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Generalized sequential state 
discrimination for multiparty QKD 
and its optical implementation
Min Namkung & Younghun Kwon

Sequential state discrimination is a strategy for N separated receivers. As sequential state 
discrimination can be applied to multiparty quantum key distribution (QKD), it has become one of 
the relevant research fields in quantum information theory. Up to now, the analysis of sequential 
state discrimination has been confined to special cases. In this report, we consider a generalization of 
sequential state discrimination. Here, we do not limit the prior probabilities and the number of quantum 
states and receivers. We show that the generalized sequential state discrimination can be expressed 
as an optimization problem. Moreover, we investigate a structure of generalized sequential state 
discrimination for two quantum states and apply it to multiparty QKD. We demonstrate that when the 
number of receivers is not too many, generalized sequential state discrimination for two pure states can 
be suitable for multiparty QKD. In addition, we show that generalized sequential state discrimination 
for two mixed states can be performed with high optimal success probability. This optimal success 
probability is even higher than those of quantum reproducing and quantum broadcasting strategy. 
Thus, generalized sequential state discrimination of mixed states is adequate for performing multiparty 
QKD. Furthermore, we prove that generalized sequential state discrimination can be implemented 
experimentally by using linear optics. Finally, we analyze the security of multiparty QKD provided 
by optimal sequential state discrimination. Our analysis shows that the multiparty QKD guarantees 
nonzero secret key rate even in low channel efficiency.

In quantum mechanics, one cannot always discriminate quantum states that are non-orthogonal to each other. 
Therefore, a strategy to discriminate these quantum states is required. Investigation of the strategy for quantum 
state discrimination is one of the fundamental research fields in quantum information processing. The concept 
of quantum state discrimination can be understood as a game consisting of a sender Alice and a receiver Bob. In 
this game, Alice prepares a quantum state out of two or more than two quantum states, with a prior probability. 
It is assumed that Alice has informed Bob about the prior probabilities before Bob performs a measurement for 
quantum state discrimination. With the information, Bob measures Alice’s quantum state. Bob’s measurement 
outcome is divided into an inconclusive and a conclusive result. If the measurement outcome is conclusive, Bob 
can use the outcome to distinguish Alice’s quantum state. If it is inconclusive, Bob cannot figure out the quantum 
state that Alice had prepared. The purpose of quantum state discrimination is to maximize the probability that 
Bob’s conclusive result is correct. Many researchers have proposed a variety of discrimination strategies. In the 
minimum error discrimination strategy, Bob’s measurement is designed to obtain only a conclusive result1–5. The 
purpose of this strategy is to minimize the probability that a conclusive result is erroneous. In the unambiguous 
discrimination strategy, Bob’s measurement is designed to guarantee that his conclusive result is always cor-
rect6–12. The purpose of this strategy is to minimize the probability, that the outcome is inconclusive. In the max-
imal confidence strategy, Bob should maximize the confidence of a conclusive result13. Recently, other strategies, 
that interpolate between minimum error discrimination and unambiguous discrimination have been proposed. 
In the error margin strategy, Bob’s measurement is designed not to make his error probability surpass an error 
margin14–17. In the fixed rate of the inconclusive result strategy, the probability that Bob obtains an inconclusive 
result is fixed to a specific value18–23. It is well known that quantum state discrimination provides a variety of 
quantum information protocols. Especially, unambiguous discrimination can be fruitfully applied to quantum 
key distribution (QKD)24, quantum random number generator25 and quantum state tomography26.
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In 2013, Bergou et al.27 proposed the sequential state discrimination strategy. This strategy can consist of many 
receivers (called Bob 1, Bob 2 … Bob N), who are separated and are not allowed to perform classical communi-
cation with each other. In sequential state discrimination, a sender Alice sends one out of two quantum states, 
with a prior probability to Bob 1. It is assumed that all receivers are aware of the prior probabilities, before they 
perform sequential state discrimination. Bob 1 performs a measurement to discriminate Alice’s quantum state. 
After the measurement, Bob 1 sends his post-measurement state to Bob 2. Then, Bob 2 performs his measurement 
to discriminate Bob 1’s post-measurement state. This process is sequentially performed. The purpose of sequential 
state discrimination is to maximize the probability that all receivers successfully discriminate Alice’s quantum 
state. According to Bergou et al.27, the optimal (maximum) success probability is non-zero, in general. It implies 
that Bob +I 1 can obtain information about Alice’s quantum state, from Bob I ’s post-measurement state. This 
result not only enables us to know the property of a non-projective measurement but also allows its application to 
multiparty QKD strategy. Bergou et al.27 and Pang et al.28 separately investigated the sequential state discrimina-
tion of two pure states with equal prior probabilities. Solis-Prosser et al.29 implemented the sequential state dis-
crimination trategy. In their work, two polarized single photon states with equal prior probabilities, were 
considered. Moreover, Zhang et al.30 investigated the sequential state discrimination of two pure states with une-
qual prior probabilities. Hillery and Mimih31 considered the sequential state discrimination of N  symmetric pure 
state, with equal prior probabilities.

However, most studies of sequential state discrimination have been focused on special cases. In other words, 
the generalized structure of sequential state discrimination has not been investigated yet32–34. Therefore, in this 
report, we consider a generalization of sequential state discrimination. That is, in constructing sequential state 
discrimination, we do not limit the prior probabilities and the number of quantum states and receivers. Moreover, 
we consider the most general case of quantum states, in which every quantum state can be either pure32 or mixed 
state33. Because unambiguous discrimination of general mixed states is not known yet35–37, sequential state dis-
crimination for general mixed states is beyond the scope of this paper. However, if mixed states are given in the 
form of Herzog’s work36, we can build generalized sequential state discrimination of two mixed states. Also, in 
terms of success probability, generalized sequential state discrimination provides better result in mixed states 
than in pure states.

First, we show that generalized sequential state discrimination can be expressed to a mathematical optimiza-
tion problem. This optimization problem provides an optimal positive-operator-valued-measurement (POVM) 
condition, as well as an optimal success probability. Exploiting this structure, we explicitly investigate the gen-
eralized sequential state discrimination of two quantum states. Naturally, our investigation contains previous 
works27,28. Also, we apply it to multiparty QKD. We show that if the number of receivers is too many, generalized 
sequential state discrimination of two pure states can be performed, with very small optimal success probability. 
It means that generalized sequential state discrimination of two pure states can be suitable for multiparty QKD, 
only when the number of receivers is not too many. Meanwhile, generalized sequential state discrimination of 
two mixed states can be performed, with high optimal success probability. Especially, its optimal success proba-
bility exceeds those of quantum reproducing27 and quantum broadcasting38,39 strategy. It implies that generalized 
sequential state discrimination of two mixed states can be more suitable for multiparty QKD than other strategies.

In addition, we show that linear optics can be used to experimentally implement generalized sequential 
state discrimination. Here, our models can be implemented by modifying the Banaszek model40 or the Huttner 
model41. We show that generalized sequential state discrimination of binary coherent states34 can be implemented 
optimally. Moreover, we show that generalized sequential state discrimination of two mixed states can be imple-
mented optimally. Further, we consider mixed states, which consists of coherent states. When an information 
carrier is a coherent state, which is robust in a noisy environment42, our model can be suitable for implementing 
a realistic multiparty QKD.

Finally, we analyze the security of multiparty QKD based on optimal sequential state discrimination. It is 
known that B92 protocol provides unconditional security43. Therefore, one can guess that the QKD based on 
generalized sequential state discrimination guarantees security. To show this, we evaluate the secret key rate44 of 
multiparty QKD based on generalized sequential state discrimination. Our result tells that the multiparty QKD 
guarantees nonzero secret key rate even in low channel efficiency. In addition, our multiparty QKD is composed 
of the method based on prepare and measure24,45,46 and is more robust in noise than the QKD of multipartite 
entanglement.

Results
Scenario of Sequential State Discrimination.  The concept of generalized sequential state discrimina-
tion can be understood as a game, consisting of a sender Alice and N  receivers such as Bob 1, Bob 2, …, Bob N(see 
Fig. 1). In this scenario, every party acts as follows: Alice prepares a quantum state { , , }i n1ρ ρ ρ∈ … , with a prior 
probability qi and sends iρ  to Bob 1. Bob 1 performs a POVM …M M M{ , , , }n0

(1)
1
(1) (1)  on Alice’s quantum state, for 

unambiguous discrimination. Here, Mj
(1) is a POVM element, corresponding to a measurement outcome j. If Bob 

1 obtains a conclusive outcome ( ≠j 0), he thinks Alice’s quantum state as jρ . If Bob 1 obtains an inconclusive 
result ( j 0= ), he cannot figure out which quantum state Alice had prepared. If Bob 1 obtains a conclusive result, 
he sends a post-measurement state to Bob 2. Because in generalized sequential state discrimination every receiver 
should perform unambiguous discrimination, the post-measurement state of Bob 1 is given as 

†K K i j( , 0)i j i j ij
(1) (1) (1)σ ρ δ∝ ≠ . Here, ijδ  is the Kronecker delta and Ki

(1) is the Kraus operator, satisfying 
†M K Ki i i

(1) (1) (1)= . Likewise, Bob 2 performs unambiguous discrimination on Bob 1’s post-measurement state σi
(1), 

using POVM …M M M{ , , , }n0
(2)

1
(2) (2) . Then, Bob 2 sends his post-measurement state †σ σ δ∝ K Ki j i j ij

(2) (2) (1) (2)  to Bob 
3. This process is sequentially conducted from Bob 3 to Bob N . The average success probability of generalized 
sequential state discrimination is given as
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(In Eq. (1), each Bob 1, Bob 2, …, Bob N  is briefly expressed as …B B B, , , N1 2 ). The purpose of generalized 
sequential state discrimination is to maximize the average success probability, as expressed in Eq. (1). In the pro-
cess, every receiver should obey the following rules:

Rule 1. Bob 1, Bob 2, …, Bob N 1−  performs a nonoptimal unambiguous discrimination. However, Bob N  
performs an optimal unambiguous discrimination.

Rule 2. Classical communication is forbidden between every receiver.
If Bob I N{1, 2, , 1}∈ … −  performs an optimal unambiguous discrimination, Bob +I 1 cannot obtain any 

information from Bob I ’s post-measurement state. Moreover, if one of the receivers sends his measurement out-
come through classical communication, an eavesdropper can steal the measurement outcome without being 
noticed by any receivers. Thus, it is reasonable that Rules 1 and 2 should be imposed on every receiver.

Construction of the Optimization Problem.  In this section, we express generalized sequential state dis-
crimination as an optimization problem. To construct the optimization problem, we should involve not only two 
rules but also POVM conditions for every receiver. First, we should consider a POVM that performs an unam-
biguous discrimination.

POVM for unambiguous discrimination.  Let us find the condition for the POVM …M M M{ ’ , , }n0 1  that performs 
an unambiguous discrimination. This POVM should satisfy the following conditions (I) M i n0( {1, , })i ≥ ∀ ∈ …  
(II) †= ∀ ∈ …M M i n( {1, , })i i  (III) + + + =M M M In0 1  and (IV) M M i j nTr Tr ( , {1, , })i j ij i iρ δ ρ= ∀ ∈ … . 
Here, the conditions of (I), (II), and (III) are positive-semidefinite, Hermitian and completeness condition, 
respectively. Especially, (IV) is the condition in which the POVM performs an unambiguous discrimination. 
However, understanding an unambiguous discrimination is confined only to a special set of quantum states 

ρ ρ ρ= …S { , , , }n n1 2 . If the set of quantum states Sn satisfies the following theorem, there exists a POVM that per-
forms an unambiguous discrimination on Sn.

Theorem 1.  If7 ρsupp( )i  satisfies ∪ρ ρ≠supp( ) supp( )i j i k  for all ρ ∈ Si n, there exists a POVM that performs an 
unambiguous discrimination on Sn.

If Sn satisfies Theorem 1, the support of Mi can be spanned by the support of iρ , orthogonal to supp( )j i k∪ ρ≠ . 
For example, let us consider ρ ρ=S { , }2 1 2 . Then, the support of M M( )1 2  is spanned by the kernel of ρ ρ( )2 1

7. For 
ψ ψ ψ= …S { , , , }n n1 2¯ , Theorem 1 is simply stated as follows.

Theorem 2.  If6 S̄n is a set of linearly independent pure states, there exists a POVM that performs an unambigu-
ous discrimination on Sn¯ .

Proof. Suppose Sn¯  is a set of linearly independent pure states. Then, Gram matrix G { }i j i j
n
, 1ψ ψ= 〈 | 〉 =  is positive 

definite47. Thus, there exists an inverse of G. Using G−1, we can construct Mi as

∑α ψ ψ ψ ψ= | 〉〈 | | 〉 = | 〉.
=

−M G,
(2)

i i i i i
j

n

ji j
1

1˜ ˜ ˜

Here, 0iα ≥ . The inner product between ψ| 〉j  and iψ| 〉˜  is simply calculated as

G G GG( )j i
j

n

ki jk ji ji
1

1 1˜ ∑ψ ψ δ〈 | 〉 = = = .
=

− −

Therefore, the equality M Mj i j ij i i iψ ψ δ ψ ψ〈 | | 〉 = 〈 | | 〉 holds for all POVM elements ∈ …M M M{ , , }i n1 . We notice 
that M M, , n1 … , in Eq. (2), are Hermitian and positive-semidefinite. According to the completeness condition, 

= − − −M I M Mn0 1  is also Hermitian. Now, we show that M0 can be positive-semidefinite. If α α…, , n1  are 

Figure 1.  Schematic of the concept of sequential state discrimination. In this concept, Alice prepares ρ ∈ Si n, 
with a prior probability qi. Bob 1 discriminates Alice’s quantum state, using POVM = =M M{ }i i

n(1) (1)
0, without an 

error. Using POVM = =M M{ }i i
n(2) (2)

0, Bob 2 also discriminates i
(1)σ  which is the post-measurement state of Bob 

1, without an error. Then, this process is sequentially performed from Bob 3 to Bob N .
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efficiently small, M0 tends to converge to I . In this case, M0 is obviously positive-semidefinite, which completes 
the proof of Theorem. □

By Theorem 2, every POVM …M M M{ , , , }n0 1  has a one-to-one correspondance with an n-dimensional real 
vector α α α…( , , , )n1 2 . Moreover, the POVM conditions can be expressed, in terms of every component in this 
real vector. The positive-semidefiniteness condition of M0 can be obtained through the following theorem.

