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ABSTRACT Mixed models can be considered as a type of penalized regression and are everyday tools in
statistical genetics. The standard mixed model for whole genome regression (WGR) is ridge regression best
linear unbiased prediction (RRBLUP) which is based on an additive marker effect model. Many publications have
extended the additive WGR approach by incorporating interactions between loci or between genes and envi-
ronment. In this context of penalized regressions with interactions, it has been reported that translating the
coding of single nucleotide polymorphisms -for instance from -1,0,1 to 0,1,2- has an impact on the prediction of
genetic values and interaction effects. In this work, we identify the reason for the relevance of variable coding in
the general context of penalized polynomial regression. We show that in many cases, predictions of the genetic
values are not invariant to translations of the variable coding, with an exception when only the sizes of the
coefficients of monomials of highest total degree are penalized. The invariance of RRBLUP can be consid-
ered as a special case of this setting, with a polynomial of total degree 1, penalizing additive effects (total
degree 1) but not the fixed effect (total degree 0). The extended RRBLUP (eRRBLUP), which includes
interactions, is not invariant to translations because it does not only penalize interactions (total degree 2),
but also additive effects (total degree 1). This observation implies that translation-invariance can be main-
tained in a pair-wise epistatic WGR if only interaction effects are penalized, but not the additive effects. In
this regard, approaches of pre-selecting loci may not only reduce computation time, but can also help to avoid
the variable coding issue. To illustrate the practical relevance, we compare different regressions on a publicly
available wheat data set. We show that for an eRRBLUP, the relevance of the marker coding for interaction
effect estimates increases with the number of variables included in the model. A biological interpretation of
estimated interaction effects may therefore become more difficult. Consequently, comparing reproducing
kernel Hilbert space (RKHS) approaches to WGR approaches modeling effects explicitly, the supposed advan-
tage of an increased interpretability of the latter may not be real. Our theoretical results are generally valid for
penalized regressions, for instance also for the least absolute shrinkage and selection operator (LASSO).
Moreover, they apply to any type of interaction modeled by products of predictor variables in a penalized
regression approach or by Hadamard products of covariance matrices in a mixed model.
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Genomic selection based on whole genome regression (WGR) is a
crucial ingredient of modern breeding programs (Meuwissen et al.
2001; Schaeffer 2006; Habier et al. 2007; Hayes et al. 2009, 2013; de los
Campos et al. 2013). The simplest and most successful approach for
modeling the genotype-phenotype relation is a linear model assigning
an additive effect to each locus (Falconer and Mackay 1996). In more
detail, the standard model is given by

y ¼ 1nmþMbþ e; (1)

where y is the n · 1 vector of the phenotypic observations of n indi-
viduals and 1n an n· 1 vector with each entry equal to 1. Moreover, m
is the y-intercept, andM the n· pmatrix describing the marker states
of n individuals at p loci. Dealing with single nucleotide polymor-
phisms (SNPs) and a diploid species, the entries Mi;j can for instance
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be coded as 0 ðaaÞ, 1 ðaA or AaÞ or 2 ðAAÞ counting the occurrence
of the reference allele A. The most frequently used coding subtracts
twice the allele frequency, centering each column of M to zero
(VanRaden 2008), and alternative approaches consider genotype
frequencies (Álvarez-Castro and Carlborg 2007; Vitezica et al.
2017). The p · 1 vector b represents the allele substitution effects
of the p loci, and e the n· 1 error vector. For single marker regression,
which may for instance be used in genome-wide association studies
(GWAS), we could apply ordinary least squares regression (OLS) to
estimate b̂. However, in approaches of genomic selection, we model
the effects of many different loci simultaneously and the number of
markers p is usually much larger than the number of observations n.
Different methods have been used in the last decades to deal with a
large number of variables, among which ridge regression best linear
unbiased prediction (RRBLUP) is the most popular in quantitative
genetics (Schaeffer 2004; Mrode 2014). RRBLUP penalizes the squared
ℓ2 norm of b and has been derived with the additional model specifi-
cations of m being a fixed unknown parameter, and b � N ð0;s2

bIpÞ
and e � N ð0;s2

eInÞ being random. Thus, RRBLUP is not a pure ridge
regression penalizing all parameters, but actually a mixed model in
which the size of m is not penalized, but only the entries of b are. This
mixed model RRBLUP is also called genomic best linear unbiased
prediction (GBLUP) when Eq.(1) is reformulated with g :¼ Mb,
and thus g � N ð0;s2

bMMtÞ. Different variants of MMt are called
the genomic relationship matrix (GRM) (VanRaden 2008). In the
additive effect setup, RRBLUP may be considered as the standard
reference method (Schaeffer 2004; Mrode 2014), but there are many
other approaches which use different assumptions on the effect dis-
tribution and other approaches to estimate additive effects (Gianola
et al. 2009; Gianola 2013).

In particular, because of the immense structural contrast between
the statistical additive effect model which does not include any type
of interaction between the loci, and biological mechanisms in which
interaction is a key concept, scientists have been interested in mod-
eling interaction and “non-additive” genomic relationship (Howard
et al. 2014). Several manuscripts have addressed the detection of
statistical interaction (Cordell 2009; Aschard 2016; Chen et al. 2016;
Ehrenreich 2017), the role of epistasis in selection response (Carlborg
et al. 2006; Esfandyari et al. 2017; Forneris et al. 2017) or the pre-
dictive ability of non-additive relationship models. An important
class of non-additive relationships is given by reproducing kernel
Hilbert spacemodels (RKHS) (Gianola and Van Kaam 2008; de los
Campos et al. 2009; Ober et al. 2011; Morota and Gianola 2014;
Gianola et al. 2014). Moreover, a strongly followed approach simply
extends Eq.(1) by explicit dominance effects or by interactions be-
tween different loci (Jiang and Reif 2015; Ober et al. 2015; Gao et al.
2017; Martini et al. 2016; Varona et al. 2018; Su et al. 2012; Xiang et al.
2018). The latter approaches have the supposed advantage of being
interpreted more easily, since we can estimate interaction effects

instead of just dealing with a non-additive genomic relationship
model derived from the RKHS setup.

Adding products of predictor variables to model interactions, ex-
tends Equation (1) to a polynomial of total degree 2.Whereas subtract-
ing a constant pi from the i-th column of M, does neither change the
predictions ŷ of an OLS regression with interactions (provided it is
well-defined) nor those of the penalized regression RRBLUP (provided
the penalty factor remains fixed), the predictions of a penalized regres-
sion with interactions (extended RRBLUP or eRRBLUP or eGBLUP) are
sensitive to a translation of the coding (He and Parida 2016; Martini
et al. 2017).Moreover, also the estimates of additive effects inferred
with RRBLUP or OLS in an additive model are invariant under
translations of the variable coding (Strandén and Christensen
2011), but contrary in a model including interactions, the interac-
tion effect estimates will only be unaffected when OLS but not
when eRRBLUP is used.

