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The meniscus plays a crucial role in maintaining knee joint homoeostasis. Meniscal lesions are relatively common in the knee
joint and are typically categorized into various types. However, it is difficult for inner avascular meniscal lesions to self-heal.
Untreatedmeniscal lesions lead tomeniscal extrusions in the long-termand gradually trigger the development of knee osteoarthritis
(OA). The relationship between meniscal lesions and knee OA is complex. Partial meniscectomy, which is the primary method to
treat a meniscal injury, only relieves short-term pain; however, it does not prevent the development of knee OA. Similarly, other
current therapeutic strategies have intrinsic limitations in clinical practice. Tissue engineering technology will probably address
this challenge by reconstructing a meniscus possessing an integrated configuration with competent biomechanical capacity. This
review describes normal structure and biomechanical characteristics of the meniscus, discusses the relationship between meniscal
lesions and knee OA, and summarizes the classifications and corresponding treatment strategies for meniscal lesions to understand
meniscal regeneration from physiological and pathological perspectives. Last, we present current advances in meniscal scaffolds
and provide a number of prospects that will potentially benefit the development of meniscal regeneration methods.

1. Introduction

The meniscus is one of the most commonly damaged areas
of the knee joint, which was once considered a “functionless
remnant of leg muscle origin” [1]. The mean incidence of
meniscal injury in the United States is 66/100,000 [2, 3].
Completely removing the meniscus was the major treatment
for meniscal injuries in 1889, and this treatment prevailed
for nearly 80 years [4]. However, a number of follow-up
radiographic studies from the late 1960s to the 1980s reported
a high frequency of knee osteoarthritis (OA) after total
removal of the meniscus [5–7]. Clinical follow-up results
also showed knee OA in all patients 14 years after partial
meniscectomy [8, 9], which is the current primary method
to treat meniscal injuries.

Menisci play a crucial role maintaining knee joint func-
tion, including transmitting load, absorbing shock, stabilizing
the knee joint, and providing nutrition to the joint [10–14].

It is important to ensure that meniscal integrity maintains
knee joint homeostasis from a surgical treatment strategy
perspective [15–19]. Tissue engineering brings new hope to
restore an intact meniscus with competent function. This
review summarizes meniscal structure and biomechanical
properties, the relationship between meniscal lesions and
the development of knee OA, lesion classifications, and
therapeutic strategies from physiological and pathological
perspectives. We focus on advances in tissue-engineered
meniscal scaffolds and provide some regenerative strategies
that may potentially benefit the development of meniscal
regenerative approaches in the future.

2. Meniscal Structure and
Biomechanical Properties

2.1. Meniscal Anatomy. Menisci are a pair of crescent-shaped
fibrocartilages located at the corresponding femoral condyles

Hindawi Publishing Corporation
Stem Cells International
Volume 2015, Article ID 517520, 13 pages
http://dx.doi.org/10.1155/2015/517520

http://dx.doi.org/10.1155/2015/517520


2 Stem Cells International

Infrapatellar fat pad

Lateral meniscus

Medial meniscus

Patellar ligament

Posterior cruciate ligament

Anterior cruciate ligament

(a)

Anterior insertional ligament
Posterior insertional ligament
Uncalcified fibrocartilage
Calcified fibrocartilage
Bone

Entheses

Meniscus

(b)

Figure 1: Top view of the anatomical meniscus (a): lateral meniscus is “O” shaped, whereas the medial meniscus has a “C” appearance. The
meniscal functional unit (b), including the corresponding anterior and posterior ligaments and entheses. Entheses typically contain ligaments,
uncalcified fibrocartilage, calcified fibrocartilage, and bone.

and tibial plateau, respectively (Figure 1(a)) [20]. The lateral
meniscus covers nearly 80% of the tibial plateau area, whereas
the medial meniscus only covers ∼60% [21]. The geometry of
the meniscus adapts well to the corresponding shape of the
femoral condyle and tibial plateau.The anterior and posterior
insertional ligaments play a critical role in attaching the
menisci firmly, and they fix the meniscus to the tibial plateau
well [22]. Blood vessels and nerves from the surrounding
joint capsule and synovial tissues merely penetrate 10–25%
of the outside of the adult meniscus. Therefore, the meniscus
can be typically classified into three parts according to
vascular and nervous distribution: the outer vascular/neural
area (red-red zone), the inner entirely avascular/aneural area
(white-white zone), and the junctional area (red-white zone)
between the former two regions. The white-white zone does
not self-heal well when damaged [23].

