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Abstract

Through their pleiotropic actions, statins, fibrates, thiazolidinediones and resveratrol
can target multiple mechanisms involved in sepsis. Their actions on mitochondrial
function are of interest in a pathological state where bioenergetic failure may play a
key role in the development of organ dysfunction. We review these four drug
groups as potential adjunctive therapies in sepsis with a particular focus upon
mitochondria. Systematic review of clinical and experimental trials was done with a
literature search using the PubMed database. Search terms included statins, fibrates,
thiazolidinediones, resveratrol, mitochondria, sepsis, peroxisome proliferator-activated
receptors, inflammation, oxidative stress and organ dysfunction. With the exception
of statins, most of the compelling evidence for the use of these agents in sepsis
comes from the experimental literature. The agents all exert anti-inflammatory and
anti-oxidant properties, plus protective effects against mitochondrial dysfunction and
stimulation of mitochondrial biogenesis. Improved outcomes (organ dysfunction,
survival) have been reported in a variety of sepsis models. Notably, positive outcome
effects were more commonly seen when the agents were given as pre- rather than
post-treatment of sepsis. Statins, fibrates, thiazolidinediones and resveratrol prevent
sepsis-induced injury to organs and organelles with outcome improvements. Their
effects on mitochondrial function may be integral in offering this protection.
Definitive clinical trials are needed to evaluate their utility in septic patients or those
at high risk of developing sepsis.
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Review
Introduction

Severe sepsis is characterized by a dysregulated systemic inflammatory response to in-

fection resulting in acute multiple organ dysfunction (MOF) and a high mortality rate.

The pathophysiology of sepsis-induced MOF remains incompletely understood but a

growing body of evidence supports impairment of cellular oxygen utilization as a key

mechanism [1-4]. Considerable enthusiasm has recently surrounded the potential bene-

ficial effect of fibrates, thiazolidinediones (TZD) and, particularly, statins as adjunctive

therapies for sepsis [5-9]. Some experimental studies also suggest a role for resveratrol

[10-14]. However, most of these positive outcomes have been generated in laboratory
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models of sepsis such as caecal ligature and puncture or injection of endotoxin. The dis-

crepancies observed to date between human and experimental studies may relate to the

difficulty in reproducing the complexity of human sepsis and/or the use of doses far in

excess of those currently used in clinical practice. Prospective clinical trial data are in-

sufficient, particularly for fibrates and TZDs [15-17], and non-existent for resveratrol.

Statins, fibrates and TZDs modulate lipid and glucose metabolism. Resveratrol, a phe-

nol constituent of red wine, is not available as a stand-alone medication but has been

reported to slow down carcinogenesis, cardiovascular disease and ischaemic injury [18].

All four classes exert pleiotropic effects through mechanisms that remain incompletely

understood [6,8,18,19]. Immune-inflammatory modulation is a common property; how-

ever, several authors have also underlined effects on mitochondrial function [14,20-23].

This may be highly pertinent to critical illness as bioenergetic dysfunction is implicated

in the pathophysiology of sepsis-induced multi-organ failure [4].

In view of this burgeoning interest, it is timely to summarize the main recognized

mechanisms of these agents, including their actions on mitochondria, and to offer a

critical review of currently available experimental and clinical data.

Modes of action

Statins In addition to lowering low-density lipoprotein (LDL) cholesterol, statins ex-

hibit a wide range of other biological effects. Statins inhibit 3-hydroxy-3-methyl-glutaryl-

coenzymeA (HMGCoA) reductase, a key enzyme in the mevalonate pathway. Mevalonate

is a precursor for cholesterol, ubiquinone and isoprenoids (Figure 1) [24]. Thus, statins

Figure 1 Schema showing mechanisms involved in mitochondrial dysfunction. During sepsis and
potential points of modulation by statins, PPAR agonists and resveratrol. ROS, reactive oxygen species; NO,
nitric oxide; PPAR, peroxisome proliferator-activated receptor; CoQ10, coenzyme Q10, ubiquinone.
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can decrease all three end products but, as a consequence of enzyme affinity, mainly re-

duce cholesterol production.

Ubiquinone is both an electron carrier within the mitochondrial electron transport

chain that generates ATP and a powerful anti-oxidant [21]. While several clinical and

experimental studies have reported that statins decreased the ratio of plasma ubiquin-

one to LDL (its natural carrier), its effects on tissue ubiquinone levels are more contro-

versial. It may be an important mechanism underlying statin-induced myopathy [25].