In this work, we address the question why penalized regression is
affected by translations of the variable coding when a polynomial
model of higher total degree is used. After a theoretical summary of the
different methods, we show that in many cases, translating the coding
of the predictor variables has an impact on the prediction of genetic
values, but that an essential translation-invariant exception is the
situation of only penalizing the size of the coefficients of monomials
of highest total degree.The invariance ofRRBLUPcanbe considered as
a special case of this setting, with a polynomial of total degree 1, where
the size of the fixed effect (total degree 0) is not penalized, but only the
additive effects (total degree 1) are. The eRRBLUP, which includes
interactions, is not invariant to translations because it does not only
penalize interactions (total degree 2), but also additive effects (total
degree 1). In this regard, approaches of pre-selecting markers, for
instance by their additive effect sizes (Kärkkäinen et al. 2015), are not
only computationally interesting but may also wipe away the coding
problem if they allow to model the additive effects as being fixed and
to penalize only interactions. Finally, we use a publicly available wheat
data set to illustrate that the impact of coding on interaction effect
estimates of eRRBLUP becomes stronger with increasing number of
variables included in the model. This observation suggests that po-
tential underlying biological interactions of quantitative trait loci
(QTL) which may be in linkage disequilibrium (LD) with the
markers, will not only have less influence on estimated interaction
effects due to the direct influence of an increasing number of var-
iables across which biological effects may be distributed when fit-
ting the data, but the loss in biological meaning may be enhanced by
the secondary effect of an increasing influence of the marker cod-
ing. Thus, the supposed advantage of a higher interpretability when
modeling interaction effects explicitly in a WGR, compared to
RKHS approaches defining non-additive relationships, may only
be marginal.

We start with a recapitulation of the regression methods which are
relevant for the manuscript.

THEORY: SPECIFICATION OF REGRESSION METHODS
If anexpression includesan inverseof amatrix,we implicitly assumethat
thematrix is invertible for the respective statement, also if notmentioned
explicitly. Analogously, some statements forOLSmay implicitly assume
that a unique estimate exists, which in particular restricts to cases in
which the number of observations is at least the same as the number
of parameters which have to be determined. Moreover, we will use
“estimated” and “predicted” effects as synonym in this work since
the quantities may be considered as being fixed or being random in
several instances.
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Additive effect regression
The additive effect model has already been presented in Equation (1).

OLS: The ordinary least squares approach determines b̂ byminimizing
the sum of squared residuals (SSR):

�
m̂
b̂

�
OLS

:¼ arg minðm;bÞ2ℝpþ1

Xn
i¼1

�
yi2Mi;•b2m

�2
(2)

Mi;• denotes here the i-th row ofM representing the genomic data of
individual i. The solution to the minimization problem of Equation
(2) is given by the well-known OLS estimate�

m̂
b̂

�
OLS

¼ �ð 1n M Þtð 1n M Þ�21ð 1n M Þty (3)

provided that the required inverse exists, which in particular also
means that n has to be greater than p.

In problems of statistical genetics, we often deal with a high number
of loci and a relatively low number of observations. In this situation of
p$ n, the solution to Equation (2) is not unique but a vector subspace
of which each point minimizes Equation (2) to zero (“overfitting”).
Using an arbitrary value of this subspace, predictions ŷ for genotypes
which have not been used to estimate the parameters ðm̂; b̂Þ usually
have a low correlation with the corresponding realized phenotypes. An
approach to prevent overfitting is RRBLUP.

RRBLUP / GBLUP minimizes

�
m̂
b̂

�
RRl

:¼ arg minðm;bÞ2ℝpþ1

Xn
i¼1

�
yi2Mi;•b2m

�2 þ l
Xp
j¼1

b2
j

(4)

for a penalty factor l. 0. Using an approach of maximizing a
certain likelihood, the model specifications of bj �i:i:d:N ð0;s2

bÞ and
ei �i:i:d:N ð0;s2

eÞ determine the penalty factor as ratio of the variance
components, that is l :¼ s2

e

s2
b

(Henderson 1975; Henderson and Quaas

1976; Henderson 1977). We stress again that Equation (4) is not a
pure ridge regression, as the name RRBLUP might suggest, but a
mixed model which treats m and b differently by not penalizing the
size of m. This is the version, which is most frequently used in the
context of genomic prediction (often with additional fixed effects)
(Schaeffer 2004; Mrode 2014).

The corresponding solution is given by

�
m̂
b̂

�
RRl

¼
�
ð 1n M Þtð 1n M Þ þ l

�
0 0tp
0p Ip

��21

ð 1n M Þty:

(5)

where 0p denotes the p · 1 vector of zeros. The effect of the introduc-

tion of the penalization term l
Pp
j¼1

b2
j is that for the minimization of

Equation (4), we have a trade-off between fitting the data optimally
and shrinking the squared effects to 0. The method will only “decide”

to increase the estimate b̂j, if the gain from improving the fit is greater

than the penalized loss generated by the increase of b̂j.

First order epistasis: Polynomials of total degree two
An extension of the additive model of Equation (1) is a first order
epistasis model given by a polynomial of total degree 2 in the

marker data (Ober et al. 2015; Jiang and Reif 2015; Martini
et al. 2016)

yi ¼ mþMi;•bþ
Xp-1
k¼1

Xp
j¼kþ1

hj;kMi;jMi;k þ ei (6)

Here, all variables are as previously defined and hj;k the interaction
effect between loci j and k. Please note that there is a variant of this
model, in which also j ¼ k is included. This interaction of a locus with
itself allows to model dominance (Martini et al. 2016).

We recapitulate some terms which are important in the context of
polynomials in multiple variables. Each product of a subset of the var-
iablesMi;1;Mi;2; . . . ;Mi;p is called a monomial. For instanceMi;1,Mi;2,
Mi;1Mi;2 and M2

i;1 are four different monomials. Since the product is
commutative,Mi;1Mi;2 andMi;2Mi;1 are the same monomial (and their
coefficients are assumed to be summed up in any polynomial which we
will address later). The total degree of a monomial is the sum of the
powers of the variables in the respective monomial. For instance, Mi;1

andMi;2 are monomials of total degree 1, whereasMi;1Mi;2, andM2
i;1 are

monomials of total degree 2.Moreover,Mi;1Mi;2 is amonomial of degree
1 in each of the variablesMi;1 andMi;2, andM2

i;1 is a monomial of degree
2 inMi;1 and of degree 0 inMi;2. Since a polynomial model is also linear
in the coefficients, the regression equations are only slightly modified.

OLS: Equation (3) with a modified matrixM including the products of
markers as additional predictor variables represents the OLS solver for
model (6).

eRRBLUP: The extended RRBLUP is based on Equation (6) and the
assumptions of m being fixed, bi �i:i:d:N ð0;s2

bÞ, hj;k �i:i:d:N ð0;s2
hÞ and

ei �i:i:d:N ð0;s2
eÞ. In this case, the solution is also given by an analog of

Equation (5), but with two different penalty factors, l1 :¼ s2
e

s2
b

for addi-
tive effects and l2 :¼ s2

e

s2
h
for interaction effects.

