
Differential serotonin transport is linked to the
rh5-HTTLPR in peripheral blood cells
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The human serotonin transporter (SERT) gene possesses a 43-base pair (bp) insertion-deletion promoter polymorphism, the
h5-HTTLPR. Genotype at this locus correlates with variation in anxiety-related personality traits and risk for major depressive
disorder in many studies. Yet, the complex effects of the h5-HTTLPR, in combination with closely associated single-nucleotide
polymorphisms (SNPs), continue to be debated. Moreover, although SERT is of high clinical significance, transporter function
in vivo remains difficult to assess. Rhesus express a promoter polymorphism related to the h5-HTTLPR. The rh5-HTTLPR has
been linked to differences in stress-related behavior and cognitive flexibility, although allelic variations in serotonin uptake have
not been investigated. We studied the serotonin system as it relates to the 5-HTTLPR in rhesus peripheral blood cells.
Sequencing of the rh5-HTTLPR revealed a 23-bp insertion, which is somewhat longer than originally reported. Consistent with
previous reports, no SNPs in the rh5-HTTLPR and surrounding genomic regions were detected in the individuals studied.
Reductions in serotonin uptake rates, cell surface SERT binding, and 5-hydroxyindoleacetic acid/serotonin ratios, but not SERT
mRNA levels, were associated with the rh5-HTTLPR short allele. Thus, serotonin uptake rates are differentiable with respect to
the 5-HTTLPR in an easily accessible native peripheral tissue. In light of these findings, we foresee that primary blood cells, in
combination with high sensitivity functional measurements enabled by chronoamperometry, will be important for investigating
alterations in serotonin uptake associated with genetic variability and antidepressant responsiveness in humans.
Translational Psychiatry (2012) 2, e77; doi:10.1038/tp.2012.2; published online 7 February 2012

Introduction

A number of polymorphisms in human genes coding for key
proteins that regulate serotonin (5-HT) neurotransmission have
been discovered. Among these are functional polymorphisms in
the transcriptional control and noncoding regions of the serotonin
transporter gene (SERT; SLC6A4).1–4 A 43-base pair (bp)
insertion/deletion polymorphism in the promoter region of the
human SERT gene, termed the 5-HT transporter-linked poly-
morphic region (h5-HTTLPR; Figure 1), has received consider-
able attention owing to its purported relationship with anxiety-
related personality traits,5–7 stress-associated depression,8,9

amygdala activation in response to negative stimuli,10,11 and
suicide.12

The h5-HTTLPR is thought to influence behavioral char-
acteristics by driving allele-specific SERT promoter activity
giving rise to two-fold variability in mRNA levels.1,13

Decreases in SERT protein binding in postmortem
human brain and [3H]5-HT uptake in human platelets and

immortalized lymphoblasts have been reported to be asso-

ciated with the h5-HTTLPR short ‘S’ allele.1,14,15 However,

studies on human SERT-binding potential by positron emis-

sion tomography (PET)16–18 and mRNA levels in postmortem

raphe tissue19 are not in agreement with earlier findings.

Additional common noncoding polymorphisms thought to

influence SERT transcription including an intron 2 VNTR, and

rs25531 and rs25532 single-nucleotide polymorphisms

(SNPs) in the h5-HTTLPR region, have been discovered,

adding to the complexity of assessing variability associated

with the human SERT gene.2,4,20 Nonetheless, although the

timing21 and specific molecular effects of the h5-HTTLPR on

SERT expression and transporter function in the human brain

are unresolved, parallels continue to be drawn between this

polymorphism and anxiety-related traits and susceptibility to

depression.22–27

Similar to humans, macaques express a SERT-

linked polymorphic region (rh5-HTTLPR; Figure 1).28–30 The
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rh5-HTTLPR was originally reported to consist of a 21-bp
insertion/deletion involving repeat element 7 at a slightly
shifted locus from that in humans.28 In contrast to humans, no
SNPs associated with the rh5-HTTLPR have been discov-
ered.30 Yet similar to humans, stress responsiveness, social
behavior, and cognitive performance are influenced by
rh5-HTTLPR genotype. For example, behavioral and hormo-
nal responses to early life stress and sensitivity to alcohol are
potentiated in macaques bearing a short ‘S’ allele.29,31–33