Theorem 3.  Let32 us define a Hermitian matrix ψ ψ= 〈 | | 〉 =M̄ M{ }i j i j
n

0 , 1 and all × <m m m n( ) principal subma-
trices M̄m. M0 is positive-semidefinite if and only if every M̄ and M̄m∀  is positive-semidefinite.

Proof. We exploit the fact that M0 is positive-semidefinite if and only if ψ ψ〈 | | 〉 ≥M 00  for all Hψ| 〉 ∈ 47. 
Because S̄n  is a set of linearly independent pure states, every Hψ| 〉 ∈  can be expressed as 

v vn n1 1ψ ψ ψ| 〉 = | 〉 + + | 〉. We can easily obtain the following equality:

ψ ψ〈 | | 〉 = .¯†M v Mv0

Here, v v v v( , , , )n
n

1 2= … ∈  . In other words, M 00ψ ψ〈 | | 〉 ≥  for all Hψ| 〉 ∈ , if and only if v Mv 0¯† ≥  for all 
v n∈  . Every components in V  needs not to be nonzero. That is, ¯†v Mv 0≥  if and only if ¯ ¯M M, m∀  are 
positive-semidefinite. □

According to Rule 2, no receiver can perform any classical communication. In sequential state discrimination, 
the post-measurement state contains a measurement outcome. Hence, we should construct a Kraus operator, 
corresponding to POVM48. According to Eq. (2), every POVM, corresponding to conclusive result, is rank-1. 
Therefore, Ki is expressed as K U Mi i i= , from singular value decomposition. Here, Ui is unitary operator and 

Mi  is a square-root operator of Mi. Then, the Kraus operator, corresponding to conclusive result, is constructed 
as

α ψ ψ α ψ ψ α φ ψ= = | 〉〈 | = | 〉 〈 | = | 〉〈 |.˜ ˜ ˜ ˜ ˜K U M U U( )i i i i i i i i i i i i i i

Then, the post-measurement state, corresponding to conclusive result i, is expressed as Ki i iφ ψ| 〉 ∝ | 〉48. Now, 
we construct the Kraus operator K0, which satisfies = †M K K0 0 0. It is complicated to obtain K0 from M0. If we 
assume that every pure state in Sn¯  spans H, when ψ| 〉K i0 , for some i, is not involved in ψ| 〉 =K{ }j j j

n
1, every 

post-meaurement state K K{ } { }i i
n

i i i
n

0 1 1∪ψ ψ| 〉 | 〉= =  is linearly dependent. Therefore, post-measurement states can-
not be discriminated unambiguously. This implies that every post-measurement state K i0 ψ| 〉 should be involved 
in K{ }i i i

n
1ψ| 〉 = . We construct K0 that maps iψ| 〉 into Ki iψ| 〉, and it is expressed as32,33

K n n n0 1 1 1 2 2 2
˜ ˜ ˜γ φ ψ γ φ ψ γ φ ψ= | 〉〈 | + | 〉〈 | + + | 〉〈 |.

Here, γ ≥ 0i . From γ α= −1i i, we can see that αi is less than 1. We should find γi to satisfy †M K K0 0 0= . To 
solve this problem, we exploit the following theorem.

Theorem 4.  Let33 Sn¯  be a set of linearly independent pure states. Then, =A B if and only if 
ψ ψ ψ ψ〈 | | 〉 = 〈 | | 〉 ∀A B i j( , )i j i j .

Substituting both A and B, in Theorem 4, into each M0 and K K0 0
† , we obtain

1 , (3)i i i j i j i jγ α γ γ φ φ ψ ψ= − 〈 | 〉 = 〈 | 〉.

Equation (3) includes an argument from Bergou et al.27 Combining these two equalities, we derive an overlap 
between two post-measurement states as

(1 )(1 ) (4)
i j

i j

i j
φ φ

ψ ψ

α α
〈 | 〉 =

〈 | 〉

− −
.

According to Eq. (4), the overlap φ φ〈 | 〉i j  is larger than or equal to i jψ ψ〈 | 〉. Because 1i jφ φ|〈 | 〉| ≤ , we obtain

i j(1 )(1 ) , , (5)i j i j
2α α ψ ψ− − ≥ |〈 | 〉| ∀ .

This equality corresponds to the POVM condition, which performs an unambiguous discrimination on a pure 
state (S̄2). If every receiver performs an optimal unambiguous discrimination, Eq. (5) becomes a strict equality. 
Then, the overlap between post-measurement states becomes one, according to Eq. (4). Hence, to obey Rule 1, the 
POVM of Bob 1, Bob 2, …, Bob N 1−  should not satisfy the equality of Eq. (5). Furthermore, because every sub-
matrix Mab¯  should be positive-semidefinite, Eq. (5) is also involved in the POVM condition, performing an 
unambiguous discrimination of n pure states.

Generalizing POVM for mixed state discrimination.  In this section, we investigate the generalized sequential 
state discrimination of mixed quantum states. Unfortunately, an explicit form of POVM, that performs an unam-
biguous discrimination of arbitrary mixed states is unknown. That is because we do not know how to deal with 
Theorem 1. When mixed states can be expressed in the form given by Herzog’s work36, POVM can be constructed 
explicitly. Suppose that every mixed state has the same rank. Then, each mixed state on Hilbert space 

= ⊕ ⊕ ⊕H H H H m1 2  has the following form:

https://doi.org/10.1038/s41598-020-63719-9
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r r r r r r r r r r r r, , , , 0 (6)i i i i i i i im im im i i im1 1 1 2 2 2 1 2ρ = | 〉〈 | ⊕ | 〉〈 | ⊕ ⊕ | 〉〈 | … > .

Here, ρ=m rank( )i . According to the trace condition of iρ , ∑ == r 1j
m

ij1  holds for all i. If we consider that every 
mixed state has a form like that of Eq. (6), then Theorem 1 can be explicitly expressed as follows:

Theorem 5.  Suppose33 that all elements in Sn have the same form as that of Eq. (6). If | 〉 | 〉 … | 〉r r r{ , , , }j j nj1 2  are 
linearly independent for every j m{1, , }∈ … , then there exists a POVM that performs an unambiguous discrim-
ination on Sn.

Proof. Let us construct the POVM element Mi, corresponding to measurement outcome i as

= ⊕ ⊕ ⊕ .M M M Mi i i im1 2

Here, M M M{ , , , }j j nj0 1 …  is a sub-POVM, defined on sub-Hilbert space Hj . Because every Mij  is 
positive-semidefinite, Mi is also positive-semidefinite. The completeness condition of POVM M M M{ , , , }n0 1 …  is 
straightforwardly proved as

M M M M

M M M

I I I
I
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n

i
i

n

i i im
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n
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= .

= =

= = =

Here, Ij is an identity operator, defined on sub-Hilbert space Hj. Sub-POVM M M M{ , , , }j j nj0 1 …  only acts on 
| 〉 | 〉 … | 〉r r r{ , , , }j j nj1 2 . If | 〉 | 〉 … | 〉r r r{ , , , }j j nj1 2  are linearly independent, every sub-POVM is obtained, using similar 

process as Theorems 2 and 3. Therefore, we obtain POVM that performs unambiguous discrimination, which 
completes the proof of Theorem. □

With the help of Theorem 5, we can apply a method that deals with the discrimination of pure states into a 
mixed-state case. If ≠i 0, the POVM element Mi can be expressed as

˜ ˜ ˜ ˜ ˜ ˜M r r r r r r (7)i i i i i i i im im im1 1 1 2 2 2α α α= | 〉〈 | ⊕ | 〉〈 | ⊕ ⊕ | 〉〈 |.

According to the completeness condition, M0 is given as

∑ ∑ ∑

∑ ∑α α
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Then, the Kraus operator Ki, corresponding to Mi of Eq. (8), is given as

α α α= | 〉〈 | ⊕ | 〉〈 | ⊕ ⊕ | 〉〈 |.K s r s r s ri i i i i i i im im im1 1 1 2 2 2˜ ˜ ˜

Hence, the post-measurement state iσ  is expressed as

K K

Tr K K
r s s r s s r s s

r r r

[ ]i
i i i

i i i

i i i i i i i i im im im im

i i i i im im

1 1 1 1 2 2 2 2

1 1 2 2

σ
ρ

ρ

α α α
α α α

=

=
| 〉〈 | ⊕ | 〉〈 | ⊕ ⊕ | 〉〈 |

+ + +
.

†

†





We can obtain the Kraus operator K0, corresponding to M0, by exploiting Theorem 3. Because every eigenvec-
tor of σi should satisfy

s s
r r

(1 )(1 )
,

(9)
ij kj

ij kj

ij kjα α
〈 | 〉 =

〈 | 〉

− −

from Eq. (9) we can obtain

α α− − ≥ | | | .r r(1 )(1 ) (10)ij kj ij kj
2

Both Eqs. (9) and (10) imply the following meaning. if either αij or αkj is nonzero, |〈 | 〉|s sij kj  is larger than 
r rij kj|〈 | 〉|. That is, the support of two post-measurement states is more overlapped than that of Alice’s mixed states. 

If an optimal unambiguous discrimination is performed, Eq. (10) becomes a strict equality. Moreover, according 
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to Eq. (9), s sij kj|〈 | 〉| becomes equal to 1. Therefore, for all i, supp( ) supp( )i j i j∪σ σ= ≠  holds, which implies that 
{ , , }n1σ σ…  cannot be discriminated, without any error.

Now, let us consider the case where every ρi has a different rank. Without loss of generality, we can assume an 
inequality such as ρ ρ ρ> > >rank( ) rank( ) rank( )n1 2 

. Then, a POVM element can be constructed as

= ⊕ ⊕ ⊕M M M M ,i i i im1 2 i

where ρ=m rank( )i i . Each POVM element can be constructed in the following manner: If ≤ ≤j m1 1, 
sub-POVM …M M M{ , , , }j j nj0 1  discriminates r r r{ , , , }j j nj1 2| 〉 | 〉 … | 〉  without any error. If m j m1 2< ≤ , sub-POVM 

…M M M{ , , , }j j nj0 1  discriminates | 〉 | 〉 … | 〉−r r r{ , , , }j j n j1 2 1 . The remaining part of the POVM elements can also be 
constructed inductively.

Optimization problem for pure states case.  Assume that ψ| 〉 ∈ S̄i n is prepared, with a prior probability qi. Then, 
the POVM M M M{ , , , }I I

n
I

0
( )

1
( ) ( )…  of Bob ∈ …I N{1, , } corresponds to a vector ( , , )I

n
I

1
( ) ( )α α…  in an n–dimen-

sional real vector space. Using this vector, we can express Eq. (1) as

P q ,
(11)s

B B

i

n

i i i i i
N( , , )

1

(1) (2) (3) ( )N1 ∑ α α α α= × ×…

=


where Mi i i i
(1) (1)α ψ ψ= 〈 | | 〉, Mi

I
i

I
i

I
i

I( ) ( 1) ( ) ( 1)α φ φ= 〈 | | 〉− − . The constraints on POVM can be expressed in terms of 
α α…( , , )I

n
I

1
( ) ( ) . Applying Rule 1 and Rule 232, we can construct POVM conditions as

α α

α α

… ∈ ≤ −

… ∈ ∂ .

C I N

C

( , , ) , 1

( , , ) (12)

I
n

I I

N
n

N N
1
( ) ( )

int
( )

1
( ) ( ) ( )

Here, C I
int
( ) and ∂C I( ) are defined as

¯ ¯

¯ ¯

¯ ¯

α α

α α

α α

= … ∈ | ≥ ∧ ≥ ∀ <

= … ∈ | > ∧ ≥ ∀ <

∂ = … ∈ | = ∧ ≥ ∀ < .

C M M m n

C M M m n

C M M m n

{( , , ) 0 0 },

{( , , ) 0 0 },

{( , , ) 0 0 }

I I
n

I n
m

I I
n

I n
m

I I
n

I n
m

( )
1
( ) ( )

int
( )

1
( ) ( )

( )
1
( ) ( )





Then, Bob I ’s POVM condition is expressed as C C CI I I( )
int
( ) ( )∪= ∂ . Combining Eq. (11) with Eq. (12), we can 

express generalized sequential state discrimination as following optimization problem32:

P q

C I N

C

maximize

subject to ( , , ) , 1

( , , ) (13)

s
B B

i

n

i i i i i
N

I
n

I I

N
n

N N

( , , )

1

(1) (2) (3) ( )

1
( ) ( )

int
( )

1
( ) ( ) ( )

N1 ∑ α α α α

α α

α α

= × ×

… ∈ ∀ ≤ −

… ∈ ∂ .