2.2. Meniscal Composition and Cell Characteristics. The
meniscus has a highly heterogeneous extracellular matrix
(ECM) and cell distribution [24–26]. Meniscal ECM com-
ponents are more complex than those of articular cartilage.
Cartilage has a homogeneous ECM composition, mainly
comprised of water (70–80%), collagen (50–75%), and gly-
cosaminoglycans (GAGs) (15–30%) [27]. The distribution of
the meniscal ECM is categorized by region. Collagen type I
accounts for >80% of the composition in the red-red region
by dry weight, and the remaining content comprises < 1%,
including collagen types II, III, IV, VI, and XVIII [14]. Total
collagen content is 70% of the dry weight in the white-white
region, whereas collagen types II and I account for 60% and
40%, respectively. The specific distribution of meniscal ECM
components is shown in Figure 2.

Meniscal cell populations are classified into three types
according to the different regions and cell morphology
(Figure 2) [28]. The outer one-third of the meniscal area is
comprised of fibroblast-like cells, which demonstrate elon-
gated morphology. The inner two-thirds of the meniscal
region mainly contain fibrochondrocytes, which are pre-
dominantly oval to round in appearance. Fusiform cells are
aligned parallel to themeniscal surface in the superficial zone.

2.3. Meniscal Biomechanical Properties. The anatomic geom-
etry of the meniscus is closely associated with its biome-
chanical properties. The meniscal configuration adapts to
the corresponding shapes of the femoral condyles and tibial
plateau, which provide a considerable increase in contact
area in the knee joint [29, 30]. Tensile hoop stress is created
around the circumference when the knee bears an axial
load, and this stress tries to extrude the meniscus out of
the knee joint (Figure 3). However, firm attachment at the
anterior and posterior insertional ligaments helps prevent
extrusion of the meniscus [31, 32]. Thus, intact menisci
occupy the corresponding contact area (60%) between the
femoral condyles and the tibial plateau cartilage, which
significantly reduces stress and protects the tibial cartilage.
In contrast, if the anterior or posterior insertional ligaments
or peripheral circumferential collagen fibers rupture [33], the
load transmission mechanism changes, which damages the
tibial cartilage.

2.4. Meniscal Lesions and Development of Knee OA. Meniscal
lesions are closely associated with the development of knee
OA, and their relationship is complex [34]. Meniscal lesions
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Figure 2: The complex composition of the meniscal cellular and meniscal extracellular matrix (ECM) components. The outer region is the
outer one-third of the meniscus; the inner region is the inner two-thirds of the meniscus; the superficial region is the surface of the meniscus.
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Figure 3: Schematic diagramof themeniscus force-bearingmechanism.Meniscal configuration adapts well to the corresponding shape of the
femoral condyles and the tibial plateau in the knee joint. The axial load force (𝐹) perpendicular to the meniscus surface and horizontal force
(𝑓
𝑟
) are created by compressing the femur (𝐹

𝑓
). 𝐹 rebounds due to the tibial upgrade force (𝐹

𝑡
), whereas the 𝑓

𝑟
leads to meniscal extrusion

radially, which is countered by the pulling force from the anterior and posterior insertional ligaments. Consequently, tensile hoop stress is
created along the circumferential directions during axial compression.

can ultimately lead to knee OA, and knee OA also induces
meniscal tears; therefore, normally configured menisci are
rarely observed in patients with knee OA [35, 36]. An
injured meniscus triggers the synovium to release various
inflammatory cytokines, which induce degenerative changes
in the meniscal matrix. These degenerative changes derived
from early stage tears can gradually develop into meniscal
extrusions that increase the stress on tibial cartilage and
further aggravate the injury [24]. In addition, inflamma-
tory cytokines released into OA joints simultaneously act
on the meniscus and cartilage, as they have similar ECM
components. Therefore, knee OA induced by other diseases
is harmful to the meniscus and triggers similar pathological
changes [25, 26, 37, 38]. Hence, a natural vicious cycle forms
between meniscal lesions and the development of knee OA
(Figure 4).