Moreover, rhesus with an ‘S’ allele showed greater anxiety
and fearful behavior34 and enhanced aversion to social
threats.35 Also similar to humans, rhesus short allele carriers
perform better on a number of cognitive tasks supporting the
idea that the short 5-HTTLPR allele might be associated with
evolutionary advantage.36–38 SERT immunoreactive fibers
have been mapped to the central nucleus of the amygdala39

and oxytocin-expressing neurons in the paraventricular
nucleus40 in rhesus suggesting that differences in SERT
expression and uptake function modulate fear responses and
social affiliation, respectively.

The rh5-HTTLPR is hypothesized to influence SERT gene
transcription; the short allele has been associated with
decreased reporter gene expression.29 However, studies on
SERT mRNA levels in blood cells41 or SERT-binding potential
using PET37,42 have failed to find associations with respect to
rh5-HTTLPR genotype. Otherwise, direct investigations into
the effects of the rh5-HTTLPR on SERT function have been
lacking. We recently reported on differences in uptake at a
single concentration of serotonin in peripheral blood cells

(PBCs) in association with the rh5-HTTLPR.43 Uptake rates
for serotonin were reduced in macaques carrying one or two
‘S’ alleles compared with individuals homozygous for the long
allele. In the present study, we investigated native blood cells
as biomarkers for a wide range of serotonin system
characteristics. We assessed the expression and function of
SERTs in rhesus PBCs by analyzing mRNA levels, surface
SERT binding (KD and Bmax), transporter kinetics (KM and
Vmax), and cellular concentrations of serotonin and
5-hydroxyindoleacetic acid (5-HIAA) with respect to
rh5-HTTLPR genotype. Investigating rhesus PBCs confers a
number of key advantages. (1) Rhesus monkeys are closely
related to humans in that they show a genetically similar but
less complex form of the 5-HTTLPR. (2) Macaques are animal
models whereby in vivo measurements in the brain are
possible to assess alterations in SERT function and extra-
cellular serotonin levels directly.44,45 (3) Parallels can be
drawn between SERT function in the brain vs PBCs in rhesus
with relevance to diagnosing and treating psychiatric dis-
orders in humans.

Materials and methods

Animals. Venous blood was collected under anesthesia
from a group of mixed sex rhesus (M. mulatta) 6.9±0.1
years of age. Whole blood was used for DNA isolation by
established protocols. Animals were genotyped for the
rh5-HTTLPR using previously described methods.28

Figure 1 Structure and sequence of the rhesus 5-HTTLPR. (a) The serotonin transporter (SERT) gene in rhesus monkeys has been reported to contain a 21-bp insertion-
deletion polymorphism in the promoter region termed the rh5-HTTLPR. A 43-bp polymorphism, the h5-HTTLPR, occurs in the human SERT gene. In humans, the presence of
the 5-HTTLPR short ‘S’ allele has been associated with decreased gene transcription and thus, reductions in SERT protein levels and uptake function. We investigated
whether the rh5-HTTLPR ‘S’ allele is associated with decreased serotonin system parameters in PBCs, which natively express SERT. (b) Sequencing of the rh5-HTTLPR in
the 15 animals studied revealed an insertion/deletion region consisting of 23 bp, as well as two additional sequence discrepancies (shown in red) compared with the originally
published sequence.28
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Genotypes were also determined for tryptophan hydroxy-
lase-2 SNPs and a monoamine oxidase-A repeat length
polymorphism30 and are reported in the Supplementary
Information (Supplementary Table S1). We had the
opportunity to genotype a relatively large cohort of animals
and thereby, were able to identify and to include a substantial
number of individuals with the S/S genotype. However,
animals were donated for the present study and constraints
on the size of this donation dictated that only a subset of the
genotyped cohort could be studied here. Thus, animals were
selected to maximize rh5-HTTLPR genotype distributions,
particularly S/S and L/L genotypes, and to control for sex and
genotypes at the other loci where possible. Information on
the final cohort appears in the Supplementary Information
(Supplementary Table S1). The genotype distribution for the
study cohort was N¼ 6 for L/L, N¼ 3 for S/L, and N¼ 6 for
S/S. Animals from China vs the United States (LABS of
Virginia, Yemassee, SC, USA) are noted in Supplementary
Table S1 and are distributed across genotypes. Animals
were housed at the University of Pittsburgh in pairs, with
the exception of large males who were housed singly.
Individual blood samples (B40 ml) were collected and
PBCs were isolated from genotyped subjects. Experiments
for protocol development were conducted using pooled
mixed genotype rhesus PBCs. All work involving animals
was carried out in accordance with National Institutes of
Health guidelines and was approved by the University of
Pittsburgh School of Medicine Institutional Animal Care
and Use Committee.