…

=

Now, let us investigate the geometric properties of each C I( ). The set of POVM that performs an unambiguous 
discrimination is convex and C I( ) is also convex:

Theorem 6.  Every32 C(I) is convex.
It is important to investigate the relation between C I( ) and +C I( 1), to analyze the generalized sequential state 

discrimination. In our previous work32, we proposed the following conjecture:
Conjecture 1.  If32 there exists nonzero αi

I( ) in α α…( , , )I
n

I
1
( ) ( ) , the size of set +C I( 1) is smaller than that of C I( ).

Considering the discrimination problem of two pure states, we can confirm that Conjecture 1 holds. 
Conjecture 1 has the following meaning. When the real vector ( , , )I

n
I

1
( ) ( )α α…  has at least one nonzero compo-

nent α I
1
( ), Bob I  can obtain partial information of Alice’s quantum state, by performing a measurement on Bob 

I 1− ’s post-measurement state, with a nonzero probability. Conjecture 1 implies that options for POVM that Bob 
I 1+  can choose are limited, as Bob I  obtains the information. In the extreme case, if Bob I  obtains the maximal 
information, then Bob +I 1 cannot construct a POVM to unambiguously discriminate Bob I ’s post-measurement 
state, which means that Bob I 1+  cannot obtain any information from Bob I ’s post-measurement state. Hence, 
we can propose the following conjecture:
Conjecture 2.  If32 C( , , )I

n
I I

1
( ) ( ) ( )α α… ∈ ∂ , ( , , ) (0, , 0)I

n
I

1
( 1) ( 1)α α… = …+ +  is the only element of +C I( 1).

If Alice prepares a pure state from S2¯ , both Conjecture 1 and Conjecture 2 hold32. In the case of N 3= , we can 
numerically check that both conjectures 1 and 2 are correct.

Optimization problem for the mixed states case.  Now, let us consider a mixed states case. When Alice prepares iρ , 
which is expressed as Eq. (6), Bob I N{1, , }∈ … ’s POVM M M M{ , , , }I I

n
I

0
( )

1
( ) ( )…  corresponds to the real vector 

( , , )nm
nm

11α α… ∈  . This real vector is included in C C CI I I( )
int
( ) ( )

∪= ∂˜ ˜ ˜ , where C̃ I
int
( ) and C̃ I( )

∂  are respectively 
defined as
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



˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

C C C C

C C C C

,I I I
m

I

I I I
m

I
int
( )

int,1
( )

int,2
( )

int,
( )

( )
1
( )

2
( ) ( )

∩ ∩ ∩
∩ ∩ ∩

=

∂ = ∂ ∂ ∂ .

Here, C̃ j
I

int,
( )  and ˜∂C I( )

 are respectively defined as





α α

α α

= … ∈ | > ∧ ≥ ∀ <

∂ = … ∈ | = ∧ ≥ ∀ < .

C M M m n

C M M m n

{( , , ) 0 0 },

{( , , ) 0 0 }

j
I

j nj
n

j j m

j
I

j nj
n

j j m

int,
( )

1 ,
( )

1 ,

˜ ¯ ¯

˜ ¯ ¯

¯ = 〈 | | 〉 =M r M r{ }j ij j kj i k
n

0 , 1 and M̄j m,  are ×m m principal submatrices. Then, we can express generalized sequen-
tial state discrimination of mixed states, as following optimization problem33:

P q r r r

C j I N

C j

maximize

subject to ( , , ) , , 1

( , , )

s
B B

i

n

i i
I

N

i
I

i
I

N

i
I

im
I

N

im
I

j
I

nj
I

j
I

j
N

nj
N

j
N

( , , )

1
1

1
1
( )

2
1

2
( )

1

( )

1
( ) ( )

int,
( )

1
( ) ( ) ( )

N1 ∑ ∏ ∏ ∏α α α

α α

α α

=





+ +





… ∈ ∀ ∀ ≤ −

… ∈ ∂ . ∀

…

= = = =


˜

˜

When m 1= , this optimization problem describes the generalized sequential state discrimination of pure 
states. Note that the j-th constraint only affects sub-POVM α∑ ∏= =qi

n
i I

N
ij

I
1 1

( ). From this property, this optimiza-
tion problem can be partitioned into the following sub-optimization problems33:

p q r

C I N

C

maximize

subject to ( , , ) , 1

( , , )

s j
i

n

i ij
I

N

ij
I

j
I

nj
I

j
I

j
N

nj
N

j
N

,
1 1

( )

1
( ) ( )

int,
( )

1
( ) ( ) ( )

∑ ∏ α

α α

α α

=










… ∈ ∀ ≤ −

… ∈ ∂ .

= =

˜

˜

Then, the optimal success probability is expressed as P p p pmax max max maxs
B B

s s s m
( , , )

,1 ,2 ,
N1

= + + +… .
Next, we consider the case that no mixed state has the same rank. More precisely, we assume that 

ρ ρ ρ> > >rank( ) rank( ) rank( )n1 1 
, without loss of generality. If jrank( ) rank( )l l 1ρ ρ< ≤ +

, the j-th 
sub-optimization problem is given as

∑ ∏ α

α α

α α

=










… ∈ ∀ ≤ −

… ∈ ∂ .

=

−

=
p q r

C I N

C

maximize

subject to ( , , ) , 1

( , , )

s j
i

n l

i ij
I

N

ij
I

j
I

nj
I

j
I

j
N

nj
N

j
N

,
1 1

( )

1
( ) ( )

int,
( )

1
( ) ( ) ( )

˜

˜

Because every sub-optimization problem in the case of mixed states is the same as that in the pure state case, 
if every mixed state is expressed as Eq. (6), we can apply the method for pure states to the generalized sequen-
tial state discrimination of mixed states. Unfortunately, Eq. (6) is not the case of the most general mixed state. 
However, if we use these mixed states as an information carrier, the optimal success probability of the generalized 
sequential state discrimination can exceed that of the quantum reproducing27 and the quantum broadcasting 
strategy39. This implies that generalized sequential state discrimination is a more suitable strategy for application 
to multiparty QKD than the other two strategies. Furthermore, Eq. (6) can be implemented using linear optics. In 
the next sections, we explain these advantages in detail.

Generalized Sequential State Discrimination of Two Quantum States.  In this section, we consider 
the optimization problem proposed in the previous section. We deal not only with the problem of two pure states 
but also with the problem of two mixed states in a multi-receiver case.

Generalized sequential state discrimination of two pure states.  Here, we consider the generalized sequential state 
discrimination with an arbitrary N . First, let us consider the case of =N 3. The three receivers are denoted as 
Bob, Charlie, and David, and each POVM of Bob, Charlie, and David corresponds to the two dimensional real 
vectors ( , )1 2α α , ( , )1 2β β , and ( , )1 2γ γ , respectively. According to Eq. (12), each real vector should satisfy

C C C( , ) , ( , ) , ( , ) (14)1 2 int
(B)

1 2 int
(C)

1 2
(D)α α β β γ γ∈ ∈ ∈ ∂ .

where C X
int
( ) and ∂ ∈C X B C D( { , , })X( )  are respectively defined as32
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α α α α ψ ψ

β β β β φ φ

γ γ γ γ φ φ

α α α α ψ ψ

β β β β φ φ

γ γ γ γ φ φ

= ∈ | − − > |〈 | 〉|

= ∈ | − − > |〈 | 〉|

= ∈ | − − > |〈 | 〉|

∂ = ∈ | − − = |〈 | 〉|

∂ = ∈ | − − = |〈 | 〉|

∂ = ∈ | − − = |〈 | 〉| .

C

C

C

C

C

C

{( , ) (1 )(1 ) },

{( , ) (1 )(1 ) },

{( , ) (1 )(1 ) },

{( , ) (1 )(1 ) },

{( , ) (1 )(1 ) },

{( , ) (1 )(1 ) }

int
(B)

1 2
2

1 2 1 2
2

int
(C)

1 2
2

1 2 1
(B)

2
(B) 2

int
(D)

1 2
2

1 2 1
(C)

2
(C) 2

(B)
1 2

2
1 2 1 2

2

(C)
1 2

2
1 2 1

(B)
2
(B) 2

(D)
1 2

2
1 2 1

(C)
2
(C) 2








The set of POVM, labeled as ∈X {B, C, D}, can be expressed as ∪= ∂C C C(X)
int
(X) (X). Therefore, Eq. (13) 

becomes32

α β γ α β γ

α α ψ ψ

β β φ φ

γ γ φ φ

= +

− − > |〈 | 〉|

− − > |〈 | 〉|

− − = |〈 | 〉|

P q qmaximize

subject to (1 )(1 )

(1 )(1 )

(1 )(1 ) (15)

s
(B,C,D)

1 1 1 1 2 2 2 2

1 2 1 2
2

1 2 1
(B)

2
(B) 2

1 2 1
(C)

2
(C) 2

To solve this problem, we need to consider the equality constraint of Eq. (15). David’s optimal condition of 
generalized sequential state discrimination can be obtained by finding a tangential point ( , )1 2γ γ  between a plane 
P q q( ) ( )s

(B,C,D)
1 1 1 1 2 2 2 2α β γ α β γ= +  and a surface (1 )(1 ) C C

1 2 1
( )

2
( ) 2γ γ φ φ− − = |〈 | 〉| . When this tangential point 

is substituted into Eq. (15), Eq. (15) becomes the following optimization problem:

α β α β ψ ψ

α α β β

α α β β

α α ψ ψ

β
β β

β β α α
α α

α

α
ψ ψ
α α

β
β β

β β α α
α α

α

α
ψ ψ
α α

= + − |〈 | 〉

|
− − − −

− − > |〈 | 〉|

≤
−

− +
=

|〈 | 〉|
− −

≤
−

− +
=

|〈 | 〉|
− −

.

X
X

Y
Y

P q q

q q

q
q
q
q

maximize 2

(1 )(1 )(1 )(1 )

subject to (1 )(1 )
(1 )

(1 ) ( , )
, ( , )

(1 )(1 )
,

(1 )
(1 ) ( , )

, ( , )
(1 )(1 ) (16)

s
(B,C,D)

1 1 1 2 2 2 1 2

1 2 1 2 1 2

1 2 1 2

1 2 1 2
2

2
1 1

1 1 1 2
1 2

2 2

1 1

1 2
2

1 2

1
2 2

2 2 1 2
1 2

1 1

2 2

1 2
2

1 2

The detailed derivation of Eq. (16) can be found in the Methods section. Because this optimization problem is 
difficult to solve analytically, one may apply a numerical method to solve it. Therefore, for the numerical method, 
a penalty function may be used to solve this constrained optimization problem49.

To search for the optimal condition of α α β β( , , , )1 2 1 2 , we need to find the condition where the derivative 
P /s i

(B,C,D) β∂ ∂  becomes zero. The condition that β β( , )1 2  satisfies the zero derivative is given as

β
β β

β β α α
β

β β
β β α α

=
−

− +
=

−
− +

.
(1 )

(1 ) ( , )
, (1 )

(1 ) ( , ) (17)
2

1 1
3

1 1
3

1 2
1

2 2
3

2 2
3

1 2X Y

In general, it is difficult to find β β( , )1 2  that satisfies Eq. (17). When q q1 2=  and 1 2α α α= = , ( , )1 2β β  is ana-
lytically expressed as

β β
ψ ψ

α
β= = −

|〈 | 〉|
−

= .1
1 (18)1 2

1 2

Because α α=1 2 and β β=1 2, 1 2γ γ=  also holds (see the Methods section). This condition is equal to that 
obtained by Bergou et al.27 In this case, the objective function of Eq. (16) is expressed as

P
(1 )(1 )

1
1 (19)

s
(B,C,D)

1 2

1 2
2

αβ ψ ψ αβ
α β

α
ψ ψ

α

= − |〈 | 〉|
− −

=





−

|〈 | 〉|
−






.

We can easily check that Eq. (19) is maximized when s1 1/3α = −  holds. In that case, an optimal success probabil-
ity can be analytically described as = −P s(1 )s

(B,C,D),opt 1/3 3. This success probability is equal to the result of Bergou et 
al.27 However, this success probability is not optimal in general. That is because the equality condition 

P( / , / ) 0s1 2
(B,C,D)β β∂ ∂ ∂ ∂ =  does not guarantee optimum. Furthermore, we cannot confirm that the optimal condition 

satisfies the additional constraints 1 2α α=  and β β=1 2. Therefore, we should check whether the maximum of Eq. (19) 
is really equal to that of Eq. (16). We plot the maxima of both Eqs. (16) and (19) in Fig. 2. In the Fig. 2, the solid black 
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line shows the maximum of Eq. (19). The red circles (blue dots) shows the maximum of Eq. (16) with (without) the 
additional constraint α α=1 2 and β β=1 2. If the overlap 1 2ψ ψ|〈 | 〉| becomes smaller, the maxima of both Eqs. (16) and 
(19) become to coincide with. When the overlap is small, the optimal strategy of every receiver is to discriminate two 
pure states of Alice. Because the prior probabilities of two pure states are identical, the optimal measurement of every 
receiver does not show any bias to a specific pure state. Therefore, the condition of α α β β γ γ= = =, ,1 2 1 2 1 2 should 
be included in the optimality conditions. If the overlap ψ ψ|〈 | 〉|1 2  becomes larger, the maximum of Eq. (16) becomes 
larger than that of Eq. (19). In this case, ,1 2 1 2α α β β= = , and 1 2γ γ=  are not optimal conditions anymore for the 
generalized sequential state discrimination. Especially, we observe that at least one of 1γ  and γ2 becomes zero. This 
means that it is an optimal strategy when Bob, Charlie, and David discriminate one of Alice’s two pure states.

