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A B S T R A C T   

Introduction: PRx can be used as surrogate measure of Cerebral Autoregulation (CA) in traumatic brain injury 
(TBI) patients. PRx can provide means for individualising cerebral perfusion pressure (CPP) targets, such as 
CPPopt. However, a recent Delphi consensus of clinicians concluded that consensus could not be reached on the 
accuracy, reliability, and validation of any current CA assessment method. 
Research question: We aimed to quantify the short-term uncertainty of PRx time-trends and to relate this to other 
physiological measurements. 
Material and methods: Intracranial pressure (ICP), arterial blood pressure (ABP), end-tidal CO2 (EtCO2) high- 
resolution recordings of 911 TBI patients were processed with ICM + software. Hourly values of metrics that 
describe the variability within modalities derived from ABP, ICP and EtCO2, were calculated for the first 24h of 
neuromonitoring. Generalized additive models were used to describe the time trend of the variability in PRx. 
Linear correlations were studied for describing the relationship between PRx variability and the other physio-
logical modalities. 
Results: The time profile of variability of PRx decreases over the first 12h and was higher for average PRx ~0. 
Increased variability of PRx was not linearly linked with average ABP, ICP, or CPP. For coherence between slow 
waves of ABP and ICP >0.7, the variability in PRx decreased (R = − 0.47, p < 0.001). 
Discussion and conclusion: PRx is a highly variable parameter. PRx short-term dispersion was not related to 
average ICP, ABP or CPP. The determinants of uncertainty of PRx should be investigated to improve reliability of 
individualised CA assessment in TBI patients.   

1. Introduction 

The pressure reactivity index (PRx) has been developed as a surro-
gate measure of cerebral autoregulation (CA) in traumatic brain injury 
patients (TBI) (Czosnyka et al., 1997). PRx can be monitored at the 
bedside in a semi-continuous fashion (Fig. 1), and high PRx is associated 
with worse outcome in TBI patients (Czosnyka et al., 1997; Zeiler et al., 
2019). PRx can provide means for individualising cerebral perfusion 
pressure (CPP) targets, such as the optimal cerebral perfusion pressure 
(CPPopt) (Aries et al., 2012; Beqiri et al., 2023a; Liu et al., 2017b; 
Steiner et al., 2002) or the lower limit of pressure reactivity (Beqiri et al., 
2023b; Donnelly et al., 2017). The results of the phase II trial (COGi-
TATE) proved safety and feasibility of targeting CPP at the PRx-derived 

CPPopt (J et al., 2021; Optimal cerebral perfusion pressure, 2023). 
However, a recent Delphi consensus of clinicians concluded that 
consensus could not be reached on the accuracy, reliability, and vali-
dation of any current CA assessment method (Depreitere et al., 2021). 

The lack of reliability and reproducibility of cerebral autoregulation 
indices may depend on the CA physiological variability itself or on the 
methods used to infer CA (Panerai, 2014). The indices used for contin-
uous monitoring of dynamic CA at the bedside, rely on spontaneous 
waves. Signal processing techniques are used to filter the information 
carried by the vasogenic slow waves and are based on correlation be-
tween waves of different sources (Brassard et al., 2021; Panerai, 2014). 
These indices do not measure CA, but they infer the CA behaviour. 

What is the reason for the lack of accuracy and reliability of PRx? The 
index is calculated as a moving Pearson correlation coefficient of 30 
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consecutive 10-s averages of arterial blood pressure (ABP) and intra-
cranial pressure (ICP), updated every minute (Czosnyka et al., 1997). 
Pitfalls in PRx methodology have been identified (Czosnyka et al., 
2017). Firstly, PRx is based on volume variations and not flow variations 
(Klein et al., 2021). It relies on adequate transmission of blood volume 
changes in ICP and may not be reliable when compliance is high (such in 
decompressive craniectomy). PRx also relies on the assumption that ICP 
variability is only driven by an extra-cranial source (ABP). Furthermore, 
PRx is a global index, and it may not adequately reflect regional changes 
in autoregulation. As a result, time trends of minute-by-minute PRx at 
the bedside are very noisy (Fig. 2), and it is unlikely that this kind of 

variability reflects the pathophysiological variability in CA. While this 
may not pose a significant problem for statistical associations performed 
on per-patient average values, it is likely to introduce errors for any 
short-term PRx-based metrics, as in the CA-oriented pressure manage-
ment. Averaging PRx over 30 min or longer periods has been suggested 
as method for dealing with the ‘noise’ in the metric. This approach does 
not solve the problem because of the unknown nature of the ‘noise’, and 
may still lead to erroneous assessment of vascular reactivity, particularly 
when long periods of unreliable values are averaged out together. 
Additional metric of uncertainty, or quality, could help in selective 
smoothing potentially improving robustness of the PRx time trends. 

We hypothesise that the lack of reliability of PRx is related to the 
violation of assumptions of the PRx methodology. As a first step in the 
path of improving the reliability of PRx at the bedside, we aimed to 
quantify the short-term uncertainty of PRx time-trends and to relate the 
uncertainty of PRx to other physiological measurements. 