Translations of the marker coding
In quantitative genetics, column means are often subtracted from the
original 0, 1, 2 coding ofM to use ~M :¼ M2 1nPt with P the vector of
column means of M (VanRaden 2008) such that

Xn
i¼1

~Mi;j ¼ 0 "j ¼ 1; . . . ; p:

However, other types of translations, for instance a symmetric
f21; 0; 1g coding or approaches based on genotypic frequencies
(Álvarez-Castro and Carlborg 2007; Vitezica et al. 2017) can be found
in quantitative genetics’ literature. Thus, the question occurs whether
this has an impact on the estimates of the marker effects or on the
prediction of genetic values of genotypes.

The answer is that for the additive setup of Equation (1), a shift from
M to ~Mwill change m̂ but not b̂ and any prediction ŷ will not be affected,
neither for OLS, nor for RRBLUP (provided that l is not changed)
(Strandén and Christensen 2011; Martini et al. 2017). This invariance
of the additive model does not hold for the extended RRBLUP.

We give an example and discuss the effect of translations of the
marker coding in a more general way afterward.

Example 1 (Translations of themarker coding). Let the marker data
of five individuals with two markers be given:

y ¼ ð20:72; 2:34; 0:08;20:89; 0:86Þt M ¼

0
BBBB@

2 2
1 2
2 0
2 1
1 0

1
CCCCA
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Moreover, let us use the original matrix M, and the column mean
centered matrix ~M :¼ M2 15 ð1:6; 1:0Þ|fflfflfflfflffl{zfflfflfflfflffl}

¼:Pt

. We consider the first order
epistasis model

yi :¼ mþ b1Mi;1 þ b2Mi;2 þ h1;2Mi;1Mi;2 þ ei

and estimate the corresponding parameters with i) an OLS regression,
ii) a mixed model regression eRRBLUP-1 with l1 ¼ l2 ¼ 1, and iii)
a mixed model regression eRRBLUP-2 with l1 ¼ 0 and l2 ¼ 1. The
difference between eRRBLUP-1 and eRRBLUP-2 is that the first method
penalizes the additive effects and the interaction effect, whereas the
latter method only penalizes the interaction effect.

LetX denote the matrixMwith an additional column of the products
of the marker values of each individual. Analogously, ~X shall denote the
matrix ~M with the additional column of the respective products.

X ¼

0
BBBB@

2 2 4
1 2 2
2 0 0
2 1 2
1 0 0

1
CCCCA and ~X ¼

0
BBBB@

0:4 1 0:4
20:6 1 20:6
0:4 21 20:4
0:4 0 0
20:6 21 0:6

1
CCCCA (7)

To estimate the effects with OLS, use Equation (3) with X or ~X as
marker matrix. Analogously, use these matrices in Equation (5) for the
ridge regression approaches. The difference between eRRBLUP-1 and
eRRBLUP-2 manifests only in what is added to the diagonal:

0
BB@

m̂
b̂1
b̂2
ĥ1;2

1
CCA
eRRBLUP21

¼
�
ð 1n X Þtð 1n X Þ

þ1 �
�

0 0t3
03 I3

��21

ð 1n X Þty: (8)

and

0
BB@

m̂
b̂1
b̂2
ĥ1;2

1
CCA
eRRBLUP22

¼

0
BB@ð 1n X Þtð 1n X Þ

þ1 �

0
BB@

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

1
CCA
1
CCA

21

ð 1n X Þty: (9)

For the centered coding, substitute X by ~X. We summarize our obser-
vations from the results presented in Table 1 as follows:

• Comparing the centered and non-centered versions of OLS, the esti-
mates for m, b1 and b2 change, but the estimated interaction ĥ1;2 as
well as the prediction of y remains unchanged.

• Comparing the centered and non-centered versions of eRRBLUP-1,
both codings give different estimates for all the parameters and these
solutions produce different predictions for y.

• Comparing the centered and non-centered versions of eRRBLUP-2,
both codings give different estimates for m, b1 and b2, but the same
for h1;2 and the same predictions for y.

The different cases presented in Example 1 have a certain systematic
pattern, which we discuss in the following section.

THEORETICAL RESULTS
The observations made in Example 1 are explained by the following
proposition which has several interesting implications. More formal
proofs of the statements made can be found in the Appendix.

Proposition 1. LetMi;• be the vector of marker values of individual
i and let f ðMi;•Þ : ℝp/ℝ be a polynomial of total degree D in the
marker data. Moreover, let ~M :¼ M2 1nPt be a translation of the
marker coding and let us define a polynomial ~f in the translated vari-
ables ~M by ~f ð ~Mi;•Þ :¼ f ð ~Mi;• þ PtÞ ¼ f ðMi;•Þ. Then for any data y, the
sum of squared residuals (SSR) of both polynomials will be identical
(each with the respective coding):

X
i¼1;...;n

�
yi2f

�
Mi;•

��2 ¼ X
i¼1;...;n

�
yi2~f

�
~Mi;•

��2

Moreover, for any monomial m of highest total degree D, the cor-
responding coefficient am of f ðMi;•Þ and ~am of ~f ð ~Mi;•Þ will be
identical:

am ¼ ~am:

The coefficients of highest total degree am represent the additive
effects in an addditive effect model, the interaction effects in a model
including pair-wise interactions, the three way interactions in a poly-
nomial model of total degree 3, and so on.

The content of Proposition 1 can be summarized the following way:
Let us assume that we have data y and a polynomial fwhich is based on
marker data M. Moreover, we have the translated data ~M, that is an
alternative coding of the predictors. We define the alternative poly-
nomial ~f by the value of f at the corresponding point in the original
coding:

n Table 1 Results from Example 1. “nc” denotes the use of the non-centered matrix M and “c” indicates the use of the centered matrixM
�

OLS eRRBLUP-1 eRRBLUP-2

Estimates nc c nc c nc c

m̂ 1.83 0.33 1.81 0.33 2.69 0.33
b̂1 20.97 22.11 20.89 21.15 21.54 22.11
b̂2 1.88 0.06 0.71 0.09 1.03 0.11
ĥ1;2 21.14 21.14 20.48 20.57 20.57 20.57

20.91 20.91 20.46 20.27 20.63 20.63
2.34 2.34 1.39 1.46 2.06 2.06

ŷ 20.11 20.11 0.03 0.01 20.40 20.40
20.51 20.51 20.21 20.13 20.51 20.51
0.86 0.86 0.92 0.59 1.15 1.15
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~f
�
~Mi;•

�
:¼ f

�
~Mi;• þ Pt� ¼ f

�
Mi;•

�
(10)

The left hand equation means that we define the alternative poly-
nomial ~f to be f ð ~Mi;• þ PtÞ at ~Mi;•. Then –by definition– the SSR
of the fits are identical when each polynomial is used with its
respective data coding. Moreover, both polynomials give –by def-
inition– the same predictions ŷ to each data point (in its respective
coding). Since f is given, we have its coefficients (effects) and can
thus use the first equality of Equation (10) to calculate the coef-
ficients of ~f . The coefficients of monomials of highest total degree
are the same for f and ~f . The latter statement needs a little more
detailed consideration and we refer to the Appendix. We give an
example.

