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Type I interferon (IFN) induces many antiviral factors in host cells. RIG-I-like receptors 
(RLRs) are cytoplasmic viral RNA sensors that trigger the signal to induce the innate 
immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that 
form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation 
of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, 
leading to type I IFN production. RIG-I and MDA5 undergo post-translational modifica-
tion. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the 
RIG-I N-terminal caspase activation and recruitment domains (CARDs) and C-terminal 
region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required 
for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein 
kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephos-
phorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic 
RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase 
involved in RLR signaling. This protein does not possess N-terminal CARDs and, thus, 
cannot trigger downstream signaling by itself. Recent studies have revealed that this 
protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. 
Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, 
DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated 
type I IFN production after viral infection. However, the underlying mechanism is largely 
unknown. Future studies are required to reveal the role of RNA helicases in the RLR 
signaling pathway.
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inTRODUCTiOn

The innate immune system is the first line of defense against viral infection. RIG-I-like receptors 
(RLRs) are cytoplasmic viral RNA sensors that recognizes viral double-stranded (ds) RNA and 
trigger antiviral innate immune responses (1). The RIG-I and MDA5 proteins, which are members 
of RLRs, comprise two caspase activation and recruitment domains (CARDs), a helicase domain, 
and a C-terminal domain (CTD) (2). The helicase domain and CTD bind to viral RNA, and CTD is 
essential for the recognition of viral RNA (3, 4). After the recognition of viral RNA, two N-terminal 
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CARDs forms a two-CARD tetramer structure, which acts as a 
core of the MAVS prion-like aggregation structure (5, 6). The 
MAVS protein is a solo adaptor of RLRs and activates kinases and 
ubiquitin ligases, leading to the activation of transcription fac-
tors, such as IRF-3 and NF-κB (7–10). The transcription factors 
induce type I interferon (IFN) and pro-inflammatory cytokine 
production.

RIG-I recognizes relatively short dsRNA (<1 kbp) with a 5′ tri- 
or di-phosphate group (11–13), whereas another RLR member, 
MDA5, recognizes long dsRNA (>1  kbp) with or without a 5′ 
phosphate group (12). Influenza A virus, Sendaivirus, hepatitis C 
virus (HCV), and vesicular stomatitis virus (VSV) are mainly rec-
ognized by RIG-I, whereas encephalomyocarditis virus (EMCV) 
and poliovirus are recognized by MDA5 (14, 15). West Nile virus 
and Japanese encephalitis virus are recognized by both RIG-I and 
MDA5 (14, 15).

POST-TRAnSLATiOnAL MODiFiCATiOn 
OF RLRs

Recent studies have revealed the post-translational modifica-
tion of RLRs (Figure 1). Gack and colleagues first reported the 
K63-linked polyubiquitination of RIG-I CARDs by TRIM25 
ubiquitin ligase, which is essential for their activation (16). 
Later studies showed that the non-covalent binding of the 
K63-linked polyubiquitin chain is sufficient to activate RIG-I 
signaling (17). A covalent and/or non-covalent K63-linked 
polyubiquitin chain stabilizes the two-CARD tetramer struc-
ture (6). Another ubiquitin ligase, Riplet (also called RNF135 
or REUL), mediates K63-linked polyubiquitination of RIG-I 
C-terminal region, which promotes the binding of TRIM25 to 
RIG-I (18, 19). The knockout (KO) of each ubiquitin ligase has 
been shown to markedly reduce RIG-I-mediated type I IFN 
production (16, 20). These ubiquitin ligases are targeted by 
several viral proteins, such as NS-1 of influenza A virus and 
NS3-4A of HCV, resulting in the attenuation of RIG-I-mediated 
type I IFN production (19, 21). These findings indicate the 
importance of both ubiquitin ligases in RIG-I activation. RIG-I 
also undergoes K48-linked polyubiquitination by RNF125, 
leading to its proteasomal degradation (22). TRIM25 itself 
undergoes linear polyubiquitination by the linear ubiquitin 
assembly complex (23). These observations indicate that the 
ubiquitin chain plays a critical role in the cytoplasmic antiviral 
innate immune response (24).