If Bob, Charlie, and David only discriminate one of Alice’s pure state, the generalized sequential state discrim-
ination can be expressed as the following optimization problem:

P qmaximize 1
1 (20)

s i i i
i

(B,C,D) 1
(B)

2
(B) 2

α β
φ φ

β
=






−

|〈 | 〉|
−






.

From the equality P / 0s i
(B,C,D) β∂ ∂ = , we obtain 1 / (1 )(1 )i 1 2 1 2β ψ ψ α α= − |〈 | 〉| − − . Substituting it into 

Eq. (20), we derive

α
ψ ψ
α α

α
ψ ψ

α

=







−
|〈 | 〉|

− −








≤





−

|〈 | 〉|
−






≤ − .

P q

q

q s

1
(1 )(1 )

1
1

(1 ) (21)

s i i

i i
i

i

(B,C,D) 1 2

1 2

2

1 2
2

2/3 3

The first inequality of Eq. (21) becomes equality at α = ≠j i0( )j . The second inequality becomes equality when 
1i 1 2

2/3α ψ ψ= − |〈 | 〉|  h o l d s .  T h e r e f o r e ,  t h e  o p t i m a l  s u c c e s s  p r o b a b i l i t y  i s  g i v e n  a s 
P q qmax{ , }(1 )s

(B,C,D),opt
1 2 1 2

2/3 3ψ ψ= − |〈 | 〉| ,  a s  s h o w n  i n  F i g .   2 .  I n  c a s e  o f  q q1 2= ,  w h e n 
ψ ψ|〈 | 〉| < − .(2 1) 0 01755991 2

1/3 3
  is satisfied, it is optimal for the three receivers to discriminate two of Alice’s 

pure states. However, if ψ ψ|〈 | 〉| ≥ − .(2 1) 0 01755991 2
1/3 3  is fulfilled, discriminating only one of Alice’s pure 

state is optimal.

Figure 2.  The success probability of generalized sequential state discrimination when Bob, Charlie, and David 
participate as receivers. Here, s 1 2ψ ψ= |〈 | 〉| denotes the overlap between two quantum states, and we use the 
identical prior probability (q q1 2= ). The small graph shows the optimal success probability in the region of 

< < .s0 0 05. The solid black line shows the optimal success probability when three receivers discriminate 
every two pure state of Alice’s27. The black dashed line as Eq. (21) shows the optimal success probability when 
three receivers discriminate only one of two pure states of Alice’s (Eq. (21) is a generalization of the result of 
Pang et al.28). The red circles and the blue dots display the optimal success probability from Eq. (16). More 
specifically, the red circles (the blue dots) shows the optimal success probability when the constraint conditions 
of 1 2α α=  and 1 2β β=  are (are not) added to Eq. (16). If ≤ .s 0 017559, the red circles and the blue dots 
coincide with the solid black line, which shows that our result agrees with that of Bergou et al.27. Further, the 
blue dots are larger than the solid black line, but are smaller than the black dashed line. Therefore, if 

> .s 0 017559, the optimal condition of generalized sequential state discrimination does not include the 
constraint conditions of 1 2α α=  and β β=1 2.
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Next, we consider the case of N 4= . In this case, let us denote the four receivers as Bob, Charlie, David, and 
Eliot. Each POVM of the four receivers corresponds to the two dimensional real vectors α α( , )1 2 , β β( , )1 2 , ( , )1 2γ γ , 
and ( , )1 2δ δ . According to Eq. (12), each real vector should satisfy

C C C C( , ) , ( , ) , ( , ) , ( , ) (22)1 2 int
(B)

1 2 int
(C)

1 2 int
(D)

1 2
(E)α α β β γ γ δ δ∈ ∈ ∈ ∈ ∂ .

Here, Cint
(E) and ∂C (E) are respectively defined as

C

C

{( , ) (1 )(1 ) },

{( , ) (1 )(1 ) }
int
(E)

1 2
2

1 2 1
(D)

2
(D) 2

(E)
1 2

2
1 2 1

(D)
2
(D) 2

δ δ δ δ φ φ

δ δ δ δ φ φ

= ∈ | − − > |〈 | 〉|

∂ = ∈ | − − = |〈 | 〉| .




Moreover, the POVM condition for Eliot is expressed as ∪= ∂C C C(E)
int
(E) (E). Hence, we can obtain the fol-

lowing optimization problem:
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Now, let us consider the equality constraint of Eq. (23). The optimal condition of the generalized sequential state 
discrimination for Eliot is given as a tangential point δ δ( , )1 2  between a plane α β γ δ α β γ δ= +P q q( ) ( )s

(B,C,D,E)
1 1 1 1 1 2 2 2 2 2 

and a surface (1 )(1 )1 2 1
(D)

2
(D) 2δ δ φ φ− − = |〈 | 〉| . If this tangential point is substituted into the objective function of 

Eq. (23), the following optimization problem can be obtained:
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The detailed derivation of Eq. (24) is provided in the Methods section. When the constraints 
, ,1 2 1 2 1 2α α β β γ γ= = = , and 1 2δ δ=  are added, this optimization problem is difficult to solve analytically. Thus we 

solve this problem numerically. We show the maximum of Eq. (24) in Fig.  3. When the constraints 
, ,1 2 1 2 1 2α α β β γ γ= = = , and δ δ=1 2 are added to Eq. (24), the optimal success probability becomes equal to the 

result by Bergou et al.27 If the overlap is small, this equality constraint is included in the optimal condition of sequential 
state discrimination. Because the prior probabilities of two pure states are identical, the optimal measurement of every 
receiver does not show any bias to a specific pure state. If we do not add these constraints, the optimal success probabil-
ity becomes larger than that provided by Bergou et al.27. In this case, we observe that at least one of 1δ  and δ2 becomes 
zero. This implies that it is optimal only when four receivers discriminate only one out of two pure states of Alice.

If Bob, Charlie, David, and Eliot only discriminate one out of two pure states, the generalized sequential state 
discrimination is described as the following optimization problem:
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In Eq. (26), the first inequality becomes equality at j i0( )jβ = ≠ . Likewise, the third inequality becomes equal-
ity at j i0( )jα = ≠ . The second and fourth inequality become zero when the partial derivatives P /s i

(B,C,D,E) α∂ ∂  
a n d  β∂ ∂P /s i

(B,C,D,E)  b e c o m e  z e r o .  T h e r e f o r e ,  t h e  m a x i m u m  o f  E q .  ( 2 5 )  b e c o m e s 
ψ ψ= − |〈 | 〉|P q qmax{ , }(1 )s

(B,C,D,E),opt
1 2 1 2 . When q q1 2= , if (2 1) 0 001281591 2

1/4 4ψ ψ|〈 | 〉| < − . , it is optimal 
for the four receivers to discriminate every two pure state of Alice. If ψ ψ|〈 | 〉| ≥ − .(2 1) 0 001281591 2

1/4 4
 , it is 

optimal for the four receivers to discriminate only one out of two pure states.
From the previous results, we can consider the generalized sequential state discrimination for arbitrary N , in 

an inductive manner. We can construct an optimization problem of the generalized sequential state discrimina-
tion for any N  as follows:
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Figure 3.  The success probability of generalized sequential state discrimination when Bob, Charlie, David, and 
Eliot participate as receivers. Here, s 1 2ψ ψ= |〈 | 〉| denotes the overlap between two quantum states, and we use 
the identical prior probability (q q1 2= ). The small graph shows the optimal success probability in the region of 

< < .s0 0 0035. The solid black line shows the optimal success probability when four receivers discriminate 
every two pure state of Alice’s27. The black dashed line as Eq. (26) shows the optimal success probability when 
four receivers discriminate only one of two pure states of Alice’s (Eq. (26) is a generalization of the result of Pang 
et al.28). The red circles and the blue dots display the optimal success probability from Eq. (24). More specifically, 
the red circles (the blue dots) shows the optimal success probability when the constraint conditions of α α=1 2, 
β β=1 2, and γ γ=1 2 are (are not) added to Eq. (16). If s 0 001282≤ . , the red circles and the blue dots coincide 
with the solid black line, which shows that our result agrees with that of Bergou et al.27. Further, the blue dots are 
larger than the solid black line, but are smaller than the black dashed line. Therefore, if > .s 0 001282, the 
optimal condition of generalized sequential state discrimination does not include the constraint conditions of 
α α=1 2, β β=1 2, and 1 2γ γ= .
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where α α α α α→ = ( , , , , )N N
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= . If prior probabilities are all 

equal, the optimal success probability is obtained as
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where = −S N( ) (2 1)N N1/ . Equation (28) satisfies the result of Bergou27 and Pang28. If ψ ψ|〈 | 〉| < S N( )1 2 , the 
optimal condition contains I( )I I

1
( )

2
( )α α= ∀ . This property was argued by Bergou et al.27 When ∈ …N {2, 3, , 7}, 

the value of S N( ) is numerically given as

S
S
S
S
S
S

(2) 0 171572875253810
(3) 0 017559993780021
(4) 0 001281592197970
(5) 7 269939897187259 10
(6) 3 372943879071272 10
(7) 1 323880715612381 10

5

6

7

= .
= .
= .

= . ×

= . ×

= . ×

−

−

−

When N  becomes larger, S N( ) rapidly converges to zero. This implies that when the overlap between two pure 
states is not small enough, discriminating two pure states when many receivers participate is not a good strategy. 
Therefore, sequential state discrimination can be applicable for multiparty QKD in the case of a suitable number 
of receivers. That is because, in multiparty QKD, all receivers are required to discriminate every quantum state24,27.

Generalized sequential state discrimination of two mixed states.  Here, let us consider the generalized sequential 
state discrimination of two mixed states. For convenience, we will consider rank-2 mixed states such as
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Equation (29) has the same form as that of Eq. (6). Like in Eq. (6), every POVM corresponds to a real vector 
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( )α α α α . We can describe the generalized sequential state discrimination of two mixed states as the 

following optimization problem33:
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Then, Eq. (30) can be divided into the following two optimization problems:
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That is, the maximum of Eq. (30) becomes P p pmax max maxs
B B

s s
( , , ),optN1 ¯= +… . Although we consider rank-2 

mixed states as Eq. (29), we can generalize this argument to any mixed states, with an arbitrary rank. If =q q1 2, 
r r r1 2= = , and ¯ ¯ ¯r r r1 2= =  are assumed, then the optimal success probability can be found as33
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For either q q1 2≠  or ≠r r1 2(r r1 2¯ ¯= ), when r r S N( )1 2|〈 | 〉| < ( ¯ ¯r r S N( )1 2|〈 | 〉| < ), pmax s( p̄max s) is difficult to obtain 
analytically. Therefore, one may evaluate pmax s( p̄max s) numerically. However, when r r S N( )1 2|〈 | 〉| ≥ ¯ ¯r r S N( ( ))1 2|〈 | 〉| ≥ , 
one can obtain = − |〈 | 〉|p q r q r r rmax max{ , }(1 )s

N N
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2/¯ ¯ ¯ ¯ ¯= − |〈 | 〉| ).

If r r S N( )1 2|〈 | 〉| ≥  and ¯ ¯|〈 | 〉| ≥r r S N( )1 2 , it is optimal that every receiver discriminates Alice’s two pure state. 
However, If |〈 | 〉| <r r S N( )1 2  or r r S N( )1 2|〈 | 〉| <¯ ¯ , discriminating only one out of Alice’s two pure states is optimal.

Comparison with other discrimination strategies.  There are other strategies for multi-party QKD, besides 
sequential state discrimination. The first one is the quantum reproducing strategy27. This strategy is performed as 
in the following procedure (see Fig. 4): Bob 1 optimally discriminates Alice’s quantum states, without any error. If 
Bob 1 obtains a conclusive result, he can reproduce the same quantum state, which corresponds to his conclusive 
result. Then, Bob 1 sends the quantum state to Bob 2. This procedure is recursively performed from Bob 2 to Bob 
N . If Bob I  obtains an inconclusive result, he tells every receiver, through classical communication, that he failed 
to discriminate the quantum state of Alice. The success probability of the quantum reproducing strategy is 
expressed as

P q

q

Pr [1 ]Pr [1 ] Pr [1 ]

Pr [2 ]Pr [2 ] Pr [2 ]
s rep

B B
B B B

B B B

,
( , , )

1 1 1 1

2 2 2 2

N
N

N

1
1 2

1 2





ρ ρ ρ

ρ ρ ρ

= | | × × |

+ | | × × | .