Example 2. In the case of an interaction model based on two loci and
without additional restrictions on the coefficients, the set of polynomials
across which we screen for an optimal fitting one is

�
mþ b1Mi;1 þ b2Mi;2 þ h1;2Mi;1Mi;2

��b1;b2; h1;2 2 ℝ
	
:

Given the vector Pt , which defines the alternative coding by ~M :¼
M2 1nPt , each f can be mapped to an ~f of Proposition 1 by the left-
hand side of Equation (10). This equation states that ~f , which is a
polynomial in the variables ~Mi;•, is defined by the original f when we
plug in the variables ~Mi;• þ Pt and write down the expression as a
function of ~Mi;•. For an example of Pt being ð0:5; 0:3Þ, and

f ¼ 1þ 2Mi;1 þ 0:5Mi;2 þ 0:25Mi;1Mi;2;

~f would be defined by

~f
�
~Mi;•

�
:¼ 1þ 2

�
~Mi;1 þ 0:5

�þ 0:5
�
~Mi;2 þ 0:3

�þ
                            þ 0:25

�
~Mi;1 þ 0:5

��
~Mi;2 þ 0:3

�
Multiplying the factors gives

~f
�
~Mi;•

�
:¼ 2:1875þ 2:075 ~Mi;1 þ 0:625 ~Mi;2 þ 0:25 ~Mi;1 ~Mi;2:

We have calculated ~f ð ~Mi;•Þ which is a function of ~Mi;• from the
polynomial f ðMi;•Þ which is a function of Mi;•. As demonstrated in
Proposition 1, both polynomials share the same coefficient for their
monomial of highest total degree, that is for Mi;1Mi;2 or ~Mi;1 ~Mi;2,
respectively. Moreover –due to the way ~f was constructed from f– all
predictions ŷ will be identical when the respective coding is used. For
instance f ð2; 2Þ ¼ 7 ¼ ~f ð1:5; 1:7Þ. In particular, this is also true for
the data points which are used to estimate the coefficients, and thus
the SSR is identical for both polynomials (each with the respective
coding).

Provided that ~f of Proposition 1 is a valid fit, the statements directly
imply that OLS predictions for y are invariant to translations of the
coding. The reasoning is the following: If any f has a corresponding ~f
which has the same predictions ŷ and the same SSR, this is also true for
the OLS solution whichminimizes the SSR. To make sure that each ~f is
a valid fit, the possibility to adapt coefficients of monomials of lower
total degrees is required. We cannot adapt the regression completely
if certain coefficients are forced to zero by the model structure. If a
coefficient is equal to zero in f, it may be different from zero in ~f .
We illustrate this with an example.

Example 3 (Models without certain terms of intermediate total de-
gree). Let us consider the data M and y of Example 1 but with the
assumption that marker 2 does not have an additive effect, which means
that we force the additive effect of marker 2 to zero by the model struc-
ture. Then the effect estimates

0
@ m̂

b̂1
ĥ1;2

1
A
OLS

¼
0
@ 3:710

22:098
20:012

1
A and

0
@ ~m

~b1
~h1;2

1
A
OLS

¼
0
@ 0:334

22:11
21:162

1
A

as well as the estimates ŷ and ~y are different for both codings.
Example 3 illustrates a situation in which the OLS is not invariant to

the change in themarker coding.The causeof this affectedness is the lack
of the additive effect b2 in the model. Thus, a solution f fitting the data
for the one coding may lead to an ~f in which the additive effect of
the second marker is non-zero. Thus ~f is not a valid fit. A certain
“completeness” of the model is required to have the possibility to adapt
to translations of the coding. We define this property more precisely.

Definition 1 (Completeness of a polynomial model). LetMi;• be the
vector of the marker values of individual i and let f ðMi;•Þ : ℝp/ℝ be a
polynomial of total degree D in the marker data. The polynomial model
f is called complete if for any monomial Md1

i;j1M
d2
i;j2⋯Mdm

i;jm of f, all
monomials

Md1
i;j1M

d2
i;j2⋯Mdm

i;jm  "  0# d1 # d1; "  0# d2 # d2;  . . .  ;"  0# dm # dm

are included with a coefficient to be estimated.
Definition 1 states that for each monomial which is included in the

model, all “smaller”monomials have to be included as well. We illustrate
this with some examples. Let us consider Equation (6). Its monomials are
of shapeMi;k orMi;kMi;l . ForMi;k, Definition 1 states thatM0

i;k ¼ 1 and
M1

i;k have to be included, which is obviously the case. For Mi;kMi;l ,
M0

i;k ¼ 1,M1
i;k andM

1
i;kM

1
i;l have to be included, which is also true. Thus,

the model is complete. Analogously, if we also include the interactions
M2

i;k, that is if we allow j ¼ k, themodel remains complete since all smaller
monomials are included. Contrarily, Example 3 is based on the model

yi ¼ mþ b1Mi;1 þ h1;2Mi;1Mi;2 þ ei:

SinceMi;1Mi;2 is included with a coefficient to be estimated,Mi;1 and
Mi;2 have to be included tomake themodel complete. SinceMi;2 is not
included, the polynomial is not complete.

Given that themodel is complete and thus allowinganadaption from
f to ~f , Proposition 1 has various implications. The following corollaries
explain the results observed in our examples and highlight some addi-
tional properties of penalized regression methods in general. For all
statements, it is assumed that penalty factors remain unchanged and
that the model is complete.

Corollary 1. For a complete polynomial model of total degree D,
the OLS estimates of the coefficients of highest total degree as well as
the predictions ŷ are invariant with respect to translations of the
marker coding.

Corollary 1 is a result of the OLS method being defined only by
the SSR, and f and the corresponding ~f of Proposition 1 fitting the
data with the same SSR and with the same prediction ŷ when their
respective coding is used. The statement of Corollary 1 has been
observed in Example 1, where the OLS fits for ŷ are identical when
the coding is translated, and where the estimated coefficients ĥ1;2 of
highest total degree remain unchanged.

Corollary 2. For a complete polynomial model of total degree D, and
a penalized regression which only penalizes the coefficients of monomials
of highest total degree, the estimates of the coefficients of monomials of
highest total degree, as well as the predictions ŷ are invariant with respect
to translations of the marker coding.