Cell survival and SERT function. Confocal microscopy
and flow cytometry were carried out using IDT307 (4-(4-
(dimethylamino) phenyl)-1-methylpyridinium iodide), a
monoamine transporter substrate similar to ASPþ

(4-(4-diethylaminostyryl)-N-methylpyridinium iodide).46,47

Following uptake, IDT307 fluoresces enabling transporter
function in PBCs to be determined optically.

Serotonin uptake. PBCs (B10 million cell per ml) were
thawed by adding assay buffer (12–15 ml) at room
temperature. A small volume (200 ml) of cells in solution
was used for live cell counts using Trypan blue exclusion.
Cells were centrifuged at 340 g for 7 min. Pellets containing
PBCs were resuspended by gently vortexing in assay buffer
to produce final concentrations of 2–4 million cells per ml.
Chronoamperometry was carried out, as described
previously,43 using boron-doped diamond microelectrodes48

to measure serotonin-uptake rates on a second-by-second
basis over a range of serotonin concentrations to determine
maximal uptake rates (Vmax) and affinity constants (KM). We
have shown that the use of chronoamperometry enables
biologically important differences in uptake rates to be
distinguished, which cannot otherwise be differentiated by
radiochemical methods.49

Cell surface SERT binding. SERT binding was performed
using the cocaine analog (125I)RTI-55 by previously
published methods with minor modifications.50,51 As
samples from genotyped animals were limited, we focused
on determining surface SERT binding (as opposed to total

SERT) due to its greater relevance to serotonin uptake and
antidepressant action. Cells (B10 million cells per ml) were
thawed and centrifuged as described above. Pellets
containing intact cells were divided to measure specific and
nonspecific binding over a range of RTI-55 concentrations
to determine maximal binding (Bmax) and dissociation
constants (KD).

SERT mRNA levels. Total RNA was isolated from PBCs
(B8–9 million cells per sample) using isoamyl/chloroform
phase separation and isopropanol precipitation. Real-time
quantitative PCR (RT-qPCR) and TaqMan probes and
primers specific to SERT and two control genes, ACTB
(b-actin) and GAPDH (glyceraldehyde 3-phosphate
dehydrogenase), were used for amplifications. Sequences
and efficiencies of the primer/probe sets are reported in
Supplementary Table S2.

Neurotransmitter levels. Blood cell concentrations of 5-HT
and its major metabolite, 5-HIAA, were determined using
previously published procedures52 by high-performance
liquid chromatography with electrochemical detection.

Statistics. All values are expressed as means±standard
errors (s.e.m.s) with differences of Po0.05 considered
statistically significant. Significant differences are denoted
in the figures as *Po0.05, **Po0.01, and ***Po0.001.

Additional information on electrochemical uptake,
(125I)RTI-55 binding, mRNA isolation, RT-qPCR, neurochem-
ical analysis, chemicals, and statistics appears in the
Supplementary Information.

Results

The rh5-HTTLPR comprises a 23-bp polymorphism. The
genomic region 130-bps upstream and 227-bps downstream
of the rh5-HTTLPR was sequenced for each of the 15
animals studied. Sequences were identical for all individuals
(Figure 1b). A number of differences were noted compared
with the original sequence published by Lesch et al.28 One
C/T discrepancy was identified upstream of the rh-5HTTLPR
polymorphic region. Within the insertion region itself, two
additional cytosines were detected suggesting that the
rh5-HTTLPR consists of 23 bps, instead of 21 bps as
originally reported. Additionally, the 30 region immediately
flanking the rh5-HTTLPR contained one less cytosine than
previously reported. Most discrepancies were associated
with strings of cytosines, where sequencing errors commonly
occur. However, we cannot rule out genetic heterogeneity in
this region as possibly accounting for discrepancies with
previously reported sequences.