MDA5 assembles along viral long dsRNA and forms a 
nucleoprotein filament structure required for MAVS activation 
(25). MDA5 activation is regulated by phosphorylation (26). In 
resting cells, the MDA5 protein undergoes phosphorylation. PP1 
α/γ are required for MDA5 dephosphorylation, leading to its 
activation. Recently, we reported that RIOK3 is a protein kinase 
that mediates MDA5 phosphorylation at Ser-828, which impairs 
MDA5 assembly and attenuates its activation (27). Considering 
that Gack and colleagues have shown that the N-terminal region 
of MDA5 is phosphorylated (26), other protein kinases that 
phosphorylate MDA5 are required for the attenuation of the 
signaling.

The phosphorylation of RIG-I and ubiquitination of MDA5 
have also been reported and are required for the regulation of 
RLR signaling (24).

RnA HeLiCASeS invOLveD in RLRs-
MeDiATeD TYPe i iFn PRODUCTiOn 
PATHwAY

Several RNA helicases lacking CARDs are involved in RLR-
mediated signaling (28). Bowie and colleagues first reported that 
a non-RLR helicase, DDX3, is involved in RIG-I-mediated type 
I IFN production. They showed that DDX3 is required for the 
activation of TBK1 and IKK-ɛ, which are downstream factors 
of MAVS (29, 30). Later, we reported that DDX3 associates with 
RIG-I and promotes RIG-I–RNA binding (31).

LGP2 is a member of RLRs but lacks N-terminal CARDs (2). 
Therefore, LGP2 by itself cannot trigger the signal to induce type 
I IFN. Initial studies reported that LGP2 attenuates RLR signaling 
in response to polyI:C in mouse embryonic fibroblasts (MEFs) (2, 
32), whereas later studies reported a positive role of LGP2 in RLR 
signaling during viral infection (33). DHX36 is a cytoplasmic RNA 
helicase and does not comprise CARDs. DHX36 protein com-
plexed with DDX1 and DDX21 recognizes viral RNA and triggers 
the signal to induce type I IFN production via TRIF/TICAM-1 
adaptor in some kinds of dendritic cells (DCs) (34). DHX36 also 
functions upstream of RIG-I and is required for the formation 
of antiviral stress granules where viral RNA is recognized by 
RLRs (35). DHX29 RNA helicase directly binds to polyI:C and 
polydA:dT and also associates with RIG-I. The protein exhibits a 
cell-type-specific expression pattern and is required for type I IFN 
production only in human respiratory epithelial cells (36).

DDX60 is another cytoplasmic RNA helicase, which does not 
contain N-terminal CARDs as RNA helicases described above. The 
DDX60 protein binds to dsRNA and associates with RLRs (37). 
DDX60 promotes RIG-I–RNA binding, which triggers type I IFN 
production (37). Previously, we generated DDX60 KO mice and 
reported that DDX60 KO moderately reduced RIG-I-mediated type 
I IFN production from peritoneal macrophages and MEFs but not 
from bone-marrow-derived cells, suggesting the cell-type specific-
ity (38). DDX60 exhibited antiviral activities against only specific 
viruses (39). Another group also generated a DDX60 gene trapping 
mouse (called DDX60 KO first) and a DDX60 KO mouse (called 
DDX60 KO full) (40), whose constructs are different from our 
DDX60 KO mouse construct (38, 40). They confirmed that bone-
marrow-derived cells of DDX60 KO first and KO full mice normally 
produced type I IFN as we observed in our DDX60 KO mice (40). 
Although DDX60 KO first seems to reduce type I IFN production 
after stimulation with a low concentration of a RIG-I ligand, type I 
IFN production from DDX60 KO first MEFs were comparable to 
wild-type MEFs in other experimental conditions (40). These data 
implied that DDX60 is not a general factor for RIG-I activation and 
plays a role in RIG-I signaling only when cells are infected with 
specific viruses or stimulated with specific or low concentration of 
RIG-I ligands in a cell-type-specific  manner (38–40).

