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Abstract: For sensors constructed by freestanding membranes, when the gap between
a freestanding membrane and the substrate or between membranes is at micron scale,
the effects of near-field radiative heat transfer on the sensors’ thermal performance should
be considered during sensor design. The radiative heat flux is transferred from a membrane
to a plane or from a membrane to a membrane. In the current study of the near-field
thermal radiation, the scanning probe technology has difficulty in making a membrane
separated at micron scale parallel to a plane or another membrane. A novel MEMS (micro
electromechanical system) device was developed by sacrificial layer technique in this work
to realize a double parallel freestanding membrane structure. Each freestanding membrane
has a platinum thin-film resistor and the distance between the two membranes is 1µm. After
evaluating the electrical and thermal characteristics of the lower freestanding membrane,
experimental measurements of near-field radiative heat transfer between the lower membrane
and the upper membrane were carried out by setting the lower membrane as a heat emitter
and the upper membrane as a heat receiver. The near-field radiative heat transfer between
the two membranes was validated by finding a larger-than-blackbody radiative heat transfer
based on the experimental data.
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1. Introduction

Freestanding micro-mechanical membrane structures have been developed and applied as a variety of
sensors [1–10]. Measuring the temperature change of the freestanding membrane is the basic principle
of these sensors. The thermal performance of these freestanding membrane structures are key factors
affecting the sensitivity of these sensors. Thermal conduction and thermal radiation are two generally
considered heat transfer modes of a freestanding membrane working in vacuum.

However, an proximity effect on thermal radiation was found by Domoto and Hargreveas in the
late 1960s [11–14], which is called the near-field thermal radiation. The radiative heat power per unit
temperature difference of the near-field radiation between two SiO2 (silicon oxide) planes has been
found to be 6 nW and 18 nW at the gap of 2.5µm and 30 nm, respectively [15]. They are higher than
the 5.45 nW of the far-field radiation under the same temperature conditions. The distance between
the freestanding membrane and the substrate or between two membrane is from micron to submicron
scale for sensors fabricated by front-side surface micromachining techniques [16,17]. The near-field
radiative heat transfer occurs at the micron or the submicron distance and brings away more heat from
the freestanding membrane. The near-field radiative heat transfer mode needs to be studied to direct the
structural design of the sensors.

Furthermore, for the freestanding membrane structure of the sensors, the radiative heat flux is
transferred from the membrane and the substrate or between membranes. Despite the fact that the
scanning probe technique has been successfully invented by some researchers to study the near-field
thermal radiation between bulk materials [15,18–23], this technique is difficult to parallelize membranes
separated at micron or submicron scale.

In this paper, a novel device with double freestanding membranes, named as DFM, was developed by
MEMS (micro electro-mechanical system) process. The two membranes are parallel to each other and
the distance between them were designed to be 1,000 nm implemented by aluminium sacrificial layer.
Each membrane has a Pt (platinum) thin-film resistor so that it can be heated. The lower membrane of a
DFM was firstly heated by supplying a series of constant currents under high vacuum condition. Then the
upper membrane of the DFM was removed to realize a device with the lower freestanding membrane,
named as SFM. The freestanding membrane of the SFM was heated to the same temperatures of the
lower membrane of the DFM. Heating power differences between the two experiments were calculated
from the measured data. The near-field radiative heat transfer between the lower membrane and the
upper membrane of the DFM were calculated by the heating power differences. A larger-than-blackbody
radiative heat transfer was found between the two membranes at the gap of 1,000 nm.

2. Design and Fabrication

2.1. Design

Figure 1 illustrates the structure of the device. The device consists of two freestanding membranes.
Each freestanding membrane was made from a sandwich structure that included SiO2 (400 nm thick),
SiN (200 nm thick) and SiO2 (200 nm thick). A Pt line of 7µm width and 100 nm thickness forms
the resistor of each membrane, and the resistors work as both heater and thermometer. The Pt line
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has a zigzag shape and four ends so that it can uniformly provide joule heat over the membrane and
precisely measure the average temperature of the freestanding membrane through the four-point method.
Four beams support the four ends of the Pt resistor at two diagonal corners. The dimensions of a
supporting beams were 94.5µm in length and 18µm in width.

Figure 1. 3D diagram of the sensor.

A theoretical calculation of heat conductive coefficient of the four supporting beams was based on
the dimensions of one supporting beam and thermal conductivity in Table 1. The total heat conductive
coefficient is

Gcon = 4×
(
λSiN

ASiN

LSiN

+ λSiO2

ASiO2

LSiO2

+ λPt
APt

LPt

)
(1)

where A is the cross-sectional area of the supporting beam, L is the length of the supporting leg and λ
is thermal conductivity of material. The factor 4 in the formula means that each freestanding membrane
structure has four supporting beams. The result was 2.89× 10−6W ·K−1.

