfunctional cytokine production (CD4+) or a more TH1/cytotoxic profile (CD4-). (B, D) Structural features of lipid antigens can
bias murine iNKT cell responses towards either a TH1 or TH2 output, whereas human iNKT cell cytokine production proceeds in a hierarchical
manner depending on the strength of the TCR signal. Antigens that stimulate a TH1-biased response in mice typically also produce a strong
secondary wave of IFN-g production by NK cells, whereas strong agonists produce this effect from human iNKT cells.
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cells by strong TCR agonists (104). It is therefore not clear that it

will be feasible to selectively polarize human immune responses

towards IL-4 production through the use of specific lipid antigen

variants, although it may be possible to drive IL-13 production

through administration of weak agonists.
Discussion

The potential of engaging iNKT cells therapeutically to treat

TH1-inflammatory pathology is well supported by pre-clinical

studies in murine models, in vitro experiments using human

cells, and ex vivo analyses of human subjects, but clinical data

have been limited. Recently, however, a pilot clinical trial using

allogeneic iNKT cells as a cellular immunotherapy to treat

patients who were intubated with acute respiratory distress

syndrome (ARDS) secondary to SARS-CoV-2 infection has

shown highly promising results, with 77% survival of treated

patients compared to a national average of 40% survival for other

intubated SARS-CoV-2 patients during the same period of

enrollment (105). Understanding whether such iNKT cell

therapies work through one of the regulatory pathways shown

in Figure 1A, or through elimination of inflammatory cells via

cytolysis as depicted in Figure 1B, has important implications.

For example, if APC killing is a key component it may be

necessary to deliver a strong TCR signal to the iNKT cells to

prime their cytolytic activity. Alternatively, if a regulatory

pathway is involved it may be beneficial to generate iNKT cells

that are biased towards production of TH2 cytokines or IL-10,

depending on the pathway.

Also critical to developing effective iNKT cell therapies is to

determine whether human iNKT cells include stable regulatory

subsets, or whether polyfunctional iNKT cells are converted into

a regulatory phenotype through particular signals. If a stable

NKT10 lineage exists in humans, an attractive option might be

to specifically engage these cells for immunotherapy.

Alternatively, if human iNKT cells generally retain functional

plasticity, it may be important to identify methods to specifically

promote their regulatory functions. To this end, a recent study

found that the presence of IL-7 during in vitro expansion of

human iNKT cells resulted in a CD4+ population with enhanced

TH2 cytokine production (106), while exposure to short chain

fatty acids, palmitate, or the mTOR inhibitor rapamycin may

induce a regulatory phenotype (27, 37, 107). Another important

consideration is that iNKT immunotherapy that engages TH2

pathways would likely be contraindicated in certain

inflammatory diseases, including asthma, chronic obstructive

pulmonary disease, and ulcerative colitis, where TH2 cytokine

production by iNKT cells has been associated with disease-

exacerbating effects (reviewed in (108–110)).

Overall, studies of human and murine iNKT cells over the

last three decades clearly support the potential of this unique

population to be utilized clinically to control inflammatory
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pathology. Key areas of further investigation will be to

better understand the antigens that physiologically or

pharmacologically activate human iNKT cells, and to

determine the impact of iNKT cell antigenic activation in

different tissues or by distinct APCs. For example, since lipid

antigens can be retained locally at the site of administration

(111), or distributed to distal sites through binding to lipid

transport proteins (112, 113), it may be possible to control the

location of iNKT cell activation. Additionally, since iNKT cells

promote anti-inflammatory outcomes through interactions with

multiple distinct APC populations, it may be possible to direct

specific effects through engaging particular APC types, such as

the regulatory B cells that ameliorate arthritic pathology (114). It

will also be of importance to understand roles of non-invariant

populations of CD1d-restricted T cells (often called type II NKT

cells, reviewed in reference (115)), and to determine whether

these other T cell populations promote or counter-regulate anti-

inflammatory outcomes mediated by the “type I” iNKT cells

discussed here. Finally, given the likely importance of TCR and

CD1d structural differences, the difference in abundance

between murine and human iNKT cel l s (common

experimental mouse strains have ~100-fold higher frequencies

of iNKT cells than humans), and of additional CD1 molecules

(CD1a,b, c, and e) expressed in humans that may impact antigen

availability or T cell responses (7, 116, 117), an important step

for translating iNKT-based immunotherapies to the clinic may

be the development of new animal models that better capture

determinants that affect human iNKT cell functions.
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