Recently, we identified another role of DDX60 in the antiviral 
response. The DDX60 protein exhibits the similarity to SKI2 RNA 
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FiGURe 1 | Accessory factors of RiG-i and MDA5. RIG-I and MDA5 undergo post-translational modifications. TRIM25 and Riplet ubiquitin ligases deliver a 
K63-linked polyubiquitin moiety to RIG-I N-terminal CARDs and C-terminal regions, respectively, resulting in type I IFN production. MDA5 is phosphorylated in 
resting cells. RIOK3 is a protein kinase involved in MDA5 phosphorylation; however, there seem to be other kinases targeting MDA5. PP1α/γ dephosphorylates 
MDA5, leading to type I IFN production. Several cytoplasmic RNA helicases are involved in RLR-mediated type I IFN production, but their biochemical activities are 
largely unknown.
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helicase, a component of the RNA exosome, which degrades host 
and viral RNA (37, 40). We found that DDX60 associates with the 
core components of the RNA exosome and is involved in a viral 
RNA degradation pathway (37, 38). DDX60-mediated viral RNA 
degradation plays an important role in the antiviral response 
when the RIG-I pathway is blocked (38).

PeRSPeCTive

RIG-I and MDA5 forms a nucleoprotein filament (41). It is 
well known that the Rad51 protein, which is involved in DNA 
homologous recombination, forms a nucleoprotein filament 
along single-stranded (ss) DNA (42–45). For nucleoprotein 
filament formation, Rad51 requires several accessory factors. 
The Mre11 protein complex produces an ssDNA region (46), and 
then the RPA and Rad52 cooperatively produce the platform for 

Rad51 nucleoprotein filament formation as described in Figure 2 
(47–49). There are several other factors involved in the Rad51 
pathway, which occasionally compensates for a defect of other 
factors (50, 51). The role of each factor has been revealed by inten-
sive biochemical studies. By contrast, the biochemical activities 
of accessory factors for RIG-I and MDA5 are largely unknown 
(Figure 2). Recently, Horvath and colleagues have revealed that 
LGP2 regulates MDA5 filament assembly (52).

The LGP2 protein increases the initial rate of MDA5–RNA 
interaction, resulting in the formation of numerous shorter 
MDA5 filaments (52). These numerous shorter filaments 
augment the signaling activity compared with that when there 
are fewer long MDA5 filaments. This supports the previous 
conclusion that LGP2 is not a negative factor but a positive 
factor for MDA5 signaling (33). Other accessory factors, such 
as DDX3, DHX29, DHX36, and DDX60, are expected to be 
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FiGURe 2 | nucleoprotein filament formation. Rad51 assembles along the single-stranded (ss) DNA region and forms a nucleoprotein filament. Mre11/Rad50/
Nbs1 protein complex resects DNA double-stranded (ds) DNA together with CtIP, leading to the production of the ssDNA region. First, RPA binds to the ssDNA 
region to prevent the formation of secondary structure. Next, Rad52 and other proteins remove RPA from DNA for Rad51 to assemble along the ssDNA. RIG-I and 
MDA5 assemble along viral dsRNA and form nucleoprotein filaments. LGP2 modulates MDA5 nucleoprotein filament formation, resulting in type I IFN production. 
DHX36 is required for PKR-mediated antiviral stress granule formation. DDX3, DHX27, and DDX60 bind to RIG-I. The biochemical activities of DDX3, DHX29, 
DHX36, and DDX60 RNA helicases in nucleoprotein filament formation are largely unknown.
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involved in nucleoprotein filament formation. Biochemical 
analysis is required to clarify the role of accessory factors in 
RIG-I signaling.
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