Table 1. Material thermal property [24].

Platinum Silicon oxide Silicon nitride
Thermal conductivity λ (W ·m−1 ·K−1) 71.6 1.17 3.2

2.2. Fabrication

The fabrication of a DFM had two processes: a MEMS process and a post-MEMS process.
The MEMS process started with a 400µm thick 4” silicon wafer as follows:
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Figure 2. Process flow of a DFM fabrication. The cross section was at a–a’ in Figure 1.
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(e) (f)
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(a) A 1,000 nm thick aluminum was sputtered after 10 nm thick thermal oxidation SiO2 on the wafer
(Figure 2(a)).
(b)A 200 nm thick SiO2 and a 200 nm thick SiN were sequentially deposited by PECVD
(plasma-enhanced chemical-vapor) (Figure 2(b)).
(c) A 100 nm thick Platinum was sputtered and then patterned by lift-off technique (Figure 2(c)).
(d) A 200 nm thick SiO2 layer was deposited by PECVD (Figure 2(d)).
(e) The SiO2 layer in step d then was etched by RIE (reactive-ion etching) to open via (Figure 2(e)).
(f) A 200 nm thick gold internet line was sputtered and then patterned by lift-off technique (Figure 2(f)).
(g) A 200 nm thick SiO2 was deposited by PECVD (Figure 2(g)).
(h) RIE etching SiO2, SiN and SiO2 in the patterned regions until the aluminum layer was exposed
(Figure 2(h)).
(i) A 1,000 nm thick aluminum was sputtered as the second sacrificial layer (Figure 2(i)).
(j) Repeat steps from (b) to (g) (Figure 2(j)).

As shown in Figure 2(h), the first freestanding membrane (also called the lower membrane) structure
and its supporting beams were completed at the same time in step (g). The second freestanding
membrane (also called the upper membrane) was finished after step (j), which has the same dimensions
as the lower membrane.

The post-MEMS process was a wet etching process for releasing the two membranes of a DFM after
wafer dicing. As seen in Figure 2(j), two aluminum layers were united so that it can be etched by one
etching process. The etching solution is 85% Phosphoric acid and the temperature condition of the
etching process is 80 ◦C. By removing of the sacrificial Al layers, the two membranes are suspended,
as shown in Figure 2(k). After an annealing process (350 ◦C, 2 h) to release of residual stress of the
membrane, a DFM had been completed. The SEM (scanning electron microscope) photograph of a
DFM is shown in Figure 3(a).

As seen in Figure 3(b), the upper membrane of a DFM was removed by probe to fabricate a SFM
after the post-MEMS, which certified that the two freestanding membranes were not adherent.

Figure 3. (a) SEM image of a DFM. (b) SEM image of a SFM.

(a) (b)
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3. Measurements

3.1. Principle

Only the lower membrane of the device was used to measure the radiative heat transfer because the
resistor in the upper one was not fabricated by incomplete via etching in the MEMS process. In the
measurement, the lower membrane worked as a heat emitter and the upper membrane worked as a heat
receiver. The heat balance equation of the emitter was similar to that of microbolometer. While a
microbolometer is heated to a temperature T by an electric power P and does not absorb power from
any external source of radiation in excess of that due to the surrounding at ambient temperature T0, its
differential heat balance equation is described as [25]

C
dT

dt
+ (Gcon +Gfr) (T − T0) = P (2)

where,
t is time, C is the thermal capacitance of the microbolometer,
Gcon is the heat conductive coefficient determined by the dimensions of the supporting beam and the
conductivity of the beam’s materials,
Gfr is the far-field radiative heat transfer coefficient given by Stefan–Boltzmann law [26],

Gfr = 4εδAT 3 (3)

where,
ε is the total hemispherical emissivity,
δ = 5.67× 10−8W ·m−2 ·K−4 is Stefan–Boltzmann constant,
A is the radiation area of the microbolometer.

In the steady state we have
(Gcon +Gfr) (T − T0) = P (4)

For the emitter of the SFM, its steady heat balance equation is

(Gcon +Gfr) (Tsfm − T0) = Psfm (5)

Assuming that the temperature of the receiver is equal to the ambient temperature, the steady heat
balance equation of the emitter of a DFM is:

(Gcon +Gfr +Gnr) (Tdfm − T0) = Pdfm (6)

where, the Gnr (Tdfm − T0) is the near-field radiative heat transfer between the emitter and the receiver.
Because the SFM was fabricated by the DFM, the emitter is same. The near-field heat transfer between
the emitter and the receiver of the DFM can be calculated by the heating power difference between the
DFM and the SFM while Tdfm = Tsfm = T , which is express as:

Gnr (T − T0) = Pdmf − Psmf (7)