2.5. Classification of Meniscal Lesions and Therapeutic Strate-
gies. Damage to the meniscus is very common in the knee
joint. Meniscal lesions are typically categorized into distinct
age groups. Meniscal injuries in younger patients (<40
years) are usually caused by trauma or congenital meniscal
diseases, whereas those in older patients (>40 years) tend
to be associated with degenerative tears [39]. In general, all
meniscal lesions can be comprehensively classified into eight
different types according to Casscells classification (Figure 5)
[40]. However, meniscal injuries can simply be classified
clinically into peripheral meniscal lesions and avascular
meniscal lesions.

Orthopedic surgeons commonly perform apartialmenis-
cectomy in cases of unrepairable or degenerative meniscal
injuries [41]. However, this treatment strategy does not
prevent the development of kneeOA.Apartialmeniscectomy
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Figure 4: The interaction between meniscal injury and knee osteoarthritis (OA). Knee mechanics become abnormal when a meniscus is
injured, which leads to increasing stress across adjacent cartilage and subchondral bone.This stress triggers release of inflammatory cytokines,
which further impair the meniscal extracellular matrix (ECM) and accelerate the vicious cycle of knee OA. OA of the knee joint also causes
release of inflammatory cytokines, repeating the vicious cycle.
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Figure 5: Schematic diagram of the eight different types of meniscal lesions according to Casscells classification.

may decrease the contact area between the femoral condyle
and tibial platform [35, 36]. Therefore, meniscal repair and
reconstruction techniques have receivedmuch attention [42].
Younger patients with repairable injuries, such as longitu-
dinal lesions or injuries in the vascular zone, are generally
better candidates for meniscal repair. The types of repair
procedures are inside-out, outside-in, all-inside, and repair

enhancement. In contrast, an increasing number of recon-
struction strategies have been developed to restore menis-
cal function, including meniscal allografts, small intestinal
submucosa (SIS) implants, and autogenous tendon grafts.
Milachowski and Wirth performed the first free meniscal
allograft transplantation in 1984 [43]. Meniscal allograft
transplantation enhances knee function and reduces pain
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significantly in relatively young patients after a short follow-
up [44, 45]. However, whether meniscal allografts provide
long-term protective benefits to the cartilage remains debat-
able, as meniscal allograft transplantations can increase the
risk of disease transmission, decreasematerial properties, and
the allografts can shrink [46]. SIS and autogenous tendon
grafts have not obtained satisfactory results [47, 48].

3. Advances in Meniscal Scaffolds

3.1. The Bioabsorbable Synthetic Polymer Scaffold (Table 1).
Bioabsorbable synthetic polymers, such as polyurethane
(PU), polyglycolic acid (PGA), polylactic acid, and poly (𝜀-
caprolactone) (PCL), are widely used and have played a
key role creating meniscal scaffolds [49]. These polymers
provide several advantages, such as versatility, satisfactory
biomechanical properties, and access to a nearly endless
supply. However, some disadvantages of synthetic polymers
include their hydrophobic properties, lack of bioactivity, and
production of aseptic inflammation or an immune response.

Koller et al. attempted to enhance the bioactivity of
synthetic scaffolds by adding polyethylene terephthalate
(PET) to hyaluronic acid/PCL scaffolds [62]. Their results
demonstrated that scaffolds with PET express more type II
collagen mRNA and secrete more GAGs than those without
PET. It is well known that native meniscal collagen fibers
align circumferentially [11]. Baker and Mauck developed
aligned (AL) scaffolds by electrospinning [63]. Cells in the
AL group displayed an AL morphology, whereas those in
the nonaligned (NA) group took on a polygonal shape. The
biomechanical properties increased in the AL group, as com-
pared to those of theNA scaffolds.Thus, AL scaffolds directed
cell growth and enhanced biomechanical capacity. Similarly,
Fisher et al. used a modified electrospinning approach to
produce circumferentially AL scaffolds [64], and the results
showed that seeding juvenile bovine mesenchymal stem cells
(MSCs) in the scaffolds resulted in circumferential cellular
alignment, similar to that seen in the native meniscus.