Previously frozen PBCs are viable and transport
serotonin. The effects of frozen storage on the quality of
PBCs were assessed using flow cytometry and confocal
imaging. Propidium iodide was used to identify dead cells.
We found that B75% of cells were alive after thawing and
significant changes in cell viability did not occur when cells were
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maintained at 4 1C for up to 4 h (Supplementary Figure S1).
Studies using flow cytometry in conjunction with IDT307,
a fluorescent monoamine transporter substrate,46,47

illustrated that PBCs retain transporter function after
isolation, freezing and thawing (Supplementary Figure S2).
Confocal imaging showed localization of IDT307 inside the
majority of live cells (Figure 2), also indicating intact
transporter function.

Using chronoamperometry to make highly time-resolved
measurements, we previously demonstrated that serotonin
uptake by rhesus PBCs is Naþ -dependent.43 Additionally,
uptake is abolished after preincubation with the serotonin-
selective reuptake inhibitor paroxetine. Here, we investi-
gated the effects of oxygen on serotonin clearance rates
in rhesus PBCs. Similar to synaptosomes,49,53 we observed
a 40% increase in serotonin uptake in the presence of
oxygenated assay buffer (Supplementary Figure S3).
Changes in serotonin uptake rates were not observed
after blocking norepinephrine transporters, dopamine
transporters or organic cation type 3 transporters54 (Sup-
plementary Figure S3). These results, in combination with
prior findings, suggest that extracellular serotonin clear-
ance by rhesus PBCs is a SERT-mediated active uptake
process.

Reduced serotonin uptake and surface SERT binding
are associated with the rh5-HTTLPR short allele. Recently,
we reported that PBCs isolated from individuals expressing the
rh5-HTTLPR ‘S’ allele showed reduced uptake of 0.5mM

serotonin.43 Here, we used chronoamperometry to investigate
uptake over a range of serotonin concentrations to determine
maximal uptake rates (Vmax) and affinity constants (KM). The ‘S’
allele of the rh5-HTTLPR was associated with significant
decreases in maximal serotonin uptake rates (Figure 3a)
but not the affinity of SERT for serotonin (Supplementary
Table S3). Maximal uptake rates were 7.1±0.4, 5.1±0.2,
and 4.9±0.6 pmol per million cells per min and affinity
constants were 0.45±0.06, 0.39±0.05, and 0.45±0.1 mM

for L/L, S/L, and S/S genotypes, respectively.
Binding of RTI-55 was used to investigate SERT protein

localized at the plasma membrane in undisrupted cells.
Surface SERT binding showed a trend toward a decrease in
maximal binding in ‘S’ allele carriers (Figure 3b; Po0.12).
No differences in dissociation constants were detected
(Supplementary Table S3). Maximal surface SERT binding
was 3.5±0.4, 2.4±0.4, and 2.6±0.4 fmol per million
cells and dissociation constants were 0.27±0.04,
0.29±0.08, and 0.26±0.07 nM in L/L, S/L, and S/S geno-
types, respectively.

Figure 2 Confocal images of rhesus PBCs. Cells were incubated with (a) 1mM IDT307 (30 min) and (b) propidium iodide (5 min). Propidium iodide (excitation 536 nm,
emission 617 nm) stains dead cells, whereas IDT307 (excitation 485 nm, emission 520 nm), a substrate for SERTs, fluoresces after being taken up into live cells.
(c) A differential interference contrast image shows all cells. (d) There is no overlap between cells predominantly labeled with IDT307 (green) vs propidium iodide-labeled cells
(red) in the overlay of all three images demonstrating functional SERTs in living cells. Scale bars are 25 mm.
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In addition to analyzing these data with respect to individual
genotypes, we combined data for the S/L and S/S groups.
Merging data from short allele carriers has been carried out
previously due to a purported ‘dominant’ effect of the short
allele and/or with smaller group sizes.1,37,55 Significant dif-
ferences between animals homozygous for the rh5-HTTLPR
‘L’ allele and animals expressing one or two copies of the ‘S’
allele were present for serotonin uptake rates and cell surface
SERT binding (Figures 4a and b). No significant differences in
affinity constants for uptake (KM) or binding (KD) were found
when the S/L and S/S genotypes were merged. Together,
both modes of analysis suggest that reductions in serotonin
uptake rates in rhesus PBCs from ‘S’ allele carriers are
associated with decreases in surface SERT availability but not
the affinity of SERT for serotonin or RTI-55.