…

Here, let us consider the case of S2. Then, i MPr [ ] Tr[ ]B i i i
I( )

I
ρ ρ| =  is the probability that Bob I  obtains the meas-

urement outcome i. If we assume an equal prior probability, when mixed states have the same eigenvalues, the 
optimal success probability of the quantum reproducing strategy is derived as (see Method)21
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Here, r r r1 2= =  and r r r1 2¯ ¯ ¯= = . s and s̄  are defined as = |〈 | 〉|s r r1 2  and s r r1 2¯ ¯ ¯= |〈 | 〉|, respectively.
The second case is the quantum broadcasting strategy27,32. This strategy is performed as in the following pro-

cess (see Fig. 5): Bob 1 puts Alice’s unknown quantum states into a quantum broadcasting machine, which trans-
forms iρ  into an −N partite state i

B B( , , )N1σ … , with a probability of less than 139. Here, these states satisfy 
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B B( , , )N1σ … . Then, every receiver discriminates his partial state ρi, without any error. If Bob 1 fails, 

however, he tells everyone, through classical communication, that quantum broadcasting has failed. The optimal 
success probability of quantum broadcasting is expressed as
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Here, ρPr [ ]broad i  is the maximal success probability to succeed in broadcasting when ρi is given. The optimal 
success probability of the quantum broadcasting strategy is larger than that of the quantum reproducing strategy. 
In Fig. 5, quantum broadcasting strategies for three receivers (Bob, Charlie, and David) and four receivers (Bob, 
Charlie, David, and Eliot) are described. In these cases, the optimal success probabilities of the quantum broad-
cast strategy are given by

P
s s

rs rs

P
s s

rs rs

min 1
1

, 1
1

(1 ) ,

min 1
1

, 1
1

(1 )

s broad
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,
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2
3

,
(B,C,D,E),opt

3
4

¯
¯¯

¯
¯¯

=



 + +






− −

=



 + +






− − .
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Here, { }min ,
s s

1
1

1
1 ¯+ +

 is the optimal probability that once quantum broadcasting succeeds39. Because 
Pr [ ] Pr [ ]broad broad1 2ρ ρ= , the optimal success probability of quantum broadcasting can be derived, similar to that 
of quantum reproducing. If Alice prepares one out of two pure states, the optimal success probability of the gen-
eralized sequential state discrimination is less than that of quantum reproducing or quantum broadcasting27. 
However, if Alice prepares one out of two mixed states, the optimal success probability of the generalized sequen-
tial state discrimination can be larger than that of both the quantum reproducing and the quantum broadcasting 
strategy. Namely, the generalized sequential state discrimination of mixed states has more potential for applica-
tion to multiparty QKD than those of the quantum reproducing and quantum broadcasting strategies. It should 
be noted that sequential state discrimination can be a good candidate for application to multiparty QKD when 
mixed states are used, in contrast to the result of the pure states obtained by Bergou et al.27.

Example 1.  Suppose that Alice prepares one out of two mixed states { , }i 1 2ρ ρ ρ∈ , with equal prior probabilities. 
Here, two mixed states are expressed as Eq. (29), where r r r0 6, 1 0 4¯= . = − = . , = .s 0 7, and ¯ = .s 0 001. In the 
case of =N 3(Bob,Charlie, and David), the optimal success probability for each strategy is numerically obtained 
as

= .

= .

= . .

P

P

P

max 0 294443356418367,

max 0 194708598336000,

max 0 067373217417301

seq

rep

broad

(B,C,D)

(B,C,D)

(B,C,D)

Here, Pseq, Prep, and Prep denote the success probability of generalized sequential state discrimination, quantum 
reproducing, and quantum broadcasting, respectively. In the case of N 4= (Bob, Charlie, David, and Eliot), opti-
mal success probability for each strategy is numerically obtained as

= .

= .

= . .

P

P

P

max 0 182986042905254,

max 0 112853103595546,

max 0 022970304008863

seq

rep

broad

(B,C,D,E)

(B,C,D,E)

(B,C,D,E)

Figure 4.  Schematic of the quantum reproducing strategy for Bob 1, Bob 2, 


, and Bob −N 1.

Figure 5.  Schematic of the quantum broadcasting strategy. Here, QBM denotes a quantum broadcasting 
machine39. (a) consists of Bob, Charlie, and David. (b) consists of Bob, Charlie, David, and Eliot.
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Therefore, it can be seen that, when two mixed states such as Eq. (29), with = .r 0 6, = .r̄ 0 7, = .s 0 7, and 
= .s 0 001¯ , are used, the optimal success probability of generalized sequential state discrimination performs better 

than quantum reproducing and quantum broadcasting.

Example 2.  Suppose Alice prepares one out of two mixed states { , }i 1 2ρ ρ ρ∈ , with equal prior probabilities. Here, 
two mixed states are expressed as Eq. (29), where r r r0 3, 1 0 7¯= . = − = . , s 0 5= . , and s 5 10 8= × −¯ . We plot-
ted the optimal success probability of generalized sequential state discrimination and quantum reproducing strat-
egy in Fig. 6. As can be seen in the figure, the optimal success probability of generalized sequential state 
discrimination exceeds those of the quantum reproducing and quantum broadcasting strategies. Here, we 
describe a specific way to perform the quantum broadcasting strategy, as shown in Fig. 6, when seven receivers 
participate. When the given quantum states are non-orthogonal, because the success probability of quantum 
broadcasting cannot achieve to one, generalized sequential state discrimination also outperforms quantum 
broadcasting strategy. In the extreme case, if N 1= , the optimal success probability in Fig. 6 becomes equal to the 
optimal unambiguous discrimination21.

In conclusion, the generalized sequential state discrimination of two mixed states can outperform the other 
two strategies. It can be implemented using linear optics. In the next section, we will describe its implementation 
in detail.

Optical implementation.  Here, we explain the method to implement the generalized sequential state dis-
crimination of two coherent states, using linear optics.

Implementation of the POVM for unambiguous discrimination.  Suppose that Alice prepares ψ| 〉 ∈ Si n¯ , with a 
prior probability qi. When an ancilla state | 〉B  is prepared in Bob, his measurement that performs an unambiguous 
discrimination can be constructed as

ψ α φ α φ| 〉 ⊗ | 〉 = | 〉 ⊗ | 〉 + | 〉 ⊗ | 〉 .B B B¯U (31)i A B i i A i B i A BAB
(B)

0 0

Here, B B B| 〉 | 〉 … | 〉{ , , , }n0 1  is an orthonormal basis. Moreover, αi(ᾱi) is a conditional probability, that Bob 
obtains conclusive result i(inconclusive result), when Alice prepares ψi. It is well known that Eq. (31) is equivalent 
to Eq. (2), in unambiguous discrimination.Moreover, Eq. (31) shows a way to implement an unambiguous dis-
crimination in real-world settings.

If S2¯  consists of two polarized single photon states ψ| 〉 = | 〉 + | 〉a H b Vi i i (i 1, 2= ), a global unitary operator 
UAB

(B) can be implemented using linear optics. Solis-Prosser et al.29 used this method to perform a sequential state 
discrimination of two polarized single-photon states, with equal prior probability. In their model, an ancilla state 
in Eq. (31) corresponds to a single-photon path. If their model is applied to generalized sequential state discrim-
ination, Bob I  should prepare 3I paths. Therefore, if the number of receivers is large, generalized sequential state 
discrimination should require an exponentially large number of single photon paths.

However, the sequential state discrimination of coherent states does not require many paths34. One can 
perform the sequential state discrimination by using the modified Banaszek or the Huttner model. In the next 
subsection. we will explain the modified Banaszek model)40,41. Both models can perform an unambiguous dis-
crimination of two nonorthogonal coherent states, with general prior probabilities. Furthermore, both models 
can achieve an IDP limit8–11. By simply adding beamsplitters in the Banaszek or the Huttner model, one can per-
form a generalized measurement, that produces post-measurement states34.

Implementation of the sequential state discrimination of two pure states.  In this subsection, we propose a 
method to implement the generalized sequential state discrimination of two coherent states. In our previous 
work34, the sequential state discrimination of two coherent states was discussed in the case of two receivers. 

Figure 6.  Plot of the optimal success probability of generalized sequential state discrimination (solid black 
line), quantum reproducing strategy (black dashed line) and quantum broadcasting strategy (dash-dot black 
line). We also describe a specific way to perform quantum broadcasting strategy.
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Here, we deal with sequential state discrimination involving N  receivers. Based on the Banaszek model, Bob 
∈ …I N{1, , }’s measurement can be designed as shown in Fig. 7. According to the figure, Alice prepares one 

out of two coherent states i( 1, 2)iβ| 〉 = , where β| 〉 = ∑ | 〉β β−| |
=

∞e ni n n0 !
i i

n2
. Bob I ’s measurement consists of beam 

combiners and two on-off detectors. If two on-off detectors D I
1
( ) and D I

2
( ) give outcomes of [off,on]([on,off]), 

Bob I  distinguishes Alice’s coherent state as β| 〉1 ( β| 〉2 ). If two outcomes are [off,off], Bob I  cannot distinguish 
Alice’s coherent state. Here, [off,off] corresponds to an inconclusive result.

If I N< , beam splitters BS , BSI I
1
( )

2
( ), and BS I

3
( ) are used to produce the post-measurement state. If Ri

I( ) denotes 
the reflectivity of BSi

I( ), R I
3
( ) can be given as34

R R R
R R R R

(1 )
(1 )

I
I I

I I I I3
( ) 2

( )
0
( )

1
( )

0
( )

2
( )

0
( )=

−

+ −
.

Bob I ’s post-measurement state can be expressed as β∏ = f R R R( , , )J
I J J J

i1 0
( )

1
( )

2
( ) , where f  is a real function: 

f x y z xy x z( , , ) (1 )= + − . According to Rule 1, Bob N  should perform an optimal unambiguous discrimination 
on Bob −N 1’s post-measurement state. Therefore, Bob N ’s measurement is same as in the Banaszek model (see 
Fig. 7). In our optical model, the success probability of the generalized sequential state discrimination is obtained as

¯ ¯ ¯ ¯
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Here, R̄ R1= −  and = ∏ =K f R R R( , , )I
J
I I I I( )

1 0
( )

1
( )

2
( ) . The optimal success probability of Eq. (32) is shown in 

Figs. 8 and 9. In Fig. 8, we assume that the prior probabilities are equal. In Fig. 9, we assume that q 0 41 = .  and 
q 0 62 = . . The red circles (blue dots) shows the optimal success probability, with (without) the additional con-
straints = ∀ ∈ … −R I N1( {1, , 1})I

0
( )  and R 1N( ) = . In Fig. 8, when B N( )1 2

2β β| − | < , the maximum of Eq. 
(32) is equal to β β= − |〈 | 〉|…P (1 )s

B B N N( , , ),opt
1 2

1/N1 . When B N( )1 2
2β β| − | ≥ , the maximum of Eq. (32) is equal 

to β β= − |〈 | 〉|…P (1 )s
B B N N( , , ),opt 1

2 1 2
2/N1 , where B N N( ) 2 ln(2 1)N1/= − − . We can numerically calculate B N( ) as

B
B
B
B
B
B

(2) 3 525494348078171
(3) 8 084264089976305
(4) 13 319304138790477
(5) 19 058354881391878
(6) 25 199449280612455
(7) 31 675056582901121

= .
= .
= .
= .
= .
= .

Figure 7.  Schematic of the generalized sequential state discrimination based on the Banaszek model40. (a) 
Shows the measurement for Bob <I N . (b) Shows the measurement for Bob N . BSi

I( ) means the beam splitters 
of Bob I ’s measurement. Di

I( ) is Bob I ’s i-th on-off detector, PS is π–phase shifter and D is beam splitter, which is 
mathematically expressed as a displacement operator42.
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In Fig. 9, when β β| − |1 2
2 is small, the maximum of Eq. (32) is equal to that of the optimization problem in Eq. 

(27). If 1 2
2β β| − |  is large, the maximum of Eq. (32) is equal to β β= . − |〈 | 〉|…P 0 6(1 )s

B B N N( , , ),opt
1 2

2/N1 . Therefore, 
we conclude that our model can optimally perform a generalized sequential state discrimination of two coherent 
states. Because the Huttner model provides the same measurement probability distribution as that of the Banaszek 
model34, generalized sequential state discrimination can be performed optimally, using the modified Huttner 
model. Unlike the Banaszek model, the Huttner model uses a horizontally polarized coherent state β| 〉i , mixed 
with a vertically polarized coherent state γ| 〉, as an information carrier. Therefore, if an eavesdropper attempts to 
steal information encoded in coherent light, the eavesdropper will inevitably change at least one of two polarized 
coherent states. Hence, eavesdropping ruins the unambiguous discrimination and produces an error on the 
receiver’s measurement. Therefore, all receivers can notice the fact that an eavesdropper exists by checking 
whether an error occurs.

We compare the optimal success probabilities of Figs. 8 and 9. One can see that in Fig. 10, the solid red line 
which denotes the optimal success probability of sequential state discrimination for three receivers is larger than 
the solid black line which denotes the optimal success probability of sequential state discrimination for four 
receivers. The reason for the difference between two success probabilities is due to the strategy of David. In the 
case of N 3= , David becomes the last receiver and chooses optimal unambiguous discrimination. However, in 
the case of =N 4, David is not the last receiver and should choose nonoptimal unambiguous discrimination.

Implementing the sequential state discrimination of two mixed states.  In this subsection, we propose a way to 
implement the generalized sequential state discrimination of two mixed states. In our model, the mixed states are 
produced as in the following process (See Fig. 11): First, Alice prepares one out of two coherent states β β| 〉 | 〉,i ī , 
with prior probabilities | 〉 | 〉¯r r,i i . Second, Alice polarizes the coherent state iβ| 〉 β̄| 〉( )i  in the horizontal (vertical) 
direction. After performing two steps, Alice obtains a mixed state as50

r H H r V V , (33)i i i i i i i¯ ¯ ¯ρ β β β β= | ⊗ 〉〈 ⊗ | + | ⊗ 〉〈 ⊗ |

where β β| ⊗ 〉 = | 〉 ⊗ | 〉H Hi i  and β β| ⊗ 〉 = | 〉 ⊗ | 〉¯ ¯V Vi i . Because Hiβ| ⊗ 〉 and β| ⊗ 〉Vī  are orthogonal to each 
other, Eq. (33) is equal to Eq. (6). If Alice wants to build rank-m mixed states, she would perform the following 
process: First, Alice prepares a coherent state β β β| 〉 ∈ | 〉 … | 〉{ , , }ij i im1  with a prior probability rij. Second, she 
passes βij to the j-th photon path (Dj). Then, she obtains the following mixed states:

ρ β β β β= | ⊗ 〉〈 ⊗ | + + | ⊗ 〉〈 ⊗ |r D D r D D , (34)i i i i im im m im m1 1 1 1 1

where β β| ⊗ 〉 = | 〉 ⊗ | 〉D Dij j ij j . Moreover, | 〉Dj  denotes the j-th path state.
Hiβ| ⊗ 〉 and Viβ| ⊗ 〉¯  can be perfectly discriminated by using a polarized beam splitter. We can use the 

Banaszek model to discriminate the nonorthogonal coherent states and in Fig. 10, we propose an optical model 
to discriminate the mixed states, expressed as Eq. (33). The Huttner model can also be used to perform the meas-
urement for the generalized sequential state discrimination of two mixed states, in a similar way to that in Fig. 10.