Corollary 2 is a result of the following observation: for each f, its
corresponding ~f will have the same SSR (each polynomial with its
respective coding), and the same coefficients of highest total degree.
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Thus, it will have the same value for the target function which we aim
to minimize (The target function is the analog of Equation (4) with the
corresponding interactions and with a penalty on only the coefficients
of monomials of highest total degree). Because this is true for any
polynomial f, it is in particular true for the solution minimizing the
target function. A central point of Corollary 2 is that it is valid for any
penalty on the size of the estimated coefficients of highest total degree.
The sufficient condition is that only these coefficients of highest total
degree are penalized.

Corollary 3. RRBLUP predictions ŷ are invariant with respect to
translations of the marker coding.

Corollary 2 applied to complete models of total degree 1 gives the
result of Corollary 3, that is RRBLUP being invariant to translations of
themarkercoding.This facthasbeenpreviouslyprovenusingamarginal
likelihood setup (Strandén and Christensen 2011), or the mixed model
equations (Martini et al. 2017).

Corollary 4. An additive least absolute shrinkage and selection op-
erator (LASSO) regression (Tibshirani 1996) based on a polynomial
model of total degree 1 and ℓ1 penalizing the additive marker effects
but not the intercept, is invariant to translations of the marker coding.

Corollary 4 is a special case of Corollary 2.
Before we illustrate the impact of marker coding on estimated effect

sizes with a publicly available data set, we give a small example,
highlighting cases which are not invariant to translations of the marker
coding.

Example 4 (Regressions affected by marker coding).

a. Whereas, RRBLUP with the fixed intercept is invariant to transla-
tions (Strandén and Christensen 2011), pure ridge regression of
an additive model of Equation (1) with a penalty on the size of m
(“random intercept”) is not invariant to translations.

b. RRBLUP without intercept is not invariant to translations of the
marker coding.

c. An extended LASSO ℓ1 penalizing additive effects and interactions is
not invariant to translations of the coding.

Remark 1. Proposition 1 stated that the coefficients of monomials of
highest total degree D of f and ~f will be identical. This statement can even
be generalized. Consider for instance the model

yi ¼ f
�
Mi;1;Mi;2;Mi;3

�þ ei ¼
¼ mþ b1Mi;1 þ b2Mi;2 þ b3Mi;3 þ h2;3Mi;2Mi;3 þ ei

The model is a polynomial f of total degree 2. Thus, Proposition 1 states
that the coefficient of monomial Mi;2Mi;3 will be identical for f and ~f .
However, since Mi;1 is not included in any other monomial, its coefficient
will also be identical for both polynomials. We did not generalize Prop-
osition 1 into this direction to make the manuscript not more technical
than necessary. The statement we made in Proposition 1 is sufficient to
explain the observations related to genomic prediction models.

PRACTICAL IMPLICATIONS: AN EXAMPLE WITH A
WHEAT DATA SET
We illustrated by theoretical considerations and small examples that
penalizedpolynomial regression is inmanycases affectedby translations
of the marker coding. An important exception is the case in which only
coefficients of monomials of highest total degree are penalized. To
illustrate the differences in estimated effect sizes that may be expected
with real data, we compare the estimated interaction effects for different
codings on a publicly available wheat data set (Crossa et al. 2010).
Moreover, we assess the impact of a changed coding on explained
variance and out-of-sample predictions.

Data and method

Data: We use a well investigated wheat data set providing the state of
1279 presence/absence markers of 599 genotyped wheat lines together
with records on their yield when grown in four different environ-
ments. The yield measurements are standardized to mean 0 and
variance 1 (Crossa et al. 2010). The provided coding of the marker
data are a 0; 1 coding. For more details on the data see Crossa et al.
(2010) or the R (R Core Team 2016) package BGLR (de los Campos
and Perez Rodriguez 2016).

Codings compared:Wecompare three different codings: Theoriginally
provided 0; 1 coding, a version translated by20:5, that is a symmetric
60:5 coding, and a coding in which the mean of each column is
subtracted (VanRaden 2008).We refer to these codings as the original
coding, the symmetric coding and the centered coding.

Interaction effect estimates under different codings and varying
number of markers: The assessment of the practical impact of trans-
lations of the marker coding on the effect estimates is difficult. Since in
practice, the variance components and consequently the penalty factors
areestimatedonthedata, the translationsof themarkercodingmayhave
an additional indirect effect of changing the penalty factors. Also there
may be rounding effects impacting the variance component estimates
when the entries of the correspondingmatrix are too big, and theremay
be numerical issues related to the matrix inversion when solving for the
effects (analogous to Equation (5)). A high dimension or a small de-
terminant of the matrix to be inverted can cause numerical unpreci-
sions which may impact the results. If possible these superposed effects
should be separated from each other. For this reason, we follow
an approach of reducing the number of variables and estimating the
variance components only once and then fixing the penalty factors.

For the considered data set with 1279 markers we deal with
817281 interaction effects when the full model with all pairwise
interactions is used. However, if we reduce the number of markers
below the number of individuals (599), we can estimate the additive
effects as fixed effects and penalize only their interactions. We restrict
our considerations to models including 50, 100 or 150 markers and
their 1225, 4950 or 11175 interactions, respectively.

For each environment we choose randomly 50 (100, 150) markers
using the sample function of R. The eRRBLUP model which we apply
afterward includes the fixed effect m, the 50 (100, 150) additive effects
and their 1225 (4950, 11175) interactions. The results reported will be
based on 50 repeated random draws of the corresponding number of
markers. Moreover, we estimate the variance components only for the
column mean centered coding and use the corresponding penalty fac-
tors also for the estimation with other codings. This is analogous to the
fact that the translational invariance of RRBLUP holds when the pen-
alty factor remains fixed (which should be the case when restricted
maximum likelihood is used for variance component estimation). For
the estimation of the variance components, we use the regress package
(Clifford et al. 2014). The resulting three variance components define
the penalty factors. The effects are estimated by the extension of Equa-
tion (5) with two different penalty factors for additive effects and in-
teractions. For each of the environments, we compare the Pearson
correlation of the estimated interaction effects for the three different
codings for 50 randomly drawn sets of markers.

Interaction effect estimates and changes in training set size: The
correlation of the interaction effect estimates of eRRBLUPwithdifferent
codings may not only depend on the number of interactions included,
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but also on the number of data points provided by y, whichmeans here
the number of lines. To compare the effect of an increase in the number
of markers to the effect of a reduction of lines used to estimate the
interactions, we also compare the effect estimates of different codings,
when the number of lines is reduced to 300 or 200. For both sizes,
50 randomly and independently drawn training andmarker sets are the
basis for interaction effect estimates and their Pearson correlations. The
impact of the reduction of lines is only evaluated in the scenario in-
cluding 50 markers and their interactions.