SERT mRNA levels do not differ with respect to
rh5-HTTLPR genotype. The h5-HTTLPR is hypothesized
to influence SERT mRNA levels whereby the presence of the
‘S’ allele is associated with reduced transcriptional
efficiency.1,56 We investigated whether the rh5-HTTLPR
confers effects associated with differential transcription. In
contrast to surface SERT binding and function, we did not
find differences in SERT mRNA levels in rhesus PBCs with
respect to rh5-HTTLPR genotype (Supplementary Figure
S4A) or when the S/L and S/S genotypes were merged
(Figure 4c).

Ratios of 5-HIAA/5-HT are decreased in association with
the rhesus ‘S’ allele. We measured serotonin and 5-HIAA
concentrations in PBCs to investigate alterations associated
with the rh5-HTTLPR. We found that 5-HT levels were not
different with respect to genotype (Supplementary Figure
S4B). However, we observed a significant decrease in
5-HIAA levels in association with genotypes having one or
two copies of the ‘S’ allele (Supplementary Figure S4C).
Significant decreases in 5-HIAA to 5-HT ratios were
observed for S/S vs L/L groups (Supplementary Figure
S4D) and when the S/L and S/S genotypes were combined
(Figure 4f).

Discussion

The human 5-HTTLPR is postulated to drive allele-specific
SERT promoter activity leading to differences in mRNA and
protein levels, and functional serotonin uptake (Figure 1).1

Here, we investigated each of these aspects of SERT
expression and function, in addition to serotonin and 5-HIAA
concentrations, to elucidate the effects of the rh5-HTTLPR in
native (untransformed) PBCs. We find that the short allele of
the rh5-HTTLPR is associated with reduced surface SERT
binding, which is correlated on an individual basis with
serotonin uptake rates (Figure 5a). By contrast, differences
in mRNA levels with respect to genotype were not detected;
nor was there a correlation between individual SERT mRNA
levels and surface SERT protein binding (Figure 5b).

Lesch and co-workers reported lower promoter activity
associated with the h5-HTTLPR short variant.56 Decreases in
SERT mRNA, SERT binding, and serotonin uptake have also
been associated with the 5-HTTLPR short allele in human
lymphoblastoid (transformed) cell lines.1 Subsequent studies
of serotonin uptake in human platelets support these
findings15,57,58 with one exception.59 By contrast, binding
studies in platelets measuring total SERT protein report
variable results with respect to the h5-HTTLPR.15,58–60

Postmortem brain tissue and in vivo brain-imaging studies
are similarly associated with conflicting results.14,16,18,61–64

Contradictory findings in human studies are attributable to a
number of factors such as small samples sizes, subject
genetic variability, the influence of environmental/develop-
mental factors, and the use of insufficiently sensitive analytical
methods.38,43,49,65

Notably, the interpretation of the results of investigations
into the human SERT gene are complicated by additional
common noncoding SERT gene polymorphisms thought to
influence transcription. These and other factors make direct