Koller et al. used PGA reinforced by bonding with PLGA
(75 : 25) to fabricate a meniscus-like scaffold [62]. Allogenic
meniscal cells were seeded into the scaffolds in vitro for 1
week to replace the medial meniscus in rabbits. The staining
results showed that the regenerated neomenisci were similar
to the native meniscus; however, the neomenisci did not
prevent the tibial articular cartilage from degenerating, and
cartilage degeneration was less severe in the cell-seeded
group than that in the nonseeded group. Chiari et al.
used hyaluronic acid and PCL in scaffolds to repair total
and partial meniscal defects in sheep [65]. These scaffolds
were not seeded with cells before implantation. The implant
retained its morphology and remained in position for 6
weeks. The histological results showed that the implants
and native menisci were integrated, and a large number of
blood vessels formed to firmly bond the capsule, which was
covered by synovial-like tissue. However, body weight led to
extrusion and unavoidable degeneration of the cartilage in
both the total and partial transplantation groups but cartilage
degeneration was slightly less than that in the empty control
group.

The novel biodegradable Actifit implant (Orteq Sports
Medicine, London,UK) is an acellularmeniscal scaffold com-
posed of PU (20%) and PCL (80%) [66]. The interconnected
pore structure enhances vessel in-growth and regeneration of
the meniscus from the meniscal wall. A study using Actifit
during partial meniscectomy repair in 13 skeletally mature
sheep revealed regenerated tissue penetration 6–12 months
after surgery [58]. Actifit has also been applied clinically to
treat partial meniscal lesions. As results, dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) showed
successful tissue growth into the scaffold after 3 months in
35 of 43 (81.4%) patients [67]. In contrast, 43 of 44 (97.7%)
patients revealed integration with the native meniscus 12
months after surgery, and the histological results showed con-
tinuous tissue regeneration. Baynat et al. demonstrated that
normal chondrocytes and fibrochondrocytes of 18 patients
penetrated into the substitute 1 year post-Actifit implantation
[61]. All patients were restored to their daily activities, and
nine returned to their previous sporting activity level 2 years
after surgery. Moreover, MRI showed no damage to the
substitute or degeneration of adjacent cartilage.

4. Absorbable Scaffolds Derived from
Biological Components (Table 2)

Absorbable scaffolds derived from biological components
are very promising. They can be classified as ECM-related
scaffolds and biological scaffolds.

Stone et al. reported on copolymeric collagen-based
scaffolds derived from bovine Achilles tendon to repair
subtotalmeniscectomy in dogswithout seeding cells [79].The
implanted group showed substantial meniscus-like regen-
eration in 15 of 24 (63%) joints, compared to 3 of 12
(25%) regenerated menisci in nonimplanted control joints.
In contrast, joint gross appearance scores and India ink
test scores demonstrated no significant differences. Based
on these results, the collagen meniscus implant (CMI) was
applied without seeding cells in a multicenter clinical trial
[80]. CMIs were implanted in patients with chronic and acute
meniscal injuries and compared with a partial meniscectomy
group. Biopsies 1 year after implantation showed that some
meniscal-like tissues had regenerated and integrated well
with the host meniscal rim in the chronic group. These
patients regained significantly more mobility and required
fewer reoperations than those in the control group. The
authors concluded that the improved clinical outcomes could
be a result of regenerated meniscal-like tissues. However,
CMIs did not improve the clinical outcomes of patients with
acute meniscal injuries.

Monllau et al. reported the clinical outcomes of implant-
ing CMIs after a minimum 10-year follow-up [74]. Twenty-
five of their patients with a CMI substitute reported remark-
able pain relief and functional improvement without any
degenerative knee joint diseases in most cases. However,
this was a nonrandomized trial and lacked a control group,
which restricts the credibility of the results. Zaffagnini et
al. conducted a cohort study during a minimum 10-year
follow-up [75] and obtained similar results to the former
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case report. Long-term randomized controlled trials on larger
populations must be carried to confirm the benefits of CMI
substitution.