Security analysis of multiparty QKD based on sequential state discrimination - Part I: 
Eve’s single trial for eavesdropping
In this section, we analyze the security of multiparty QKD, which optimal sequential state discrimination pro-
vides. Even though our analysis is confined to the case of four receivers (Bob, Charlie, David, Eliot), it can be 
consistently extended to the case of arbitrary number of receivers (See Fig. 12). In information theory, the 

Figure 8.  Plots of the success probability of the sequential state discrimination of coherent states, when there 
are three receivers. The solid black line (dashed black line) shows the optimal success probability when the three 
receivers discriminate two pure states of Alice (one out of two pure states of Alice). The red circles (blue dots) 
shows the maximum of Eq. (32), with (without) =R 1I

0
( ) . In (a), we use = = .q q 0 51 2 , and in (b) we use 

q q0 4, 0 61 2= . = . .
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classical bit of Alice can be expressed by ∈i {0, 1} and we use | 〉 | 〉 | 〉{ 0 , 1 , ? } as a computational basis. Here, ?| 〉 is 
a computational basis that corresponds to the “failure” of Eve.

In QKD, Alice should minimize the prior information of the classical bit. Otherwise, Eve can obtain the prior 
information of the classical bit without being caught by the sender and the receiver. Alice prepares quantum states 
ψ| 〉0  and 1ψ| 〉 corresponding to classical bit 0 and 1, with identical prior probability. In the view of Alice and Bob, 
it is the situation where Alice and Bob share the entangled state 0 10 1ψ ψ| 〉 ⊗ | 〉 + | 〉 ⊗ | 〉43. Suppose that Eve tries 
to eavesdrop between Alice and Bob (Later, we will consider the case where the strategy of Eve is a collective 
attack43). When we denote the eavesdropping of Eve as a quantum channel Λ →

B
A B( ), the bipartite quantum state 

between Alice and Bob can be expressed by

σ = ⊗ Λ |Ψ〉〈Ψ|→(id )( ),AB A B
A B

AB
( )

where (1/ 2 )( 0 1 )AB A B A B0 1ψ ψ|Ψ〉 = | 〉 ⊗ | 〉 + | 〉 ⊗ | 〉  and idA is an identity channel. One can assume that Alice 
and Bob do not have any information about Eve. Then, Λ →

B
A B( ) can be seen as

I( ) (1 )
2

,B
A B

AB AB
B( ) σ η σ ηΛ = + −→

Figure 9.  Plots of the success probability of the sequential state discrimination of the coherent states, when four 
receivers exist. The solid black line (dashed black line) shows the optimal success probability when three 
receivers discriminate two pure states of Alice (one out of two pure states of Alice). In (a), we use = = .q q 0 51 2  
and in (b), we use = . = .q q0 4, 0 61 2 .

Figure 10.  The optimal success probabilities when receivers are three and four. In (a), the prior probabilities of 
two coherent states are identical. In (b), the prior probabilities of two coherent states are = .q 0 41  and = .q 0 61 . 
Here, the solid red (black) line denotes the case of =N 3(N 4= ). This result shows that the optimal success 
probability of N 3=  is larger than that of N 4= . It can be understood as follows: For instance, when receivers 
are three and four, the third receiver called David should use a strategy depending on the existence of an extra 
receiver. In the case of =N 3, David is the last receiver and should choose optimal unambiguous 
discrimination. However, in the case of =N 4, David is not the last receiver and should use nonoptimal 
unambiguous discrimination. Therefore, the optimal success probability of N 3=  is larger than that of N 4= .
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where η ∈ [0, 1]AB  is the efficiency of the quantum channel. As the efficiency is more close to 1, Alice and Bob can 
be less affected by Eve. Then, the bipartite state σAB can be given as

I(1 )
2 (35)AB AB AB AB A
Bσ η η= |Ψ〉〈Ψ| + − | + 〉〈 + | ⊗ .

The purification of the bipartite state ABσ  can be found as

η η φ|Γ〉 = |Ψ〉 ⊗ | 〉 + − | + 〉 ⊗ | 〉+? 1 , (36)ABE AB AB E AB A BE

where φ| 〉 = | 〉 + | 〉+ (1/ 2 )( 00 11 ). Equation (36) can be understood as follows. If Eve fails to eavesdrop with a 
probability ABη , Alice and Bob succeed in sharing |Ψ〉. Then, Alice and Bob can share a secret key. Meanwhile, the 
quantum state of Eve is given by ?| 〉. If Eve succeeds to eavesdrop with a probability of η−1 AB, Eve shares a max-
imally entangled state with Bob.

The joint probability of the case where Alice prepares ψ| 〉i , Bob obtains j as a result of measurement, and Eve 
gets bit k can be given as follows:

= |Γ〉〈Γ| | 〉〈 | ⊗ ⊗ | 〉〈 | ∈ .P i j k i i M k k i j( , , ) Tr { ( )}, , {0, 1} (37)ABE ABE ABE A j E

When the prior probability is identical, the optimal measurement of Bob corresponds to the case of 
α α= = − s1 N

0 1
1/ . Therefore, one can obtain the following probabilities (The detailed derivation can be found 

in Method):

Figure 11.  Schematic of the optical model for performing the generalized sequential state discrimination of 
two mixed states. Here, BS is a beam splitter, PBS is a polarized beam splitter, D is a beam combiner, PS is a 
phase shifter, and on-off is an on-off detector.

Figure 12.  The case where Eve eavesdrops between David and Eliot. In (a), Eve eavesdrops between David and 
Eliot. Here, Eve interacts her system E with system Ē. The interaction is described by the global unitary operator 

¯UEE. After the interaction, Eve measures system E. The description of (a) is equivalent to the case of (b), where 
Alice, Eve, and Eliot share AEEΓ| 〉 ¯ .
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In Eq. (38), i j k, , {0, 1}∈  is considered. Because an inconclusive result of Bob and failure of Eve cannot pro-
vide any information, Bob (Eve) can discard the inconclusive result (failure). The post-processing transforms four 
probabilities of Eq. (38) as follows:
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for i j k, , {0, 1}∈ . It should be noted that the four probabilities obtained from post-processing are dependent 
only on the probability of the conclusive result. From these four probabilities, one can evaluate the secret key rate 
between Alice and Bob in the following way44:

= − .K I A B I B Emax{0, ( : ) ( : )}AB E:

Here, I X Y( : )(H X Y( , )) is Shannon’s mutual information (joint Shannon entropy) between X  and Y . And 
because of = = ∀ ∈˜ ˜P i P i i( ) ( ) 1/2( {0, 1})A E , the relation of I A B I B E H B E H A B( : ) ( : ) ( , ) ( , )− = −  holds. 
Therefore, the secret key rate is rewritten as

K H B E H A Bmax{0, ( , ) ( , )}AB E: = − .

Now, let us consider the case where Eve eavesdrops between Bob and Charlie. In this case, the quantum state 
between Alice and Bob is the entangled state φ φ| 〉 ⊗ | 〉 + | 〉 ⊗ | 〉0 1B B

0
( )

1
( ) (The detailed derivation is found in 

Method). Here, φ| 〉i
B( )  is the post-measurement quantum state corresponding to i {0, 1}∈  which is the result of 

measurement of Bob. Because Eve eavesdrops between Bob and Charlie, when we denote the eavesdropping of 
Eve as a quantum channel B

B C( )Λ → , the bipartite state between Bob and Charlie can be given as

σ Λ Φ Φ= ⊗ | 〉〈 |→(id )( ),AC A C
B C B B

AC
( ) ( ) ( )

where (1/ 2 )( 0 1 )B
AC A

B
C A

B
C

( )
0
( )

1
( )Φ φ φ| 〉 = | 〉 ⊗ | 〉 + | 〉 ⊗ | 〉 . Likewise Eq. (37), we can obtain the marginal 

probabilities of Alice, Charlie, and Eve:
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Here, BCη  is a channel efficiency between Bob and Charlie. In the case where Eve eavesdrops between Charlie 
and David, the marginal probabilities of Alice, David, and Eve are given as
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where BCη  is a channel efficiency between Charlie and David. And in the case where Eve eavesdrops between 
David and Eliot, the marginal probabilities of Alice, Eliot, and Eve are obtained as (Here, the index Ē denotes 
Eliot)

P i

P i j s s
s

P k

P j k
s
s

( ) 1
2
,

( , ) 1
2
(1 ) (1 ) 1

4(1 )
,

( )
1

2
,

( , )
(1 )(1 )
4{1 ( 1) } (41)
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AE DE ij DE

E
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k
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1/4

η δ η

η

η

=

= − + −
−
−

=
−

=
− −

+ −
.

¯ ¯ ¯

¯

¯
¯

The secret key rate can be evaluated by

K I A X I X E H X E H A X X B C D Emax{0, ( : ) ( : )} max{0, ( , ) ( , )}, { , , , }AX E: ¯= − = − ∈ .

Figure 13 shows KAX E: . Here, η is the efficiency of channel where Eve involves. In Fig. 13, we consider the case 
of = .s 0 00128. Also, solid line, dashed line, dash-dot line, and dotted line denote the cases of =X B C D, ,  and Ē 
respectively.

One can see that in Fig. 13, the secret key rate is the lowest in the case of ¯X E= (dotted line).This implies that 
the best performance of Eve can be obtained between David and Eliot. However, it should be emphasized that the 
effect depending on the position of eavesdropping is not big.

Security analysis of multiparty QKD based on sequential state discrimination - Part 
II: Eve’s multi-trial for eavesdropping
Here, we consider the case where Eve uses quantum memories. By using quantum memories of Eve, she can per-
form eavesdropping between sender and receivers. Suppose that Alice, Bob, and Charlie are involved in sequential 
state discrimination as a sender and two receivers. In this case, for eavesdropping, Eve uses two quantum memo-
ries: one quantum memory is used between Alice and Bob, and another quantum memory is used between Bob 
and Charlie (It should be noted that even though we consider the sequential state discrimination comprised of 
a sender and two receivers, our argument can be extended to the sequential state discrimination comprised of a 
sender and multi-receivers).

Now, if Eve use a quantum memory EB for evesdropping between Alice and Bob (see Fig. 14), system of A B, , 
and EB can be described as

η η φ|Γ〉 = |Ψ〉 ⊗ | 〉 + − | + 〉 ⊗ | 〉 .+? 1ABE AB AB E AB A BEB B B

When Bob discards an inconclusive result, ABEB
|Γ〉  becomes the following mixed state:

   ( ){ }ACE AB AE
B B

C AE
B B

C0 0 0
( )

0
( )

1 1 1
( )

1
( )

B B B
Nσ η φ φ φ φ= | 〉〈 | ⊗ | 〉〈 | + | 〉〈 | ⊗ | 〉〈 | .

Here, →K :i
B

B C
( ) H H  is the Kraus operator of Bob which corresponds to the measurement result i {0, 1, ? }∈ . 

And we have N( ) [ ]AB 0 0 1 1
1   η = 〈 | 〉 + 〈 | 〉 − . The non- normalized vector | 〉 | 〉 ,0 1  is defined as follows:

s s
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−

| 〉 ⊗ | 〉 +
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| + 〉 ⊗ | 〉 .





Here, Bob’s POVM consists of α α α| 〉〈 |i i i . When Eve uses a quantum memory EC for eavesdropping between 
Bob and Charlie, the eavesdropping of Eve can be expressed as a quantum channel C

B C( )Λ → . That is, the eavesdrop-
ping of Eve transforms ACEB

σ  as follows:

N  

 
I

id ( ) ( )

(1 )
2

E C
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CE AB BC
x

x x AE x
B
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A
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A
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0

1

B B B

B

∑

∑

σ η η φ φ

η
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



 | 〉〈 | ⊗ | 〉〈 |

+ − | 〉〈 | ⊗




.

→

=

=

The purification of id ( )AE C
B C

ACE
( )

B B
σ⊗ Λ →  is given as
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Here, ?0| 〉 and | 〉?1  are computational basis corresponding to Eve’s failure. It should be noted that ?0| 〉 and ?1| 〉 
are orthogonal to each other. The computational basis is orthogonal to | 〉 | 〉 | 〉00 , 01 , 10 , and 11| 〉.

Unlike system EB, system EC is composed of two subsystems. It is because when Eve eavesdrops between Bob 
and Charlie, Eve also can eavesdrop between Alice and Bob. When EC1 and EC2 are the subsystems of EC, |Γ〉ACE EB C

 
can be described in the following way:
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Here, φ| 〉+  is a maximally entangled state φ| 〉 = | 〉 + | 〉+ ( 00 11 )/ 2 . In other word, subsystem EC1 is used for 
eavesdropping of Alice’s quantum state and subsystem EC2 is used for eavesdropping of Bob’s post-measurement 
state.