Finally, the near-field radiative heat transfer coefficient Gnr is

Gnr =
Pdmf − Psmf

T − T0

(8)
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3.2. TCR of the Pt Resistor

The emitter’s temperature T in Equation (8) was detected by the Pt resistor of the emitter.
The relationship between resistance and temperature of the Pt resistor is described by the TCR
(temperature resistance coefficient). After packaging the sensor, as shown in Figure 4(a), the TCR
was experimentally determined in the vacuum chamber of a CCS-400H/204 close cycle refrigerator
system (Janis Research Co., Wilmington, DC, USA). A KEITHLEY 2400 (Keithley Instruments, Inc.,
Cleveland, OH, USA) forced a constant driving current and measured the resistance with the four-point
method. As shown in Figure 4(b), resistances of the Pt resistor of the emitter were recorded when the
surrounding temperature changed from 233 K to 393 K at interval of 20 K. Fitting the measured data to
a straight line, we had the relationship between the resistance RT and temperature T of the Pt resistor:

RT = 0.12494T + 12.207 (9)

Since the resistance is 46.3 and 58.86 Ohm at 273 and 373 K, respectively, the TCR (noted as α)
is 2.7h.

Figure 4. (a) a packaged device. (b) The TCR of the emitter Pt resistor.

(a) (b)

3.3. Thermal Characteristics

In the radiative heat transfer experiments, the emitter cannot be operated above the maximum current
that the emitter was able to withstand. The maximum current is given by a formula that has been
presented in our previous work [27]:

I ≤
√
G0(dRT/dT )

−1 (10)

where, I is the heating current, dRT/dT can be computed by Equation (9).
G0 includes Gcon and Gfr. Although the theoretical value of Gcon was 2.89 × 10−6W ·K−1 (see

Section 2.1), its actual value cannot completely rely on theoretical calculation because of the thermal
conductivity difference between bulk and thin film, and of the differences between the design and the
sensor manufacturing. We chose a thermal time delay method to evaluate the actual value of heat
conduction, the maximum heating current and the thermal stabilization time.
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The emitter of SFM was used in the heating experiment of the thermal time delay method. A series
of square wave currents were applied on the Pt resistor to heat the emitter. The frequency and the ratio
of the square wave is 5 Hz and 50%, respectively. The amplitude of the square wave was set up based on
Equation (9) and the theoretical value of Gcon. It was found that the emitter can be heated to 313 K by
a 1.062 mA current while the ambient temperature is 293 K. For comparison, we chose heating currents
as 0.8, 0.9, 1.0 and 1.1 mA.

The experiment was carried out under vacuum conditions (10−6mbar) while the ambient temperature
was 293 K. The chosen currents were supplied by KEITHLEY 2400 and voltages of the Pt resistor were
recorded by DPO 3052 (Tektronix, Inc.). Resistances of the Pt resistor according to the heating currents
were obtained by dividing the voltages with the currents. Temperatures of the emitter along with time
were calculated by the resistances and Equation (9), as shown in Figure 5. Steady temperatures according
to each heating current are listed in Table 2. A temperature rise of 46 K is observed when the heating
current is 1.1 mA.

Figure 5. Temperature response curves of the emitter in the thermal time delay experiment.

The Gcon of the supporting beams can be obtained by fitting the experimental data curves with the
temperature dynamic behavior of the emitter. Replacing P by a heating power I2 · R and momentarily
ignoring the Gfr in Equation (2), we have

C
dT

dt
+Gcon (T − T0) = I2R (11)

By solving Equation (11), we can obtain the temperature dynamic behavior of the emitter as

T = T0 +
I2RT0

(Gcon − I2αRT0)

(
1− exp[−(Gcon − I2αRT0)

C
t]

)
(12)

where α is the TCR of the Pt resistor.
Fitting the experimental data by Equation (12), we got Gcon that included the Gfr. The fitting results

are listed in Table 2. Gfr were also listed in Table 2, which were calculated by Equation (3) while the
ε is 0.35 [15] and A is 77 × 77µm2 as seen in Figure 1. As Gcon is about 100 times of Gfr, Gfr can be
ignored in Equation (2) practically.

Therefore, the average value of Gcon was 1.325 × 10−6W ·K−1, and by substituting the Gcon into
Equation (10), the maximum heating current was 3.26mA. The radiative heat transfer measurement
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had to be done at the thermal steady state of the emitter according to Equation 7. The emitter thermal
stabilization time was 30ms, which was obtained from the fitting result also.

Table 2. Fitting result of thermal time delay experiment.