Tan et al. found that dedifferentiation of rat or human
meniscal fibrochondrocytes can be reversed using chon-
droitin-6-sulfate- (C6S-) coated rather than collagen I/II
surfaces during expansion of the monolayer [72, 81]. They
demonstrated upregulation of collagen II and aggrecan gene
expression, as well as proteoglycan production.Those authors
fabricated a C6S scaffold and explored the three-dimensional
(3D) conditions and oxygen tension effect on a cell-C6S
scaffold construct. The results showed that the 3D cultures
under hypoxic conditions strengthen fibrochondrocyte red-
ifferentiation capacity.

Silks are a group of fibrous proteins [82] widely used
in tissue engineering for chondrogenesis, osteogenesis, liga-
ment engineering, and other aspects. Silks possess superior
biomechanical capabilities, versatile processability, and good
biocompatibility and controlled degradability [83]. Mandal
et al. used silk fibroin from Bombyx mori silkworm cocoons
to recapitulate a multilayered, multiporous scaffold that
mimicked nativemeniscal architecture andmorphology [76].
Human primary fibroblasts were seeded into the outside of
the scaffold, and human primary chondrocytes were seeded
into the inside to duplicate normalmeniscal cell distributions.
The results showed that the constructs increased cellularity
and ECM content under chondrogenic culture conditions.
In addition, the compressive modulus and tensile modulus
increased with time; however, they remained inferior to
those of the native meniscus. Shortly thereafter, the same
authors used human bone marrow stem cells to construct
tissue-engineeredmenisci with this multilayered scaffold and
obtained similar results [77].

Bacterial cellulose (BC) is a polysaccharide synthesized
by the Gluconacetobacter xylinus bacterium [78]. BC has
numerous advantages in tissue engineering, such as superior
biomechanical capacity, high hygroscopicity and crystallinity,
and good biocompatibility. BC has been applied to blood,
vessel, cartilage, and bone tissue engineering, as well as to
treat burns [84]. Bodin et al. compared the biomechanical
properties of BC gel to collagen material and a pig meniscus
[85]. The compression modulus of the BC gel at 10% strain
(1.8 kPa) was five times better than that of the collagen
meniscal implant (0.23 kPa); however, it was inferior to the
native pig meniscus (21 kPa). In another study, Mart́ınez et
al. fabricated a microchanneled BC scaffold seeded with 3T6
mouse fibroblasts and compared dynamic compression to
that of a static culture [78]. The results showed that the
microchannel structure directed the growth of 3T6fibroblasts
and secreted AL collagen fibers. Similarly, dynamic stimula-
tion improved collagen production.

5. Hydrogel Scaffolds

Hydrogels have been used as meniscal scaffolds due to
their noncytotoxic and insoluble features. Hydrogels are
made of poly N-isopropyl acrylamide or alginate [14]. These
materials can absorb large quantities of water (>90%), which

determines their physical properties but they also exhibit
great versatility, which can be beneficial for evenly mixing
seed cells, loading growth factors, or creating appropriate
morphology [86]. However, hydrogel scaffolds have poor
tensile capacity and bioactivity.

Polyvinyl alcohol-hydrogel (PVA-H) has excellent vis-
coelastic properties and biocompatibility. Kobayashi et al.
developed PVA-H artificial menisci to replace defective
menisci.Mechanical tests confirmed that the PVA-H artificial
meniscus has similar mechanical properties to those of the
native meniscus [87]. A PVA-H artificial meniscus implan-
tation group revealed normal articular cartilage conditions
1, 1.5, and 2 years after surgery in rabbit studies [88–90],
and no wear or disruption of the PVA-H artificial menisci
was observed. However, knee OA was detected after 1 year
and continued to progress in the meniscectomy group.These
results suggest that PVA-H artificial menisci are as competent
as the native meniscus and have potential future clinical
applications.