Figure 3 Serotonin uptake rates and surface SERT binding in rhesus PBCs. (a)
Maximal uptake rates were calculated using nonlinear curve fitting for data from
individual animals. Mean maximal uptake rates with respect to genotype are shown
in the inset. One-way analysis of variance indicated that maximal uptake rates vary
with respect to rh5-HTTLPR genotype (F(2,12)¼ 5.9; Po0.05). A priori
comparisons of uptake rates using one-tailed Student’s t-tests showed significant
decreases associated with the ‘S’ allele (t¼ 3.4, df¼ 7, Po0.01 L/L vs S/L and
t¼ 3.0, df¼ 10, Po0.01 L/L vs S/S). (b) Binding of (125I)RTI-55 to intact PBCs was
used to determine the levels of SERT located at the plasma membrane. Maximal
binding was calculated for data from individual animals by nonlinear curve fitting
using one-site saturation isotherms. Mean maximal binding as a function of
genotype is shown in the inset. There was a trend toward decreased SERT binding
associated with the ‘S’ allele (F(2,12)¼ 2.5; Po0.12). Data are means±s.e.m.s
with N¼ 6 for L/L, N¼ 3 for S/L, and N¼ 6 for S/S. **Po0.01 vs the L/L genotype.
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correlations between the h5-HTTLPR and changes in
serotonin system expression and function challenging (see
Singh et al.43 for further discussion). Recent controversies
have arisen regarding the role of the h5-HTTLPR, particularly
with regard to stress-associated depression.24,25,66–69 The
results of the current study present a comprehensive
assessment of the cellular phenotype of the short vs long
alleles providing solid evidence for a functional effect of the
rh5-HTTLPR. One of the major advantages of the nonhu-
man primate model studied here is that unlike in human
studies, subjects’ environments can be highly regulated
and manipulated over various periods in the life-
span.29,32,33,70,71 Furthermore, data can be collected from
subjects whose genetic relatedness is knowable and con-
trollable. Neither early life environment nor the pedigrees of
the animals in the present study were highly homogeneous;
animals from China and the United States were represented
across genotypes. Nonetheless, rh5-HTTLPR short allele
carriers were characterized by reduced serotonin uptake
rates, cell surface SERT binding, and intracellular 5-HIAA
levels in PBCs.

In the present study, SERT mRNA levels measured by RT-
qPCR in rhesus PBCs were not significantly different with
respect to rh5-HTTLPR genotype. This finding is consistent with
a previous report on SERT mRNA in PBCs from a large cohort of
rhesus (B80 animals).41 Postmortem human brain studies
highlight the variability in SERT mRNA levels such that within the
same genotype, 10-fold differences in SERT mRNA are
observed.14 Similarly, in human lymphoblasts, SERT mRNA
levels vary by 5–10-fold even when controlling for trialleic
genotype with only 8% of the variance arising from measure-
ment contributions.3 Variability in SERT mRNA could be due to a
number of factors unrelated to 5-HTTLPR genotype that
influence mRNA synthesis, stability and degradation. Most
studies in native tissues or cells from humans or rhesus fail to
find associations between SERT mRNA and 5-HTTLPR
genotype, suggesting that mRNA levels are a poor indicator of
variability associated with the 5-HTTLPR.

The h5-HTTLPR has not yet been precisely modeled in
rodents, although there are similarities with SERT-deficient
mice and rats, whereby the low-functioning h5-HTTLPR allele
is hypothesized to confer similar reductions in SERT expres-

Figure 4 Serotonin system characteristics associated with the rh5-HTTLPR short allele in PBCs. Experimental data from S/L and S/S genotypes were merged and
means±s.e.m.s are shown for (a) maximal serotonin uptake, (b) maximal surface SERT binding, (c) SERT mRNA levels, (d) 5-HT concentrations, (e) 5-HIAA concentrations
and (f) 5-HIAA to 5-HT ratios. Data for animals having one or two ‘S’ alleles (S/L and S/S) were compared with data from animals with the L/L genotype using one-tailed t tests
(t¼ 3.6, df¼ 13, Po0.01 for maximal serotonin uptake, t¼ 2.3, df¼ 13, Po0.05 for maximal SERT binding) or two-tailed t tests (t¼ 3.7, df¼ 11, Po0.01 for 5-HIAA
concentrations, and t¼ 3.0, df¼ 11, Po0.05 for 5-HIAA/5-HT ratios). Individual values for each animal are shown as scatter plots overlaid on the respective bar graphs. Data
are means±s.e.m.s with N¼ 5–6 for L/L and N¼ 8–9 for ‘S’ genotypes. **Po0.01 and *Po0.05 vs the L/L genotype.
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sion and function to those occurring with constitutive loss of
one functional SERT allele in rodents.53,65,72–74 Mice with
constitutive reductions in SERT gene expression show
elevated anxiety-related behavior,75 enhanced stress reactiv-
ity,76–78 and in some background strains, increased depres-
sive-like behavior.79 Increased anxiety-like behavior80 and
amygdala over-activity81 are associated with constitutive
reductions of SERT in rats.