Heating current of the emitter I (mA) 0.8 0.9 1.0 1.1
Steady temperature T (K) 316.3087 323.0872 330.387 339.1644
Gcon (W ·K−1) 1.34× 10−6 1.33× 10−6 1.32× 10−6 1.31×10−6

Gfr (W ·K−1) 1.49× 10−8 1.59× 10−8 1.70× 10−8 1.84× 10−8

3.4. Measuring Near-Field Radiative Heat Transfer

Based on the principle in Section 3.1, experiments of measuring the near-field radiative heat transfer
includes the following steps :

• The emitter of a DFM was heated by a series of constant currents (from 0.8 mA to 1.8 mA);

• The receiver of the DFM was removed by a probe to make a SFM;

• The emitter of the SFM was heated by a series of constant currents (from 0.8 mA to 1.6 mA).

The experiments were carried out in vacuum (10 −6 mbar) at ambient temperature (293 K). All heating
currents were supplied by KEITHLEY 2400, all resistances of the Pt resistor corresponding to the heating
currents were recorded by KEITHLEY 2400 in the four-point method and the sampling delay time was
1 s. The experimental data are shown in Figure 6.

Figure 6. Resistances of the emitter of the DFM and the SFM corresponding to the
heating currents.
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4. Results and Discussion

The near-field thermal radiation between the emitter and the receiver were calculated by the
experimental data. Firstly, the functional relationship of the resistance and the square of heating current
of the DFM were fitted as

I2 = −11.7712 + 0.24288R (13)

By substituting the resistance of the SFM into Equation (13), the heating currents (I2cal) were then
estimated, which were depicted by diamond points in Figure 6. Next, each heating power difference
at the same emitter temperature between the DFM and the SFM was evaluated by

(
I2cal − I2sfm

)
R, and

the temperature of the emitter was evaluated by the resistance and TCR of the Pt resistor. Finally,
the near-field radiative coefficient Gnr was calculated by Equation (8), which was shown in Figure 7.
For comparison, a black body radiative coefficient Gbk was shown in Figure 7 also, which was calculated
by Equation (3) while the ε is 1.

Figure 7. Temperature dependent heat transfer coefficient for far-field thermal radiation,
blackbody radiation and experimental data.
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As shown in Figure 7, all Gnr, Gfr and Gbk increase as the temperature increases, and Gnr exceeded
the Gfr and Gbk. The fact that Gnr is larger than Gbk indicates that the radiative heat power is higher
than that of black body. Some researchers had reported that there are two modes of the thermally
excited electromagnetic waves [28–30]: one is the propagating mode that can leave the surface of the
emitter and radiate freely into the space; another is the evanescent mode (called surface electromagnetic
waves also) that propagates along the surface and decreases exponentially in the perpendicular direction.
The upper limit of the propagating mode electromagnetic waves’ contribution to the radiative heat power
is governed by Planck’s law of black body [31]. The surface electromagnetic waves can contribute to
the radiative heat transfer when a second surface is brought close to the first to enable photon tunneling.
The radiative heat power can exceed that of black body. Therefore, the photon tunneling phenomenon
happened between the upper membrane and the lower membrane at the gap of 1µm.

The near-field radiative heat transfer at 1µm distances will affect the thermal performance of the
freestanding membrane. Gnr at 313 K was 1.46 × 10−7W ·K−1, about 10 times of Gfr; Gnr at 396 K
was 3.75 × 10−7W ·K−1, about 12 times of Gfr. The heat conductive coefficient Gcon of the emitter is
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1.325 × 10−6W ·K−1 as measured in Section 3.3. When the temperature is 313 K, Gnr is 8% of Gcon.
When the temperature is 396 K, Gnr is 28% of Gcon. Thus, at a higher temperature, the near-field thermal
radiation has greater impact on the thermal performance of the emitter. Furthermore, the near-field
radiative heat transfer should be taken into account to improve the sensitivity of those sensors that have
freestanding membrane at a distance of 1µm to the substrate [3,32].

5. Conclusions

A novel device named DFM that has two plane-plane parallel membranes has been successfully
implemented by the surface manufacturing technology. Each membrane has a Pt resistor with TCR
of 2.7h. For the lower membrane, a 46 K temperature rise corresponding to a 1.1 mA current
was observed, indicating that the lower membrane is completely released. The measured conductive
coefficient of SFM was 1.325 × 10−6W ·K−1. The heating power was different between DFM and
SFM (the same device after removing the upper membrane) when heating the lower membrane to the
same temperature. The near-field radiative heat transfer coefficients Gnr in response to temperatures
were evaluated based on the heating power differences. Results show that Gnr is about ten times larger
than black body radiative coefficient Gbk in the temperature range of 300–400 K. The experimental data
can direct engineers to properly evaluate the effect of the near-field thermal radiation at 1µm distance on
their sensors. The current technology should be improved to allow the detection of the actual temperature
of the upper freestanding membrane.
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