Grogan et al. constructed a 3D methacrylated gelatin
(GelMA) meniscal scaffold using projection stereolithog-
raphy that mimicked native collagen alignment [91]. The
authors chose human avascular-zone meniscal cells to seed
into the scaffolds for 2 weeks with a chondrogenic culture
and then implanted the scaffolds into defective menisci.
The 3-week postoperative results confirmed that the GelMA
scaffolds were nontoxic and directed cell-aligned growth.
Sarem et al. fabricated macroporous multilayered gelatin
(G)/chitosan (Cs) scaffolds [92, 93]. Cs in conjunction with
G not only enhances the bioactivity of Cs but also improves
water retention and oxygen and nutrient transfer because
of the hydrophilicity of G [94]. Ishida et al. investigated
platelet-rich plasma (PRP) combined with gelatin hydro-
gel scaffolds to enhance meniscal regeneration [95]. PRP
can be prepared easily from a patient’s blood by centrifu-
gation and is a rich source of growth factors, such as
platelet-derived growth factor, insulin-like growth factor-
1, and transforming growth factor 𝛽-I (TGF 𝛽-I) [96].
The findings showed that PRP enhances regeneration of
a defective avascular meniscus. Similarly, Simson et al.
tested bone marrow (BM) and chondroitin sulfate (CS) to
improve the regenerative capacity of hydrogel scaffolds [97].
Their results showed that BM improves fibrochondrocyte
viability, proliferation, and migration, whereas CS enhances
adhesive strength and matrix production. In another study,
Ballyns et al. constructed an anatomically shaped menis-
cus using alginate and investigated the interaction between
media-mixed and engineered tissue [98]. The results con-
firmed that adequate mixing improves biomechanical prop-
erties and the accumulation of matrix in the engineered
constructs.

6. Decellularized Meniscal Scaffolds

Decellularized meniscal scaffolds not only provide a suitable
microenvironment for cells but also preserve appropriate
meniscal geometry. However, some challenges should be
addressed to obtain ideal meniscal scaffolds.
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It is difficult for seed cells to evenly penetrate a decellular-
ized meniscus. A high concentration of bone morphogenetic
protein-2 (BMP-2), a member of the TGF-𝛽 superfamily,
stimulates MSC differentiation and can affect cell migration.
Minehara et al. used recombinant human bone morpho-
genetic protein-2 (rhBMP-2) loading in solvent-preserved
human menisci to induce migration of chondrocytes into
decellularizedmenisci [99].The results showed that rhBMP-2
induces migration of chondrocytes and improves proteogly-
can production in vitro. The seed cell distribution challenge
could be addressed in vitro by taking full advantage of these
kinds of exogenous chemokines.

Sandmann et al. used sodium dodecyl sulfate (SDS) as
the main ingredient to decellularize human menisci [100],
and the results showed that this method retains collagen
structure. The results of a biomechanical assessment using
a repetitive ball indentation test (stiffness, N/mm; residual
force, N; relative compression force, N) on the processed
tissue were similar to those of the intact meniscus, and the
histological results showed no residual cells. Stapleton et al.
attempted a complicated decellularized procedure consisting
of freeze-thaw cycles, SDS, and disinfection using peracetic
acid [101] to obtain decellularized scaffolds. As a result,
the scaffolds demonstratedwell-preserved structural proteins
and biomechanical properties and were not cytotoxic.

Maier et al. used a self-developed enzymatic process
to treat ovine menisci [102]. Their results suggested that
native cells and immunogenic proteins (MHC-1/MHC-2) are
completely removed while retaining significant biomechani-
cal properties. Stabile et al. applied concomitant decellular-
ization and oxidation processes to improve porosity [103].
Porosity of the decellularized scaffolds increased to some
extent, and the scaffolds were not cytotoxic. In addition,
Azhim et al. used a neoteric sonication decellularization
system to produce decellularized bovine meniscal scaffolds
[104]. These scaffolds had good biomechanical properties,
similar to those of native meniscus, and the immunogenic
cell components were removed. Nevertheless, the sonication
treatment significantly changed the native ECM components
and collagen fiber arrangement.

7. Future Prospects for Meniscal Regeneration

Future tissue-engineered meniscus strategies should focus
on constructing an entire functional unit to maintain knee
joint homoeostasis. Constructing an inferior biomechanical
meniscus prevents proper knee joint function. Messner and
Gao used menisci and their insertions into bone (entheses)
to represent a functional unit [20], containing a meniscal
body with anterior and posterior ligaments and entheses
(Figure 1(b)). This unit may suggest the future development
of a tissue-engineered meniscus.