In mice, life-long absence of SERT is associated with
decreased brain tissue serotonin concentrations.50,82,83 How-
ever, mice with a 50% constitutive loss of SERT expression
show little to no change in brain tissue serotonin. Here, rhesus
PBCs showed no significant differences in serotonin levels.
Yet, 5-HIAA was reduced in PBCs from rhesus ‘S’ allele
carriers. In light of decreased serotonin uptake in rhesus
PBCs associated with the ‘S’ allele, these data suggest that a
feedback mechanism might be at work to conserve available
serotonin. Antidepressant administration in rhesus has been
associated with decreased 5-HIAA concentrations in cere-
brospinal fluid.84 Investigation of serotonin synthesis and
degradation rates with respect to the rh5-HTTLPR will be
required to elucidate the underlying nature of the differences
in 5-HIAA levels in rhesus PBCs.

Altered stress and anxiety responses exhibited by SERT-
deficient mice resemble phenotypic characteristics of
humans and macaques associated with the short form
of the 5-HTTLPR. Studies in rodents show that disruption
of SERT function during a key postnatal period results
in changes in emotional behaviors in adulthood that
share some similarities with constitutive reductions in
SERT expression.85,86 Developmentally sensitive changes
in anxiety-related behavior in rodents, in combination
with negative findings in association studies on the
5-HTTLPR in adult humans, have led to the idea that the
effects of the h5-HTTLPR on serotonin transmission
predominate during key developmental periods.21 Here,
we show that changes in the serotonin system associated with
the rh5-HTTLPR are present during adulthood, alternately
suggesting that this gene variant influences SERT function
and serotonin neurochemistry throughout life, at least in the
periphery. Moreover, gene� environment interactions between
rh5-HTTLPR genotype and peer vs mother rearing, with respect
to CSF 5-HIAA levels further implicate central effects of the
5-HTTLPR beyond early development.29

The present findings suggest that PBCs might be used to
study genetic and pharmacologic alterations in serotonin
transmission directly and more accessibly than measure-
ments in the central nervous system. PBCs are obtained using
minimally invasive methods and can be viably frozen for later
study. Additionally, PBCs are native cells; they do not suffer
from potential problems associated with altered gene expres-
sion associated with immortalization, for example, in lympho-
blasts.87 Investigating SERT in the brain in vivo in humans is
currently only possible via PET imaging. However, a lack of
association between SERT binding by PET and 5-HTTLPR
genotype is reported in humans16–18,63 (discussed in greater
detail in Singh et al.43), as well as in rhesus.37,42 Before using
PBCs as biomarkers of alterations in the brain serotonin
system, additional research clarifying the relationship be-
tween the brain and peripheral blood serotonin systems is
needed. For instance, there might be important differences
between PBCs and the central nervous system in terms of
regulatory mechanisms affecting SERT function. Also, PBCs
constitute a mixed population of cells consisting of a number
of different cell types expressing SERT, that is, mononuclear
cells including monocytes and lymphocytes, and small
numbers of platelets. Determining the contributions of each
of these kinds of cells to uptake rates measured in PBC
preparations is the subject of ongoing studies. In any case, the
findings of the present study were the same regardless of
whether the data were expressed and analyzed with respect
to numbers of lymphocytes or total protein levels, the latter of
which reflect all relevant cell types (Supplementary Table S3).

Native peripheral cells hold promise as candidates to elucidate
central nervous system function at the molecular and genetic
levels and with respect to drug mechanisms and efficacy.
Furthermore, developing clinically applicable methods to per-
form functional measurements in PBCs that are sensitive to
genetic influence represents a step toward an approach
whereby cells readily accessible from human blood samples
might be used to predict drug responses, thus initiating the
concept of individually tailored therapeutic interventions.
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s.e.m.s for each variable indicated. Only SERT function and surface SERT binding are correlated, such that 60% of the variance is shared with a low probability of chance
correlation (Po0.001).
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