Isoprenoids (farnesyl pyrophosphate and geranyl pyrophosphate) serve as lipid

attachments and activators for various signalling molecules such as G-protein and

GTP-binding protein (Ras and Ras-like protein) [24], which have been associated with

reactive oxygen species (ROS) production and activation of pro-inflammatory pathways

(reviewed by Blanco-Colio et al. [26]). The pleiotropic effects of statins have been asso-

ciated with decreased levels of these small proteins [27]. Both in vivo and in vitro stud-

ies show that statins can induce cellular accumulation of endothelial nitric oxide

synthase, inhibit expression of adhesion molecules and chemokines that recruit inflam-

matory cells, inhibit expression of pro-coagulant factors, induce production of anti-

coagulant substances, increase apoptosis, decrease oxidative stress, and modulate the

adaptive immune system (reviewed by Terblanche et al. [8]). In a volunteer study, pre-

treatment with simvastatin prior to lipopolysaccharide (LPS) attenuated the upregula-

tion of Toll-like receptor 2 and 4 surface expression on circulating monocytes [28].

How many of these effects are related to lowering LDL cholesterol remains uncertain.

Of note, squalestatin, a selective inhibitor of the synthesis of sterol derivatives, has no

anti-inflammatory effect compared to statins [24].

Statins can affect skeletal muscle mitochondria in vitro by inhibiting respiratory chain

complexes and oxidative capacity [29,30], decreasing mitochondrial membrane poten-

tial [30], uncoupling oxidative phosphorylation [30], inducing mitochondrial swelling

and apoptosis [30] and decreasing mitochondrial density [31] (Figure 1). However, no

clear relationship has been documented between a decrease in ubiquinone and alter-

ations in mitochondrial function. Hydrophilic statins (e.g. pravastatin) are much less

‘mitotoxic’ compared to lipophilic statins such as cerivastatin, fluvastatin, atorvastatin

and simvastatin [30]. It is noteworthy that the toxic effects of atorvastatin are mostly

observed with doses that are much higher than those prescribed to patients. The de-

layed metabolism of statins seen in critical illness may result in very high plasma levels

so the risk of toxicity would potentially increase; however, this would be difficult to dis-

tinguish in an unstable patient with concurrent multi-organ failure [32]. As discussed

later, these ‘toxic’ effects may, paradoxically, offer some protective effects during sepsis.

Recently, Bouitbir et al. reported that statin-treated patients who underwent cardiac

surgery had decreased oxidative stress, enhanced oxidative capacity, and a marked aug-

mentation of mRNA expression of the peroxisome proliferator-activated receptor

(PPAR) gamma co-activators 1α (PGC-1α) and 1β (PGC-1β). PGC-1α is the main regu-

lator of mitochondrial biogenesis, i.e. new protein turnover [20]. This study raises new

insights regarding the action of statins, but the clinical impact remains to be explored.

Fibrates and thiazolidinediones PPARs are ligand-activated transcription factors that

belong to the nuclear receptor superfamily. Once activated by ligands, PPARs form a
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heterodimer with the retinoic X receptor (RXR) that allows recruitment of a set of

co-activators or co-repressors [6,33]. This heterodimer binds to the PPAR response

element within the promoter region of its target genes, provoking either expression or

repression. PPAR inhibits expression of pro-inflammatory cytokines through direct or

indirect actions on pro-inflammatory transcription factors (NF-κB, STAT, AP-1) [6,34].

Fibrates are synthetic ligands of peroxisome proliferator-activated receptor-α (PPAR-α).

Fibrates are used for treating dyslipidaemias, lowering both triglyceride and LDL choles-

terol levels. They also ameliorate insulin resistance and glucose intolerance [5,35]. The

PPAR-α receptor is expressed mainly in brown fat and liver but has been found in many

other cells [5,36].

TZDs are synthetic ligands of peroxisome proliferator-activated receptor-γ (PPAR-γ).

While most of their effects appear dependent upon PPAR activation, TZDs could also

exert anti-inflammatory effects in macrophages via a PPAR-independent pathway [37].