Regressions compared: In a first scenario, the size of m is not penal-
ized, but the sizes of additive effects and of interactions are. Here, the
three variance components s2

e , s
2
b and s

2
h are estimated which define

the penalty factors l1 for additive effects and l2 for the interactions.
In a second setup, we only penalize the interaction effects. Here, the
additive effects are modeled as being fixed (l1 ¼ 0) and thus, the two
variance components s2

e , and s
2
h are estimated and define the penalty

factor l2 for the interactions. This regression approach is a practical
application of Corollary 2 which makes the predictions of genetic
values and interaction effects independent from the choice of coding.
Thus, from a theoretical perspective, it is clear that the estimates
should be identical for the different codings. Yet, we use this second
scenario to asses the impact of computational issues –for instance
related to the inversion of the corresponding high-dimensional ma-
trix when solving for the interaction effects– on the estimates of
interactions.

Determining (un)explained phenotypic variance: To check the
influence of the coding on how much phenotypic variance can be
explained by the interaction effects, we estimate the variance com-
ponents on the full data set with all markers and all lines. Since
some variance may be attributed “randomly” to additive or epistatic
variance, when both corresponding covariance matrices are too sim-
ilar, we focus on a model with only interaction effects and consider
the variance component of the residual, that is the variance which is
not explained. The residual variance is more comparable, since the
different epistatic relationship matrices may be scaled differently
which directly translates to the estimated variance components.
We use the equation

H ¼ 0:5
�
MMt∘MMt�2 0:5ðM∘MÞðM∘MÞt (11)

to calculate the epistatic relationship for all 599 lines (Martini et al.
2016) and divide by themaximum ofH. The regress package (Clifford
et al. 2014) is used and the residual variance is then compared be-
tween different codings. The symbol ∘ denotes Hadamard product,
that is the entry-wise multiplication.

Out of sample predictions with varying number of markers and
training set size: To assess the impact of translations of the marker
coding on out-of-sample predictions ŷ, we randomly draw test sets of
60 out of the 599 lines to be predicted by the additive and interaction
effects estimated from the training set consisting of the remaining
539 lines. We compare the Pearson correlations between the predic-
tions ŷtest for different codings and with the known phenotypes ytest
(“predictive ability”). We do this for models including 50, 100 or
150 marker and their interactions. Moreover, we compare the predic-
tions of a model with 50 markers, when the training set size is reduced.
Since the variance of the results is increased due to sampling of markers
and training and test sets, we use 200 repetitions with independently
drawn marker, training and test sets.

Data Availability
Theauthors affirmthat all datanecessary for confirming the conclusions
of the article are present within the article, figures, and tables or publicly
available (Crossa et al. 2010).

Results

Correlation of interaction effect estimates under different codings
and varying number of variables included in the model: We use a
model with 50, 100 or 150 markers and their interaction effects and
compare the Pearson correlations of the interaction estimates obtained
with different codings. The results are summarized in Table 2. The values
indicate the mean correlation of 50 randomly drawn marker sets. The
correlations are between 0.80 and 0.95 and thus relatively high, but not
equal to 1. Moreover, for each environment, and for each comparison of
two codings, the correlation of the estimates reduces when the number of
markers increases. For instance, an obtained mean correlation of the
interaction effect estimates using the originally provided 0; 1 coding
and the allele-frequency centered coding is 0.90 (environment 2; 50 ran-
domly selected markers). For a model with 100 markers, this correlation
reduces to 0.85, and to 0.80 when using 150 markers. This stepwise
reduction of the correlation of the estimates when the number ofmarkers
increases, can be observed for any pairwise comparison of two codings,
and any underlying data (grown in environment 12 4).

Another observation across environments and varying number of
markers is that the original 0; 1 coding and the column mean cen-
tered coding are the most different. For instance, for environment
2 and 150 marker, the mean correlation of the interaction effect
estimates is 0.80, which is smaller than the corresponding correla-
tion for original and symmetric coding (0.88) or for symmetric and
centered coding (0.88).

For the second type of regression, in which only the size of the
interactions are penalized, we receive –as stated by our theoretical
results– a correlation of 1 between any two codings, for each of the
four underlying environmental conditions and for each number of
considered markers. This circumstance also illustrates that potential
numerical problems –for instance related to the inversion of the
high-dimensional matrix of Eq.(5)– do not strongly occur with the
number of interactions modeled in our examples.

Ranks of interactions effects: The previously described observations
havebeenmadeonthelevelofcorrelationsof interactioneffectestimates.To
address the question of what theymean for an individual interaction effect
estimate, we consider an example of using the 150 markers with largest
additive effects (Kärkkäinen et al. 2015). We are interested in changes of
interaction effect sizes and in their relative importance. We rank the
estimated interactions according to their absolute values and compare
these rankings for the different codings. The maximal observed rank
change of an estimate is 10367 for the data of environment 1, with an
interaction that is the 362th highest when the original 0; 1 coding is used,
but with a rank of 10729 with the centered coding. Analogously, the
maximal observed rank changes are for environments 2 to 4, 10775,
10672 and 10750, respectively. All maximal rank changes are observed
comparing the original and the centered coding. Recall here that there are
only 11175 interactions considered. The maximal theoretically possible
rank change would thus be 11174. The relative importance of these inter-
actions changes from the top 4% to the 4%most unimportant interactions.
Their effects are lost when we translate from 0; 1 to the centered coding.

Reducing training set size: The increasing influence of the choice of
codingon interaction effect estimateswhen thenumberof interactions is
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increasing, may have a counterpart when the training set size is de-
creasing. We use a model including 50 randomly chosen markers and
their interactions and reduce the training set size from 539 to 300 or
to 200. Table 3 presents the mean Pearson correlations of the in-
teraction estimates based on 50 randomly drawn marker and train-
ing sets (of 200 or 300 lines, respectively). Here, the reduction in
correlation has a similar pattern to the situation in which the num-
ber of markers in increasing. However, comparing the situation of
150 markers and 599 lines (Table 2) to the situation of 50 markers
and 200 lines (Table 3), we see that the impact of coding on in-
teraction effect estimates is more strongly affected by the reduction
in training set size than by the increase in the number of markers.
For instance, the lowest correlation in Table 2 is 0.80 for 150markers
and the data of environment 2. In Table 3, the correlation with a test
set size of 200 is 0.68. In particular, this shows that the impact does
not only depend on the ratio of training set size and markers.

(Un)explained variance: To illustrate which impact the coding may
have on the phenotypic variance an epistatic relationship matrix can
capture, we use only the epistatic relationship to estimate a corre-
sponding variance component and a residual variance. In amodelwith
additive and epistatic relationship, some of the phenotypic variance
may be explained by either one or the other. Thus, if the relationship
matrices are not very different, small details on thephenotypic data can
determine whether the variance ismore attributed to the additive or to
the epistatic part. If we only use the epistatic part, we can better
highlight the changes in the phenotypic variance thatmaybe explained
by the epistatic relationship in the respective coding. The results are
illustrated in Table 4. Whereas for the additive matrix the residual

variance estimate is constant across the three different codings (not
shown), the estimated residual variance varies strongly when the epistatic
relationship matrix is constructed with different codings. The range of
residual variance is between 0.33 and 0.42, 0.46 and 0.53, 0.35 and 0.54,
and 0.38 and 0.48, for environments 12 4, respectively. On average, the
symmetric coding shows the lowest unexplained variance.