2. Material and Methods 

911 de-identified high-resolution arterial blood pressure (ABP), 
intracranial pressure (ICP) and end-tidal carbon dioxide (EtCO2) re-
cordings of TBI patients admitted in the neurocritical care unit of the 
Addenbrookes Hospital (Cambridge, UK) between 2002 and 2021, were 
accessed from the Brain Physics Lab research database (REC 23/YH/ 
0085). Each recording corresponded to one single patient. Monitoring of 
brain modalities was conducted as a part of the standard patient care 
(Donnelly et al., 2019; Menon and Ercole, 2017). ICP was monitored 
with an intraparenchymal micro-sensor inserted into the frontal cortex 
(Codman ICPMicroSensor, Codman&Shurtleff, Raynham, Massachu-
setts) or via an extra ventricular drain (EVD). ABP was monitored in the 
radial or femoral artery (Baxter Healthcare, Deerfield, Illinois) with a 
zero calibration at the level of the right atrium (2002–2015) and at the 

Abbreviations 

PRx – pressure reactivity index 
TBI – traumatic brain injury 
CA – cerebral autoregulation 
CPP – cerebral perfusion pressure 
CPPopt – Optimal cerebral perfusion pressure 
ICP – intracranial pressure 
ABP – arterial blood pressure 
EtCO2 – end-tidal carbon dioxide 
EVD – extra ventricular drain 
ABPslow power of slow waves in ABP 
ICPslow- power of slow waves in ICP 
EtCO2slow - power of slow waves in EtCO2 
GAM – generalized additive models 
PRx_iqr – hourly interquartile range of PRx 
CBFV – cerebral blood flow velocity  

Fig. 1. PRx monitored at the bedside. 
The neuromonitoring software ICM+ (schematically represented as a red square in the figure) allows to: 1) retrieve high resolution, waveform level, data of 
intracranial pressure (ICP) and arterial blood pressure (ABP); 2) apply advanced signal processing techniques and calculate in real time derived indices such as 
pressure reactivity index (PRx) and optimal cerebral perfusion pressure (CPPopt); 3) display time trends, risk charts, error bar charts and histograms, updated in a 
semi-continuous manner, on a laptop at the bedside. The Σ symbol denotes computational algorithms within ICM+. 
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foramen of Monro (2015–2022). Data of ICP, ABP and EtCO2 from the 
vital monitor were streamed in real-time into the ICM + software 
(Cambridge Enterprise, University of Cambridge, UK) [https://icmplus. 
neurosurg.cam.ac.uk] (Smielewski et al., 2012), which provided data 
integration and storage at sampling rate from 50 Hz to 250 Hz, and 
de-identification for the Brain Physics Lab research database. For basic 
cohort description, binned age, sex and GCS at the presentation were 
retrieved form the Brain Physics Lab research database when possible. 

2.1. Data processing 

ICM + software was used for data processing. The data were first 
curated manually for large artefacts. Further, automated artefact 
markup was applied. EtCO2 values below 20 mmHg or above 70 mmHg 
were rejected. EtCO2 was available for 283 records. Arterial blood 
pressure (ABP) artefacts were removed automatically in case of absence 
of detected pulse, or when diastolic (and systolic) values fell to below 
(and above) unphysiological thresholds (15 mmHg and 300 mmHg 
respectively). Automatic intracranial pressure (ICP) artefacts removal 
used low pulse amplitude values (<0.04 mmHg) to reject artefactual 
periods which corresponded to either noise or short recording periods 
during which EVD was kept open (for those recordings where ICP was 
measured via EVD). Spectral edge frequency 95% above 10 Hz was used 
to reject periods of non-physiological measurements of ICP. All recorded 
signals were subsequently down-sampled to 0.1 Hz by coarse graining 
using 10 s, non-overlapping averages. 

2.2. Measurements 

ICM + software was further used to process the 10 s data and derive 
minute by minute time trends of various metrics used in the analysis. 

PRx was calculated as moving 5 min window correlation coefficients 
between 30 consecutive 10 s averages of ABP and ICP, with moving lag 
of 1 min. PRx values were Fisher-transformed prior to any statistical 
analysis to address the <-1; +1> hard constrain of those indices. 

We selected eight physiological modalities that we could explore and 
relate to the variability of PRx: ABP, ICP, pulse amplitude of ICP (AMP), 
EtCO2, cerebral perfusion pressure (CPP), power of slow waves in ABP 
(ABPslow), ICP (ICPslow) and EtCO2 (EtCO2slow). For each of these, and for 
combinations of these, we extracted metrics of short-term variability. 
The full list of modalities explored is available in Table 1. The full list of 
summary metrics retrieved for each modality is available in Table 2. 
These metrics were calculated as hourly summaries for the first 24 h of 
recording. Each hour represented one epoch and they were considered 
independently. 

2.3. Statistical analysis 

The statistical analysis was performed with R software, version 4.0 
(R2021 (2021) R Core Team, 2021). A p value of 0.05 was adopted for 
statistical significance. Correction for multiple comparison was not 
applied in this analysis. 