Thiazolidinediones are drugs used for managing type II diabetes mellitus and the meta-

bolic syndrome. Rosiglitazone, pioglitazone, troglitazone, rivoglitazone and ciglitazone

are members of this therapeutic class. However, most have been withdrawn from the

market due to adverse effects on heart. The PPAR-γ receptor is highly expressed in adi-

pose tissue and, to a lesser extent, in intestine, immune and stem cells [6]. Activation

of these receptors decreases insulin resistance and modifies lipid storage. A time-

dependent downregulation of PPAR-γ expression has been reported in experimental

sepsis that is partially restored by TZDs [34].

After various inflammatory insults, in vivo and in vitro studies have shown that both

fibrates and TZDs improved endothelial dysfunction [38,39], inhibited expression of ad-

hesion molecules and inflammatory cytokines [40,41] and decreased oxidative stress

and nitric oxide production [39,42]. Fibrates can inhibit coagulation [38,43] and may

improve haemorheologic parameters [44]. TZDs increase plasma adiponectin levels

[45] and may initiate macrophage apoptosis via caspase-3 activation [46].

Both drug groups also impair mitochondrial function, at least in vitro, via direct inhib-

ition of mitochondrial respiration (mainly complex I) [47], by membrane depolarization

[48] and through increases in uncoupled respiration [49,50] (Figure 1). At lower doses,

TZDs enhanced mitochondrial potential and promoted lymphocyte survival [51]. Several

studies report that PPAR-γ agonists induce mitochondrial biogenesis by mechanisms that

are not fully understood but could be mediated, at least in part, via activation of PGC-1α

[52,53]. None of these studies have been carried out in sepsis, where early activation of

mitochondrial biogenesis has been associated with survival [54].

Statins, fibrates and TZDs can act synergistically to affect some of the pathways pre-

viously described [55]. For example, patients with cardiovascular disease showed addi-

tive anti-inflammatory effect when statins were given in combination with PPAR-γ

agonists [56].

Resveratrol Resveratrol is a natural phenol present in many plants but especially abun-

dant in red grapes, peanuts and mulberries [18]. It exerts beneficial effects in experi-

mental sepsis when administered either before or shortly after the septic insult. The

mechanisms involved are not yet clearly defined. Recent research has demonstrated

that resveratrol activates the silent mating type information regulator 2 homolog 1
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(SIRT1), which is a key regulator of cellular defenses and cell survival in response to

stress [57]. Of specific interest in sepsis is the interaction between SIRT1 and mito-

chondrial biogenesis [23,57]. Resveratrol has also been shown to downregulate the pro-

inflammatory response [14,58] and to have anti-oxidant properties [11,57].

Experimental and clinical evidence of statins, fibrates and thiazolidinedione effects in sepsis

Statins In a murine model of sepsis, simvastatin pre-treatment markedly improved sur-

vival times (median 128 h versus 28 h, p < 0.005) [59]. Even treatment commencing

after the onset of sepsis improved survival times, though less impressively (median 37 h

versus 23 h for placebo, p < 0.05) [60]. In another study, 3 days of simvastatin pre-

treatment improved survival and reduced sepsis-induced acute kidney injury by direct

effects on the renal microvasculature, reversal of tubular hypoxia and a decrease in sys-

temic inflammation [61]. In a rat model of peritonitis, 30 days' pre-treatment with high

doses of simvastatin or atorvastatin prevented hepatic mitochondrial enzyme dysfunc-

tion; however, no improvement was seen in liver dysfunction while mortality differ-

ences were not reported [62].

Several observational studies have reported significant survival improvement in large

cohorts of patients on statin therapy who suffer from bacterial [63-66] or viral infec-

tions [67]. However, some authors argue this simply represents a healthy user effect

[68,69]. An association with harm was even reported in a study of infections post-

stroke [70]. Four double-blind, placebo-controlled, randomized clinical studies have

been performed to examine the impact of either introducing [71-73] or continuing [74]

statin therapy in patients with sepsis. Statin treatment was not associated with a signifi-

cant decrease in pro-inflammatory markers compared to placebo [71,73,74]. In a differ-

ent context, healthy volunteers randomized to statin pre-treatment and subsequently

challenged with inhaled LPS manifested less pulmonary and systemic inflammation

[75]. While one study showed a reduction in the progression to severe sepsis in patients

taking statins, albeit with a similar rate of intensive care admissions between the statin

and control groups [72], this was not confirmed by other studies [71,73,74]. Finally,

stopping statin therapy in septic patients was not associated with worse outcomes [74].