Out-of-sample predictions under varying number of variables
included in the model: Analogously to the experiment of increasing
the number of variables in the model and comparing the interaction
effect estimates, we also compare “out-of-sample” predictions. As pre-
viously described, eRRBLUP models based on 50, 100 or 150 markers
are used to predict a test set of 60 lines by the effects estimated from the
remaining 539 lines. The results for 200 randomly drawn test and
marker sets are summarized in Table 5. An (expected) observation is
that the predictive ability increases with the number of markers. For
instance for environment 1, the predictive ability increases from 0.44 to
0.49 for the original coding, and from 0.42 to 0.49 for the symmetric
coding. This observation is consistent across all coding-environment
combinations.

Moreover, contrarily to the observation we have made for the
interaction effect estimates for which the correlations reduce when
more markers are included into the model, the correlations of
“out-of-sample” predictions ŷ do not show this pattern. The results
rather suggest that there is an increase in the correlation when more
markers are included. For instance, with the data of environment 1,
the correlation between ŷsymm and ŷcentered increases from 0.69 to 0.79
from 50 to 150 markers. This observation is not consistent across all
coding-environment combinations, but an increasing correlation

n Table 3 Pearson correlation of the estimates of the 1225 interaction effects when different marker codings are used and the number of
genotypes used to estimate the effects is reduced from the 599 available lines to 300 or 200, respectively. Only the model with 50 markers
and 1225 interactions is considered. The numbers represent the mean correlation of 50 repetitions with independently, uniformly drawn
markers and lines. The standard error of the estimate was in all cases below 0.025. Colors indicate the underlying data: Environment 1, 2,
3 or 4.

n Table 2 Pearson correlation of the estimates of the 1225 (4950, 11175) interactions when different marker codings are used. The
numbers represent the mean correlation of 50 repetitions with independently, uniformly drawn markers. The standard error of the
estimate was in all cases below 0.004. Colors indicate the underlying data: Environment 1, 2, 3 or 4.
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with the number ofmarkers is themore prevalent case. Overall, we see
that in 7 out of 12 cases, an increasing number of markers leads to an
increase in correlation between different predictions. In one case
–ŷoriginal and ŷsymm for environment 1– no change is observed, and
in four cases, the correlation of the predictions is reduced.

Out-of-sample predictions under varying training set size: Analo-
gously to having reduced the training set size when we have
investigated the correlation of interaction effect estimates, we also
perform a similar experiment for “out-of-sample” prediction. The
results are summarized in Table 6. An obvious and clear pattern is
the reduction in predictive ability when the training set size is
reduced for each coding-environment combination. Similar to
the situation of increasing the number of interactions modeled,
there is no clear pattern visible for the correlations of predictions
obtained with different codings.

DISCUSSION

Interpretability of effect estimates
The illustrated problem of the coding having an impact on the estimates
of interactions in penalized regressions is essential for quantitative
genetics, whereHadamard products are often used tomodel interaction
such as epistasis or gene by environment interaction (Pérez-Rodríguez
et al. 2017; De Coninck et al. 2016; Shang et al. 2015; Sukumaran et al.
2017). Hadamard products of covariance matrices represent exact
reformulations of certain interaction effect models (Jiang and Reif
2015; Martini et al. 2016).

In particular, our observations illustrate oncemore that the size of
interaction effect estimates obtained from WGR should be inter-
preted with caution because a biological meaning is not necessarily
given. On the one hand the data structure (e.g., population stratifi-
cation), and on the other hand the coding may influence effect
estimates. In models penalizing interactions and additive effects,

the coding issue alone can have a drastic impact on the interaction
estimates as illustrated by the consideration of the ranks of interac-
tion effect. Some interactions were among the 4% with the highest
absolute interaction effect with one coding and among the 4% with
the lowest absolute effects with another coding. Moreover, as illus-
trated in Table 2, the impact of variable coding on interaction effect
estimates, increases with the number of modeled interactions. This
observation may not be surprising, since with more interactions
there are more changes when the coding is altered, and a higher
number of variables also provides more flexibility to model certain
effects by other interactions. However, this circumstance illustrates
that the supposed advantage of an increased interpretability when
modeling epistasis effects explicitly instead of “hidden” in an RKHS
approach, may only be marginal. This statement does not doubt that
the overall predictive ability for y may be increased when epistasis
models are used (which has been demonstrated for instance by Ober
et al. (2015), Jiang and Reif (2015), Martini et al. (2016)). In par-
ticular, interaction effects estimates have been used to select impor-
tant interactions and thus improving predictive ability for different
environment conditions by reducing themodel to the “more relevant”
interactions (Martini et al. 2016). However, the biological meaning
of individual interaction effects obtained from an epistatic WGR is
limited (at currently used training set sizes). In this regard, Corollary
2 illustrated that approaches selecting markers first and then model-
ing the interactions between them (Kärkkäinen et al. 2015) may pro-
vide the option to model additive effects as being fixed and to only
penalize interactions effects, thus at least eliminating the coding prob-
lem and potentially facilitating the attempt to assign a biological
meaning to estimated quantities. However, this raises the question
of how to select the variables. Using the additive effect size as a
selection criterion might for instance have the danger of missing
relevant interactions, since some pairs of loci could have small
additive effects but potentially large interaction effects (Mackay
and Moore 2014).

Impact of coding on out-of-sample predictions
Interestingly, the observed effect of a decreasing correlation of interac-
tioneffect estimateswhen thenumberofmarkers is increasing cannot be
observed for the correlation of out-of-sample predictions ŷ. The differ-
ent behavior of the correlations of interaction effect estimates (Table 2)
and out-of-sample predictions (Table 5) illustrates that differentWGRs
may model the sum of their effects similarly, but not necessarily
each summand. The estimates from a global, joint consideration of
all markers will give a good description of the sum of the effects, but
not necessarily of each effect. To increase the biological meaning of

n Table 4 Unexplained variance: Residual variance s2
e estimated

with epistatic relationships based on the three different codings
and for the four different environments. The standard error
returned by regress() was for each estimated residual variance
between 0.045 and 0.064.

Env1 Env2 Env3 Env4

original 0.42 0.51 0.54 0.48
symm 0.33 0.46 0.40 0.38
centered 0.36 0.53 0.35 0.40

n Table 5 Pearson correlation of predictions of a test set consisting of 60 lines when predicted by additive and interaction effect
estimates based on a model including 50, 100 or 150 markers and their pairwise interaction effects. The numbers represent the means
of 200 repetitions with independently, uniformly drawn marker and test sets. The training set is given by the remaining 539 lines. The
standard error of the estimate was in all cases smaller than 0.01. Colors indicate the underlying data: Environment 1, 2, 3 or 4.
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interaction effect estimates obtained from epistatic WGR, training set
sizes will have to increase drastically to make the data more and the
prior assumption less important.