Three-dimensional printing could benefit the develop-
ment of ideal meniscal scaffolds with biomimetic structure
and a beneficial microenvironment for cell growth. Lee et al.
fabricated 3D-printed novel human meniscal scaffolds that
recapitulated principal collagen alignment using PCL loaded
with human connective tissue growth factor and TGF-𝛽3
[105].

Meniscal anatomical requirements for orthopedic appli-
cations could be addressed by advances in imaging. Ballyns et
al. generated a tissue-engineered meniscus for the first time
based onmeniscal anatomic geometry using microcomputed
tomography and MRI [106]. Thus, a perfect combination
of the meniscal unit, 3D printing, and medical imaging
technology could direct future development of meniscal
tissue engineering to achieve knee joint homoeostasis [107].

8. Conclusions

The study of scaffolds is the basis for meniscal tissue engi-
neering. Nevertheless, a concerted effort must be made to
explore other options, including seed cells and appropriate
biological and biomechanical stimulation. It is insufficient
to prepare scaffolds that are merely biomimetic to meniscal
composition and structure. The key issue is how to obtain
the excellent biomechanical function of the native meniscus.
Future engineered menisci should combine these advantages
to achieve an individualized tissue similar to that of the native
meniscus.
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[84] H. Bäckdahl, G. Helenius, A. Bodin et al., “Mechanical proper-
ties of bacterial cellulose and interactions with smooth muscle
cells,” Biomaterials, vol. 27, no. 9, pp. 2141–2149, 2006.

[85] A. Bodin, S. Concaro, M. Brittberg, and P. Gatenholm, “Bacte-
rial cellulose as a potential meniscus implant,” Journal of Tissue
Engineering and Regenerative Medicine, vol. 1, no. 6, pp. 406–
408, 2007.

[86] K. S. Soppimath, T. M. Aminabhavi, A. M. Dave, S. G. Kumbar,
and W. E. Rudzinski, “Stimulus-responsive ‘smart’ hydrogels as
novel drug delivery systems,” Drug Development and Industrial
Pharmacy, vol. 28, no. 8, pp. 957–974, 2002.

[87] M. Kobayashi, J. Toguchida, and M. Oka, “Development of an
artificial meniscus using polyvinyl alcohol-hydrogel for early
return to, and continuance of, athletic life in sportspersons with
severemeniscus injury. I: mechanical evaluation,”TheKnee, vol.
10, no. 1, pp. 47–51, 2003.

[88] M. Kobayashi, J. Toguchida, and M. Oka, “Development of an
artificial meniscus using polyvinyl alcohol-hydrogel for early
return to, and continuance of, athletic life in sportspersons with
severe meniscus injury. II: animal experiments,” The Knee, vol.
10, no. 1, article 53, 2003.

[89] M. Kobayashi, “A study of polyvinyl alcohol-hydrogel (PVA-
H) artificial meniscus in vivo,” Bio-Medical Materials and
Engineering, vol. 14, no. 4, pp. 505–515, 2004.



Stem Cells International 13

[90] M. Kobayashi, Y.-S. Chang, and M. Oka, “A two year in
vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial
meniscus,” Biomaterials, vol. 26, no. 16, pp. 3243–3248, 2005.

[91] S. P. Grogan, P. H. Chung, P. Soman et al., “Digital micromirror
device projection printing system for meniscus tissue engineer-
ing,” Acta Biomaterialia, vol. 9, no. 7, pp. 7218–7226, 2013.

[92] M. Sarem, F. Moztarzadeh, andM. Mozafari, “How can genipin
assist gelatin/carbohydrate chitosan scaffolds to act as replace-
ments of load-bearing soft tissues?”Carbohydrate Polymers, vol.
93, no. 2, pp. 635–643, 2013.

[93] W. W. Thein-Han, J. Saikhun, C. Pholpramoo, R. D. K. Misra,
and Y. Kitiyanant, “Chitosan-gelatin scaffolds for tissue engi-
neering: physico-chemical properties and biological response
of buffalo embryonic stem cells and transfectant of GFP-buffalo
embryonic stemcells,”ActaBiomaterialia, vol. 5, no. 9, pp. 3453–
3466, 2009.