When Bob and Charlie perform optimal sequential state discrimination, the prior probability is 
P i i( ) 1/2( {0, 1})A = ∀ ∈  (The detailed calculation can be found in Method). And, the marginal probability 
between Alice and Charlie is given as follows:

P i j s i s i

s
i i

( , ) ( )(1 ) ( ) ( )(1 ) ( )
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2(1 )
{ ( ) ( )}
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0 0 1 1

0 1
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Here, i( )aX  is defined in the following way:

X i s
s

s
( ) 1

2
(1 )

(1 )(1 )
4(1 )a AB ia

AB
2η δ

η
= − +

− −

−
.

Figure 13.  The secret key rate KAX E: . Here, solid line, dashed line, dashed-dot line and dotted line correspond to 
the case of X B C D, ,=  and Ē, respectively. η is the efficiency of the quantum channel, where eavesdropper Eve 
exists. According to this, the nonzero secret key rate is guaranteed in almost every region of η.
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The result of measurement of Eve can be expressed as a single label ∈ ×p {? , 0, 1} {? , ? , 00, 01, 10, 11}E E0 1B C
 

(The notation of the label can be found in Fig. 15). It should be noted that ?0| 〉 and | 〉?1  cannot be expressed by a 
linear combination of | 〉 | 〉 | 〉00 , 01 , 10 , and 11| 〉.

The marginal probability of Charlie and Eve is given by

( )
( )( )

( )
( )

( )

P p I

I I

P k p I

I

I

( )

,

( , )

E AC p E E p E E

ACE E AC p E E AC p E E ACE E

CE A k k k C p E E p E E

k ACE E A k C p E E

A k C p E E ACE E

B C B C

B C B C B C B C

B C B C

B C B C

B C B C

Γ π π

π π

β β β π π

β β π

β π

= 〈 | ⊗ | 〉 〈 | |Γ〉

= 〈Γ| ⊗ | 〉 ⊗ 〈 | |Γ〉

= 〈Γ| ⊗ | 〉〈 | ⊗ | 〉 〈 | |Γ〉

= 〈Γ| ⊗ | 〉 ⊗ | 〉

× ⊗ 〈 | ⊗ 〈 | |Γ〉 .

P p( )E  and P p( )CE  can be found in Method and labeled vector p E EB C
π| 〉  can be expressed as

V q ,p E E
q

pq E E
1

18

B C B C∑π| 〉 = | 〉
=

where every Vpq ∈  satisfies V V V Vr pr qr k r rp rq pq1
18 18 δ∑ = ∑ == =

⁎ ⁎ . The set of these labeled vectors π| 〉 ={ }p p 1
18  forms the 

joint projective measurement { }p p p 1
18π π| 〉〈 | =  of Eve.

Figure 14.  The case where Eve eavesdrops between Alice and Bob and between Bob and Charlie. In (a1), Eve 
eavesdrops between Alice and Bob and between Bob and Charlie. First, Eve prepares two systems of EB and EC. 
Then, Eve interacts system EB with system B (The interaction is expressed by the global unitary operator UBEB

). 
Second, Eve interacts system EC with system C (This interaction is described by the global unitary operator 
UCEC

). Atfer these interactions, Eve measures system EB and EC globally (We denote this measurement as joint 
measurement). Here, the structure of joint measurement is determined by a unitary transformation 
V V{ }pq p q, 1

18= = . If the unitary transformation V  is fixed as the identity, (a1) and (a2) are equivalent. In (a2), Eve 
measures system EB and system EC locally (We denote this measurement as an individual measurement). The 
description of (a1) and (a2) is equivalent to the case of (b), where Alice, Charlie, and Eve share ACE EB C

|Γ〉 .
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When Alice, Charlie, and Eve discard inconclusive result, marginal probability becomes

=
∑

=
∑

=
∑ ∑
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E
E

p E

CE
CE
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0
1
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˜

˜

˜

The secret key rate between Alice and Charlie, which is given by

K I A C I C E H A H C A H C E H Emax{0, ( : ) ( : )} max{0, ( ) ( , ) ( , ) ( )},AC E E: B C
= − = − + −

is displayed in Fig. 16. For convenience, it is assumed that each channel efficiency is equal to each other 
AB BCη η η= = ¯. In Fig. 16, the solid black line corresponds to the case where Eve measures her subsystem, by the 

eighteen basis (This is the case where unitary transformation =V{ }pq p q, 1
18  is an identity). And, green points corre-

spond to the cases of random unitary transformation. Because Alice and Bob cannot know Eve’s system, treating 
unitary transformation as a random one can be justified.

Experiment 1: The nonzero secret key rate in the case of s = 0.05
Individual measurement.  When Eve measures her subsystem using eighteen basis p{ }p 1

18| 〉 = , if η̄ is greater 
than η̄ = .0 65295crit , Alice and Charlie can obtain nonzero secret key rate (The method of simulation can be 
found in Method).

Arbitrary joint measurement.  When Eve selects a measurement out of 100000 measurements, the ratio to 
obtaining nonzero secret key rate increases as η̄ increases. When 0 75η = .¯ , the ratio to obtaining nonzero secret 
key rate becomes .36 323%. When ¯ 0 95η = . , the ratio to obtaining nonzero secret key rate becomes .99 978%. 
Specially, when ¯ 0 975η = . , nonzero secret key rate can be obtained regardless of a measurement.

Figure 15.  The label of p in terms of basis of EB and EC. As an example, =p 1 corresponds to the case where the 
basis of EB is “?” and the basis of EC is “?0”, which is denoted as | = 〉 = | 〉 ⊗ | 〉p 1 ? ?E E E E0B C B C

. And p 2=  
corresponds to the case where the basis of EB is “?” and the basis of EC is “?1”, which is denoted as 
| = 〉 = | 〉 ⊗ | 〉p 2 ? ?E E E E1B C B C

.
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Experiment 2: The nonzero secret key rate in the case of s = 0.10
Individual measurement.  When Eve measures her subsystem using eighteen basis p{ }p 1

18| 〉 = , if η̄ is greater 
than ¯ 0 65364critη = . , Alice and Charlie can obtain nonzero secret key rate (The method of simulation can be 
found in Method).

Arbitrary joint measurement.  When Eve selects a measurement out of 100000 measurements, the ratio to 
obtaining nonzero secret key rate increases as η̄ increases. When η = .0 75¯ , the ratio to obtaining nonzero secret 
key rate becomes .36 193%. When η̄ = .0 95, the ratio to obtaining nonzero secret key rate becomes 99 854%. . 
Specially, when 0 98η̄ = . , nonzero secret key rate can be obtained regardless of a measurement.

Experiment 3: The nonzero secret key rate in the case of s = 0.15
Individual measurement.  When Eve measures her subsystem using eighteen basis p{ }p 1

18| 〉 = , if η̄ is greater 
than η̄ = .0 65480crit , Alice and Charlie can obtain nonzero secret key rate (The method of simulation can be 
found in Method).

Arbitrary joint measurement.  When Eve selects a measurement out of 100000 measurements, the ratio to 
obtaining nonzero secret key rate increases as η̄ increases. When η̄ = .0 75, the ratio to obtaining nonzero secret 
key rate becomes .36 253%. When ¯ 0 95η = . , the ratio to obtaining nonzero secret key rate becomes 99 830%. . 
Specially, when ¯ 0 983η = . , nonzero secret key rate can be obtained regardless of a measurement.

Discussion
In this report, we presented a generalization of sequential state discrimination. In our work, we did not limit the 
prior probabilities and the number of quantum states and receivers. We could express the generalized sequential 
state discrimination as a mathematical optimization problem. Because this optimization cannot be solved ana-
lytically, a numerical method was applied to the construction of the optimal POVM. Our optimization problems 
include all the results of the previous work27 as special cases. Moreover, we applied the generalized sequential 
state discrimination to multiparty QKD. If Alice prepares one out of two pure states, the generalized sequential 
state discrimination can be used to perform multiparty QKD when there are a few receivers. It should be noted 
that if Alice prepares one out of two mixed states, the optimal success probability of generalized sequential state 
discrimination can exceed that of the quantum reproducing and quantum broadcasting strategies. Therefore, the 
generalized sequential state discrimination of mixed states has more potential for application to multiparty QKD 
than the other strategies. Finally, we analyze the security of multiparty QKD provided by optimal sequential state 
discrimination. Our analysis shows that the multiparty QKD guarantees nonzero secret key rate even in low 
channel efficiency.

Even if we considered discriminating two quantum states, we could extend our argument for generalized 
sequential state discrimination to more than two quantum states. However, an unambiguous discrimination of 
more than three quantum states has not been known yet. Therefore, one needs to find a way to discriminate more 
than three quantum states, without any error.

If pure states { , , }n1ψ ψ| 〉 … | 〉  are linearly dependent, unambiguous discrimination cannot be performed. 
However, in the case of finite copies of coherent states { , , }C

n
C

1ψ ψ| 〉 … | 〉⊗ ⊗ , they are not always linearly dependent. 
Therefore, when finite copies of pure state are available, the receiver can perform unambiguous discrimination on 
{ , , }C

n
C

1ψ ψ| 〉 … | 〉⊗ ⊗ 51,52. Although supports of mixed states ρ ρ…{ , , }n1  are completely overlapped to each other, 
supports of ρ ρ…⊗ ⊗{ , , }C

n
C

1  may not be completely overlapped and unambiguous discrimination of { , , }C
n

C
1ρ ρ…⊗ ⊗  

can be performed. Using this idea, one may devise sequential state discrimination of general mixed states.

Methods
Derivation of the optimization problem.  In this section, we derive the optimization problem of gener-
alized sequential state discrimination. First, a tangential point γ γ( , )1 2  between a plane Ps

(B,C,D) and a surface 
γ γ φ φ− − = |〈 | 〉|(1 )(1 )1 2 1

(C)
2
(C) 2 satisfies the following equality:
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/
/
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∂ − − − |〈 | 〉| ∂
.

Combining both above equality and (1 )(1 )1 2 1
(C)

2
(C) 2γ γ φ φ− − = |〈 | 〉| , we obtain ( , )1 2γ γ  as

γ φ φ
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α β
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α β

α β

γ φ φ
α β

α β
φ φ

β β

α β

α β

= − |〈 | 〉| = −
|〈 | 〉|

− −

= − |〈 | 〉| = −
|〈 | 〉|

− −
.

q
q

q
q

q
q

q
q

1 1
(1 )(1 )

,

1 1
(1 )(1 )

1 1
(C)

2
(C) 2 2 2

1 1 1

1
(B)

2
(B)

1 2

2 2 2

1 1 1

2 1
(C)

2
(C) 1 1 1

2 2 2

1
(B)

2
(B)

1 2

1 1 1

2 2 2

Under the condition γ ψ ψ≤ ≤ − |〈 | 〉|0 1i 1 2
2, we can show that ( , )1 2β β  should satisfy the inequality con-

straints in Eq. (16). Because a detailed derivation is too lengthy, we omit the derivation. If we substitute ( , )1 2γ γ  
into the optimization problem, we can obtain Eq. (16).
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I f  γ γ( , )1 2  s a t i s f i e s  0, 11 2 1 2
2γ γ ψ ψ< > − |〈 | 〉|  o r  1 , 01 1 2

2
2γ ψ ψ γ> − |〈 | 〉| < ,  t h e n 

( , ) (1 , 0)1 2 1 2
2γ γ ψ ψ= − |〈 | 〉|  or γ γ ψ ψ= − |〈 | 〉|( , ) (0, 1 )1 2 1 2

2  becomes an optimal condition. Substituting it into 
Ps

(B,C,D), we obtain Eq. (20). Although we deals only with the =N 3 case, we can use this method for any N .

Optimal success probability of the quantum reproducing strategy.  We derive the optimal success 
probability of the quantum reproducing strategy. To make it simple, we consider the N 2=  case. Then, the success 
probability is expressed as

Figure 16.  The secret key rate between Alice and Charlie when Eve eavesdrops between Alice and Bob and 
between Bob and Charlie. The solid black line denotes the case where the unitary transformation of Eve is the 
identity. The green dots display the secret key rate when the unitary transformation of Eve is arbitrary. The table 
shows the ratio of nonzero secret key rate out of 100000 random cases.

https://doi.org/10.1038/s41598-020-63719-9


27Scientific Reports |         (2020) 10:8247  | https://doi.org/10.1038/s41598-020-63719-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

ρ ρ ρ ρ

ρ ρ

ρ

ρ ρ
ρ

ρ

ρ ρ
ρ

= | | + | |

= | + |

×







|

| + |
|

+
|

| + |
|








.

{ }
P 1

2
Pr [1 ]Pr [1 ] 1

2
Pr [2 ]Pr [2 ]

1
2

Pr [1 ] 1
2

Pr [2 ]

Pr [1 ]

Pr [1 ] Pr [2 ]
Pr [1 ]

Pr [2 ]

Pr [1 ] Pr [2 ]
Pr [2 ]

rep
(B,C)

B 1 C 1 B 2 C 2

B 1 B 2

1
2 B 1

1
2 B 1

1
2 B 2

C 1

1
2 B 2

1
2 B 1

1
2 B 2

C 2

ρ ρ| + |Pr [1 ] Pr [2 ]1
2 B 1

1
2 B 2  only depends on Bob’s POVM. When Bob’s POVM corresponds to the real vector 
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This optimization problem is partitioned into the following two sub-optimization problem:
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2

1 2

1 2
2

The optimal solution of the two problems is given as s11 2α α= = −  and ¯ ¯ s̄11 2α α= = − . Hence, we 
obtain the optimal success probability as ¯ ¯ρ ρ| + | = − + −{ } r s r smax Pr [1 ] Pr [2 ] (1 ) (1 )1

2 B 1
1
2 B 2 . Because α α=1 2 

and α α=¯ ¯1 2, ρ ρ| = |Pr [1 ] Pr [2 ]B 1 B 2  also holds. Therefore, we obtain i( )
iPr [ ]

Pr [1 ] Pr [2 ]

1
2

i
1
2 B

1
2 B 1

1
2 B 2

= ∀
ρ

ρ ρ

|

| + |
. This means that 

Charlie’s success probability is also expressed as ρ ρ| + |Pr [1 ] Pr [2 ]1
2 C 1

1
2 C 2 . In conclusion, the optimal success prob-

ability of the quantum reproducing strategy is given as ¯ ¯− + −r s r s( (1 ) (1 ))2. Although we consider only the 
=N 2 case, this calculation can be applied to any N .