Is there a better and a worse coding?
Out of the three codings compared here, the symmetric coding explains
the phenotypic variation best on the considered data set (Table 4). In the
case of using only the epistatic relationship, this has also been reflected
by showing the highest predictive ability when all markers were used
(Martini et al. 2017). Moreover, Santantonio et al. (2018) also observed
a slightly improved predictive ability for the symmetric coding on a
different data set. In this work, in which we modeled additive and
epistatic effects, and restricted the number of markers, no clear supe-
riority of one or the other coding was observed. The results for the case
of 150 markers presented in Table 5, might be interpreted as a sign that
for a higher number of markers, the symmetric coding leads to the
higher predictive ability. However, these observations do not provide a
theoretical explanation for why a certain coding should be better than
the other. An earlier theoretical explanation was that the symmetric
coding has the advantage of being independent of the choice of the
reference allele. Since other codings are affected by the choice of which
allele is set as the reference, additional uncertainties may be introduced.
The symmetric coding does not have this additional problem, since
changing the reference allele does not have an impact on the size of the
effect estimate, but only on its sign (Martini et al. 2017).

What certainly has an impact on predictive ability, when several
covariance matrices are used, is how “similar” the matrices are. A good
coding should make the covariance matrices more “different” to allow
them to capture different components of the phenotypic variance. It is
important to note here that this question may sound similar to the
question of orthogonal effect estimate coding, but the level aimed at
is different. Applying the coding proposed by Vitezica et al. (2017) does
not necessarily make the additive G and the epistatic relationship G∘G
orthogonal to each other.

In this regard, we also highlight that we investigated the importance
of coding with respect to the method applied. In particular, the OLS
approach applied to a model with interactions, but also a penalized
regression only penalizing the effect sizes of monomials of highest total
degree, will both provide predictions ŷ, as well as estimated effect sizes
of monomials of highest total degree, which are independent of the
coding. For these methods, these estimates will not depend on whether
an “orthogonal” coding is used. We did not consider how estimates of
dominance effectsmay relate to the estimates of additive effects or other
analogous relations. Contrarily, the topic of orthogonal estimates has
been discussed independently of the method applied afterward, but

more in the context of how the different effects relate to each other.
Thus, both discussions do not coincide.

Epistatic effect models and the Gaussian kernel
Finally,note that it hasbeen reported that aGaussian reproducingkernel
Hilbert space regression (Morota and Gianola 2014) can be interpreted
as a limit of a penalized polynomial regression with increasing total
degree (and all possiblemonomials) (Jiang and Reif 2015). Being a limit
case of a method which is affected by translations of the coding, the
question appears why the Gaussian kernel regression is invariant to
translations of the marker coding (The invariance of the Gaussian
kernel is a direct consequence of being defined on the Euclidean dis-
tance. If two genotypes are translated in the same way, their distance
remains unchanged). It may be interesting from a theoretical point of
view to reconsider the limit behavior of polynomial regression.

Summary
We identified the cause of the coding-dependent performance of
epistasis effectmodels. Our results weremotivated by ridge regression,
but do equally hold for many other types of penalized regressions, for
instance for the ℓ1 penalized LASSO. The fact that the estimated effect
sizes depend on the coding highlights once more that estimated in-
teraction effect sizes should be interpreted with caution with regard to
their biological, mechanistic meaning. In particular, the supposed
advantage of a facilitated interpretability compared to RKHSmethods
may not be given when epistatic whole genome regressions are used.
Moreover, the problem of coding is not only present for marker by
marker interaction, but for anymixedmodel in which interactions are
modeled by Hadamard products of covariance matrices, in particular
also for gene by environment (G x E) models.

Outlook
Thework on hand only addressed coding translations, but not scaling of
markers. It is clear that scaling has an impact on effect estimates due to
changing the penalty factors individually. How to scale markers opti-
mally in an additive effect model is not completely understood and this
investigation may also be extended to the situation of epistasis models.
Moreover, the question on how to make the additive and interaction
effect matrix most different should be addressed in the future.
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n Table 6 Pearson correlation of predictions of a test set consisting of 60 lines when predicted by additive and interaction effect
estimates based on a model including 50 randomly chosen markers and their pairwise interaction effects. The numbers represent the
means of 200 repetitions with independently, uniformly drawn marker and test and training sets (The latter of size 539, 300 or 200). The
standard error was in all cases smaller than 0.022. Colors indicate the underlying data: Environment 1, 2, 3 or 4. The case of a training set
size of 539 is the case of 50 markers in Table 5.
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APPENDIX: PROOFS

Proposition 1. The fact that the SSR remains the same, results from the definition of the polynomials. To see that the coefficients of monomials of
highest total degree D are identical, choose a monomial mðMl1;Ml2; . . . ;MldÞ of the loci l1; . . . ; ld of total degree D of f. Expanding
mð ~Ml1 þ Pl1; ~Ml2 þ Pl2; . . . ; ~Mld þ PldÞ gives the same monomial mð ~Ml1; ~Ml2; . . . ; ~MldÞ as a summand of highest total degree, plus additional
monomials of lower total degree. Thus, the coefficients of monomials of total degree D remain the same. ∎

Corollary 1. Letℱ be the set of polynomials in the variables ðMi;jÞj¼1;...;p across which we look for the oneminimizing the SSRwith respect to our
data (the OLS fit). Let ~ℱ be the polynomials in the variables ð ~Mi;jÞj¼1;...;p. Given the vector Pt , which defines the alternative coding by
~M :¼ M2 1nPt , the definition of ~f in Proposition 1 defines a map

T : ℱ/ ~ℱ

T
�
f
�
Mi;•

�� ¼ ~f
�
~Mi;•

�
:¼ f

�
~Mi;• þ Pt�:

This equation states that~f which is a polynomial in the variables ~Mi;• is defined by the original fwhen we plug in the variables ~Mi;• þ Pt and write
down the expression as a function of ~Mi;•. The SSR can be considered as a function

SSR : ℱ/ℝþ
0

f↦SSRðf ; y;MÞ:

Since f and ~f fit the data in the same way, we have SSRð f ; y;MÞ ¼ SSRð~f ; y; ~MÞ. Thus, for a solution f0 minimizing the SSR across all
polynomials in coding M, ~f 0 minimizes the SSR in coding ~M.∎

Corollary 2. Analogously to the proof of Corollary 1, but with a function SSR2, which is the sum of SSR and the penalty on the coefficients of
monomials of highest degree, which are the same for f and ~f , which implies SSR2ð f ; y;MÞ ¼ SSR2ð~f ; y; ~MÞ.∎

Corollary 3. A special case of Corollary 2, since only the additive effects, that is only the coefficents of monomials of highest total degree are
penalized.∎

Corollary 4. Analogous to Corollary 3.∎
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