As mentioned previously, statins should be used with caution in critically ill patients

due to their unpredictable pharmacokinetics and the amplifying effect related to co-

administration of drugs with cytochrome P450 inhibitory effects [32]. Opinions on the

utility of statins in sepsis thus remain mixed.

Fibrates A few studies have reported improved outcomes following fibrate therapy in

experimental sepsis [38,76]. For example, influenza-infected mice pre-treated with gem-

fibrozil had a 54% reduction in mortality [76]. In patients with chronic hepatitis C and

hyperlipidaemia, bezafibrate given as adjunctive therapy decreased plasma virus titres

and improved liver dysfunction [16]. Fibrates also prevented muscular atrophy [76], a

major problem occurring with sepsis. Protective mechanisms need to be elucidated but

a decrease in atrogen and myostatin expression has been shown with fibrates therapy

in a rat model of chronic inflammation [77].

Children with severe sepsis had decreased leukocyte PPAR-α expression, and this was

related to disease severity [78]. In a randomized controlled trial in children with severe

burn injury, in which condition mitochondrial dysfunction has been previously
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observed [79], mitochondrial biogenesis and oxidative phosphorylation were improved

with fenofibrates therapy commenced within a week post-burn [35].

Thiazolidinediones In different models of sepsis, pre- or post-treatment with TZD im-

proved outcomes, blunted pro-inflammatory cytokine production and reduced organ

injury [34,42,45,80,81]. A recent study in endotoxic mice revealed protection from the

PPAR-γ agonist, rosiglitazone with less reduction in mitochondrial content, improved

cardiac dysfunction and better survival rates [82]. On the other hand, the PPAR-α

agonist WY-14643 offered no protection. Pioglitazone given to healthy volunteers after

endotoxin challenge did not affect plasma levels of TNFα, IL-6 levels or the adhesion

molecule VCAM ([83] abstract). An improvement in blood pressure was reported in

one study investigating ciglitazone administration following caecal ligation and punc-

ture in rats, but there was no effect on survival [34]. No observational clinical trials are

available with TZDs; however, users appear to be at higher risk of pneumonia or lower

respiratory tract infection [84]. The risk of heart attack described with this drug has

discouraged its widespread use and thus the possibility of conducting large-scale obser-

vational studies [85]. Several studies reported a significant reduction in weight loss with

TZDs following different types of infectious challenge [42,86,87]. This observation has

not been specifically studied but TZDs block activation of NF-κB [34], a main activator

of muscle wasting [88], in addition to their effects on stimulating PGC-1α and mito-

chondrial biogenesis [89].

The role of TDZs is not limited to bacterial infection. In a randomized placebo-

controlled trial of 140 patients suffering from non-severe malaria, Boggild et al. re-

ported in faster blood parasite clearance and a more rapid decrease in inflammatory

biomarker levels (IL-6 and monocyte chemoattractant protein-1) in those given rosigli-

tazone as adjunctive therapy [15]. After a lethal dose of C. Albicans, mice post-treated

with pioglitazone had better outcomes and less renal dysfunction [87]. Rosiglitazone

also dramatically improved survival in a murine influenza model [86,90] and reduced

HIV-1 replication in lymphocytes and brain macrophages in an experimental model of

HIV-1 encephalitis [91].

Resveratrol Resveratrol improved sepsis-induced acute organ injury [10,12,13], but the

effect on mortality was uncertain [12,14]. In different cell or tissue types, resveratrol

upregulated PGC-1α and decreased mitochondrial ROS production with a consequent

increase in mitochondrial size, DNA content and mitochondrial respiratory enzymatic

activity [14,23].

Conclusions
Through their pleiotropic actions, statins, fibrates, thiazolidinediones and resveratrol

can target multiple mechanisms involved in sepsis. These are summarized in the

schema shown in Figure 1. Their actions on mitochondrial function and, particularly

mitochondrial biogenesis, are of interest in a pathological state where mitochondrial

dysfunction may play a key role in the development of organ dysfunction. We can

speculate that inhibitory effects of these agents, in particular statins, on mitochondrial

function in otherwise healthy patients may potentially offer some benefit in the septic
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state. By decreasing mitochondrial activity and membrane potential, production of

mitochondrial reactive oxygen species would decrease and this may result in a greater

degree of cell and mitochondrial protection. Further clinical and experimental studies

are warranted to reveal whether benefit can be shown in septic patient populations or

in those at high risk of developing sepsis.
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