[94] M. Sarem, F. Moztarzadeh, M. Mozafari, and V. P. Shas-
tri, “Optimization strategies on the structural modeling of
gelatin/chitosan scaffolds to mimic human meniscus tissue,”
Materials Science & Engineering C: Materials for Biological
Applications, vol. 33, no. 8, pp. 4777–4785, 2013.

[95] K. Ishida, R. Kuroda, M. Miwa et al., “The regenerative effects
of platelet-rich plasma on meniscal cells in vitro and its in
vivo application with biodegradable gelatin hydrogel,” Tissue
Engineering, vol. 13, no. 5, pp. 1103–1112, 2007.

[96] Y. Zhu, M. Yuan, H. Y. Meng et al., “Basic science and clinical
application of platelet-rich plasma forcartilage defects and
osteoarthritis: a review,”Osteoarthritis and Cartilage, vol. 21, no.
11, pp. 1627–1637, 2013.

[97] J. A. Simson, I. A. Strehin, B. W. Allen, and J. H. Elisseeff,
“Bonding and fusion of meniscus fibrocartilage using a novel
chondroitin sulfate bone marrow tissue adhesive,” Tissue Engi-
neering, Part A, vol. 19, no. 15-16, pp. 1843–1851, 2013.

[98] J. J. Ballyns, T. M. Wright, and L. J. Bonassar, “Effect of
media mixing on ECM assembly and mechanical properties of
anatomically-shaped tissue engineeredmeniscus,”Biomaterials,
vol. 31, no. 26, pp. 6756–6763, 2010.

[99] H. Minehara, K. Urabe, K. Naruse et al., “A new technique for
seeding chondrocytes onto solvent-preserved human meniscus
using the chemokinetic effect of recombinant human bone
morphogenetic protein-2,” Cell and Tissue Banking, vol. 12, no.
3, pp. 199–207, 2011.

[100] G. H. Sandmann, S. Eichhorn, S. Vogt et al., “Generation and
characterization of a human acellular meniscus scaffold for
tissue engineering,” Journal of Biomedical Materials Research—
Part A, vol. 91, no. 2, pp. 567–574, 2009.

[101] T. W. Stapleton, J. Ingram, J. Katta et al., “Development and
characterization of an acellular porcinemedial meniscus for use
in tissue engineering,” Tissue Engineering: Part A, vol. 14, no. 4,
pp. 505–518, 2008.

[102] D.Maier, K. Braeun, E. Steinhauser et al., “In vitro analysis of an
allogenic scaffold for tissue-engineered meniscus replacement,”
Journal of Orthopaedic Research, vol. 25, no. 12, pp. 1598–1608,
2007.

[103] K. J. Stabile, D. Odom, T. L. Smith et al., “An acellular, allograft-
derived meniscus scaffold in an ovine model,” Arthroscopy, vol.
26, no. 7, pp. 936–948, 2010.

[104] A. Azhim, T. Ono, Y. Fukui, Y. Morimoto, K. Furukawa, and T.
Ushida, “Preparation of decellularized meniscal scaffolds using
sonication treatment for tissue engineering,” in Proceedings of

the 35th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC ’13), pp. 6953–6956,
IEEE, Osaka, Japan, July 2013.

[105] C. H. Lee, S. A. Rodeo, L. A. Fortier, C. Lu, C. Erisken, and J. J.
Mao, “Protein-releasing polymeric scaffolds induce fibrochon-
drocytic differentiation of endogenous cells for knee meniscus
regeneration in sheep,” Science Translational Medicine, vol. 6,
no. 266, Article ID 266ra171, 2014.

[106] J. J. Ballyns, J. P. Gleghorn, V. Niebrzydowski et al., “Image-
guided tissue engineering of anatomically shaped implants
via MRI and micro-CT using injection molding,” Tissue
Engineering—Part A, vol. 14, no. 7, pp. 1195–1202, 2008.

[107] U.G. Longo, G. Rizzello, A. Berton et al., “A review of preclinical
and clinical studies using synthetic materials for meniscus
replacement,” Current Stem Cell Research &Therapy, vol. 8, no.
6, pp. 438–443, 2013.