Derivation of secret key rate in multiparty QKD - Part I: Eve’s single trial of eavesdrop-
ping.  Here, we explain the method to obtain the secret key rate of generalized sequential discrimination. Even 
though the identical prior probability is used in Result, we consider general prior probabilities given by q0 and q1. 
Then, the entangled state between Alice and Bob is expressed by

Ψ ψ ψ| 〉 = | 〉 ⊗ | 〉 + | 〉 ⊗ | 〉 .q q0 1AB A B A B0 0 1 1

The quantum channel B
A B( )Λ →  transforms the entangled state Ψ| 〉 as follows:
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Here, e q q0 1A B( )
0 1| 〉 = | 〉 + | 〉+

→ . When q q0 1= , one can have e A B( )| 〉 = | + 〉+
→ . The purification ABσ  

becomes

e? 1ABE AB AB E AB
A B

A BE
( )η η φ|Γ〉 = |Ψ〉 ⊗ | 〉 + − | 〉 ⊗ | 〉 .+

→
+

Because | 〉?  and φ| 〉+  are orthogonal to each other, the relation of σ|Γ〉〈Γ| =TrE ABE AB is obvious. Therefore, 
two marginal probabilities P i( )A  and P k( )E  are evaluated as follows:
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→

To evaluate the marginal probabilities P i j( , )AB  and P j k( , )BE , we should use POVM element Mi of Bob. Using 
the condition of overlap s 0 1ψ ψ= 〈 | 〉 in two pure states of Alice, we can construct an explicit form of the two pure 
states as follows:

s s s s1
2

0 1
2

1 , 1
2

0 1
2

10 1ψ ψ| 〉 =
+

| 〉 +
−

| 〉 | 〉 =
+

| 〉 −
−

| 〉.

The POVM element of Bob can be given as i i iα α α| 〉〈 |12, where 0α| 〉 and α| 〉1  are expressed as follows:

s s s s
1
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0 1
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(42)
0 1α α| 〉 =

+
| 〉 +
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+
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−
| 〉.

The state iα| 〉 satisfies the following relations: (i) α α〈 | 〉 = − s1/(1 )i i
2 , (ii) α|〈 | 〉| = + −k s1/ 2{1 ( 1) }j

k . 
Using these relations, the marginal probabilities P i j( , )AB  and P j k( , )BE  can be evaluated as

{ }

P i j i i M I

i i M

e e I i i M

i i M i e M

i i M i e

q q
s

P j k I M k k
M k k

k M k

k

s

( , ) Tr

Tr Tr { }}

Tr (1 )
2

( ) (1 ) 1
2
Tr

( ) (1 )
2

(1 )
2(1 )

,

( , ) Tr [ ]
Tr [Tr { } ]
1
2
(1 )

1
2

(1 )

4{1 ( 1) }

AB ABE ABE A j E

AB E ABE A j

AB AB AB AB
A B A B B

A j

AB A j AB
A B

B j

AB A j AB
A B j

j j

AB i i ij AB i
j

BE ABE ABE A j E

BE A ABE j E

AB j

AB
j j

AB j
k

( ) ( )

( ) 2

( ) 2

2

2

η η

η η

η η
α

α α

η α δ η
α

η

η
α α

η α

= 
|Γ〉〈Γ| | 〉〈 | ⊗ ⊗ 



= 
 |Γ〉〈Γ| | 〉〈 | ⊗ 



=






|Ψ〉〈Ψ| + − | 〉〈 | ⊗ | 〉〈 | ⊗






= 〈Ψ| | 〉〈 | ⊗ |Ψ〉 + − |〈 | 〉|

= 〈Ψ| | 〉〈 | ⊗ |Ψ〉 + − |〈 | 〉| 〈 | 〉

= + −
−

= |Γ〉〈Γ| ⊗ ⊗ | 〉〈 |

= |Γ〉〈Γ| ⊗ | 〉〈 |

= − 〈 | | 〉

=
−

|〈 | 〉|

=
−

+ −
.

+
→

+
→

+
→

+
→

We can see that when q q0 1= , four marginal probabilities are given by Eq. (38).
When Bob eliminates an inconclusive result, the measurement of Bob provides the following ensemble:
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Here, α φ α= | 〉 〈 |Ki i i
B

C i B
( )  is a linear map of H H→B C. The quantum state between Alice and Charlie 

becomes the following entangled state

q
q q

q
q q

Q Q

0 1

0 1

B
AB A

B
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B
C

B
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B
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B
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1
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When q q0 1= , the optimal condition is given by α α= = − s1 N
0 1

1/ . Therefore, we can find =Q QB B
0
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1
( ).
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( )φ| 〉  s a t i s f i e s  t h e  o v e r l a p  c o n d i t i o n 

φ φ α α′ = 〈 | 〉 = − −s s/ (1 )(1 )B B
0
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1
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0 1  and the explicit forms of φ| 〉B
0
( )  and B

1
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The POVM element of Charlie is given by β β β| 〉〈 |i i i , where β| 〉0  and 1β| 〉 are expressed by

β β| 〉 =
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(43)

0 1

We can see the relation of i
B

j ij
( )φ α δ〈 | 〉 =  from Eq. (43). Substituting Eq. (43) into the marginal probabilities, 

we can obtain PAC and PCE. Especially, when q q0 1= , from s1 N
0 1

1/α α= = − , one can obtain s s N N( 1)/′ = − . 
Using the similar method, for arbitrary X, we can find PAX and PXE.

Derivation of secret key rate in multiparty QKD - Part II: Eve’s multi-trial of eavesdrop-
ping.  Here, we show how to evaluate the secret key rate of the case where Eve performs eavesdropping between 
Alice and Bob and between Bob and Charlie. Here, prior probabilities q0 and q1 are considered to be arbitrary 
values. Suppose that Eve performs eavesdropping between Alice and Bob, using a quantum memory EB. Then, 
Alice, Bob, and Eve share the following quantum state:
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Let us assume that the Kraus operator of Bob is given as K K K{ , , }B B B
0
( )

1
( )

?
( ) . Then, Kraus operator K K,B B

0
( )

1
( ) 

transforms ABEB
|Γ〉  as follows:





η α

η α
α φ

φ

η α

η α
α φ

φ

⊗ ⊗ |Γ〉 = | 〉 ⊗ | 〉

= +
−

| 〉 ⊗ | 〉







⊗ | 〉

= | 〉 ⊗ | 〉

⊗ ⊗ |Γ〉 = | 〉 ⊗ | 〉

= +
−

| 〉 ⊗ | 〉







⊗ | 〉

= | 〉 ⊗ | 〉 .

+
→

+
→

{

{

I K I q

e

I K I q

e

0 ?

(1 )
2

,

1 ?

(1 )
2

A
B

E ABE AB A E

AB A B
A E

B
C

AE
B

C

A
B

E ABE AB A E

AB A B
A E

B
C

AE
B

C

0
( )

0 0

0 ( )
0 0

( )

0 0
( )

1
( )

1 1

1 ( )
1 1

( )

1 1
( )

B B B

B

B

B B B

B

B

When 1ABη = , we have  α| 〉 = | 〉 ⊗ | 〉q i ?i i i A EB
. Therefore, the argument of this case is identical to the secu-

rity analysis of Part I.
After Bob performs a post-processing, |Γ〉ABEB

 becomes the following tripartite state:
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( ){ }

ACE
A

B
E A

B
E A

B
E A

B
E

A
B

E A
B

E A
B

E A
B

E

AB AE
B B

C AE
B B

C

0
( )

0
( )

1
( )

1
( )

0
( )

0
( )

1
( )

1
( )

0 0 0
( )

0
( )

1 1 1
( )

1
( )

B
B B B B

B B B B

B B

σ

η φ φ φ φ

=
⊗ ⊗ |Γ〉〈Γ| ⊗ ⊗ + ⊗ ⊗ |Γ〉〈Γ| ⊗ ⊗

〈Γ| ⊗ ⊗ ⊗ ⊗ |Γ〉 + 〈Γ| ⊗ ⊗ ⊗ ⊗ |Γ〉
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† †

† †
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When Eve performs eavesdropping between Bob and Charlie, σACEB
 becomes

id ( ) (1 )AE C
B C

ACE BC ACE BC ACE
( )

B B B B
σ η σ η τ⊗ Λ = + − .→

Here, τACEB
 is expressed by

I( ){ }
2ACE AB AE AE
C

0 0 1 1B B B
   Nτ η= | 〉〈 | + | 〉〈 | ⊗ .
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Let us denote the purifications of η σBC ACEB
 and (1 )BC ACEB

η τ−  as η σ| 〉BC ACE ACE EB B C
 and η τ| − 〉(1 )BC ACE ACE EB B C

, 
respectively. Here, EC is the quantum system of Eve which operates between Bob and Charlie. If BC ACE ACE EB B C

η σ| 〉  
and (1 )BC ACE ACE EB B C

η τ| − 〉  are orthogonal to each other, the following equality holds:

η σ η τ η σ η τ

η σ η τ

| 〉 + | − 〉 〈 | + 〈 − |

= + − .
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B B

Using { ? , ? , 00 , 01 , 10 , 11 }0 1| 〉 | 〉 | 〉 | 〉 | 〉 | 〉  which consists of orthogonal basis of EC, we can construct purifica-
tion of id ( )AE C

B C
ACE

( )
B B

σ⊗ Λ → . First, BC ABEB
η σ| 〉 can be constructed by the basis ? , ?0 1| 〉 | 〉. Second, (1 )AB ACEB

η τ| − 〉 
can be constructed by | 〉 | 〉 | 〉 | 〉00 , 01 , 10 , 11 }. Then, η σ| 〉BC ACEB

 and (1 )BC ACEB
η τ| − 〉 are orthogonal to each other. 

In conclusion, the purification of id ( )AE C
B C

ACE
( )

B B
σ⊗ Λ →  can be given as follows:

{
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AB BC AE
B

C E
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C E

BC
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AE E CE
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N 



Here, ( 00 11 )/ 2φ| 〉 = | 〉 + | 〉+ , | 〉 = | 〉 ⊗ | 〉 + | 〉 ⊗ | 〉+
→ →e 0 1A B C( )

0 1  .
To evaluate the secret key rate between Alice and Charlie, one must obtain the marginal probabilities 

P P P P, , ,A C CA CE. First, P i( )A  can be evaluated as follows:

Figure 17.  The graph of η̄f ( ). In these graphs, the solid black line, the solid blue line, and the solid red line 
denote the cases of = . .s 0 05, 0 10, and 0.15, respectively. These graphs show that η̄f ( ) is a monotonically 
increasing function of η̄. Because η̄ is a noise strength of channel, these graphs tell that noise of channel can 
make a bad influence on the secret key rate.
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Because of ( ) [ ( ) ( )]AB AB AB0 1
1N N Nη η η= + − , P i( )A  is expressed as

η

η η
δ

η

η η
δ=

+
+

+
.P i( )

( )
( ) ( )

( )
( ) ( )A

AB

AB AB
i

AB

AB AB
i

0

0 1
0

1

0 1
1

N

N N

N

N N

That is, P i( )A  is a prior probability after Eve’s eavesdropping and Bob’s measurement. Specially, when 1ABη = , 
P i( )A  is given as follows:
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Second, =P P l m n( , ( , ))E E EB C
 is evaluated as follows:
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Here, ( ? , ? )0 1Ω | 〉 | 〉  is an operator containing | 〉 | 〉? , ?E E0 1C C
. Therefore, in ∀ ∈l m n, , {0, 1}, we obtain 
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Third, the marginal probability P i j( , )AC  is evaluated as follows:
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Fourth, to obtain P p( )E , we can evaluate IAC p E E ACE EB C B C
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Finally, to obtain P k p( , )CE , we can evaluate IA k C p E E ACE EB C B C
β π⊗ 〈 | ⊗ 〈 | |Γ〉  as follows:
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In Eqs. (44) and (45), ijδ  is Kronecker delta. And, iλ , µi, and iν  are defined as follows:
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Simulation method to search for critical channel efficiency (η̄crit).  When the unitary transformation 
V  and overlap s are determined, the secret key rate is expressed as follows:

¯K fmax{0, ( )}AC E E: B C
η= .

Here, η = −f I A C I C E( ) ( : ) ( : ) is a function of the single variable η̄. In Fig. 17, when V  is an identity and 
s {0 05, 0 10, 0 15}∈ . . . , η̄f ( ) is a monotonically increasing function. Therefore, in the region of [0, 1]η ∈¯ , there is 
only one value of c̄ritη  satisfying η =f ( ) 0crit¯ . And, if crit¯ ¯η η> , because of ¯f ( ) 0η > , the secret key rate becomes 
nonzero. In this case, η̄crit can be obtained by a bisection method49.
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