2.3.1. PRx variability 
The uncertainty of PRx was quantified with summary values of 

descriptive statistics of the metrics that describe the variability of PRx. 
The short-term uncertainty of PRx time trends were explored with 
generalized additive models (GAM) with cubic spline. GAM models 
allow to capture the shape of the relationship between two variables 
without pre-judging the issue by choosing a particular parametric form. 
Hence, they can reveal non-linear patterns. In the models, the explan-
atory variable was Time (hour number) and the response variable was 
the hourly interquartile range of PRx. Values of the interquartile range 
of PRx were either considered all together, or grouped depending on the 
corresponding average value of PRx: between − 0.3 and + 0.3, below 
− 0.3, above 0.3. We used cubic splines as a basis for the models’ 
explorations. 

2.3.2. Correlations with other physiological modalities 
Pearson correlations between metrics for PRx variability and other 

physiological measurements were performed and visualised with cor-
relograms and R2 was evaluated. All summary metrics for all physio-
logical modalities were considered at this stage. 

Further, to count for the fact that the variability metrics would be 
related to each other, we selected the following three descriptors for 
each modality: valid data count, median value, and range. To select the 
variables that have more influence on the variability of PRx we used an 
ordered bar plot of the t-statistics (absolute values) for the respective 
correlation coefficients and aimed to identify an elbow in the graph. 
Each epoch was treated as independent for the correlations analysis. 

3. Results 

The TBI patients included in this analysis were on average 45 years 
old, the majority were male and with GCS <9 at the presentation 
(Table 3). Of note, there is a considerable amount of missing data in the 
demographic information. 

The amount of monitoring data remaining after data cleaning within 
the 24h considered for this analysis was in median (q1:q3) of 1355 
(1147:1424) minutes for ICP, 1061.5 (66.5:1388) minutes for ABP, and 
1338 (1064.5:1436) for EtCO2. 

Fig. 2. Time trends of PRx at the bedside 
Example of PRx time trends as displayed with ICM + at the bedside for a TBI patient. The time trends of PRx assessed at the bedside and displayed as minute-by- 
minute values can look very noisy. It is unlikely that this kind of variability is related to physiological variability in cerebral autoregulation. PRx, pressure reac-
tivity index. 
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3.1. Descriptive statistics of variability of PRx 

A total n of 18262 epochs were analysed. Similar behaviour was 
observed for all metrics that describe PRx variability (Table 4). The 
hourly interquartile range of PRx (PRx_iqr) was chosen for further 
explorations. 

3.2. Time profile of short-term PRx interquartile range 

Fig. 3 shows the time profile of PRx variability (PRx_iqr) over the first 
24h of neuromonitoring. The time profile of variability of PRx seems to 
decrease slightly over the first 12 h (Fig. 3A). Fig. 3B shows how the 
variability is overall higher for levels of PRx between − 0.3 and + 0.3 
(yellow line in the plot), as opposed to variability of PRx when PRx 
levels are below − 0.3 (green, denoting preserved pressure reactivity), or 
above 0.3 (red, impaired pressure reactivity). 

3.3. Relationship with other physiological variables 

Linear correlations with the modalities selected (see Tables 1 and 2 
for the list of modalities) showed that mean values of ABP, ICP, CPP and 
EtCO2 were not related to the variability of PRx (p > 0.05). When the 
modulus coherence between slow waves of ABP and ICP was above 0.7, 
there was a negative relationship between coherence and variability in 
PRx (R = − 0.47, p < 0.001). 

A total n of 67 variables were considered in the second exploration 
that aimed to select the variables that have more influence on the 
variability of PRx. For each variable, the correlation between the vari-
able and PRx_iqr was computed. t-statistics absolute values were plotted 
(Fig. 4) and, after a visual inspection, an elbow in the plot was identified 
(red arrow). Variables on the left side of the elbow are listed here: 1) CPP 
range (R2 = 0.14); 2) ABP range (R2 = 0.13); 3) Range of Slow waves in 
ABP (R2 = 0.12); 4) ICP range (R2 = 0.11); 5) Range of coherence be-
tween slow waves in ABP and in ICP (R2 = 0.09); 6) ABP detrended 
range (R2 = 0.09); 7) ICP detrended range (R2 = 0.08); 8) Range of Slow 
waves in ICP (R2 = 0.08). 

4. Discussion 

In this work, we explored means for quantifying the uncertainty of 
PRx time trends within the first 24 h of neuromonitoring in TBI patients. 
Our results suggest that higher variability is related to periods with PRx 
around “0”. In our cohort, short-term variability of PRx was not signif-
icantly linearly related to any of average ICP, ABP, or CPP. The vari-
ability in CPP explained only 14 % of the variability in PRx. High 
coherence between slow waves in ABP and ICP were associated with 
lower uncertainty in PRx time trends. 

How should we quantify the uncertainty of PRx time trends? 
Methods for quantifying uncertainty and reliability of indices of cerebral 
autoregulation (CA) have been suggested outside the realm of traumatic 
brain injury (Bryant et al., 2021; Gommer et al., 2010; Mitsis et al., 
2002; O’Keeffe and Mahdi, 2018; Olsen et al., 2022; Panerai, 2014). For 
example, Bryant et al. (2021) implemented a parametric bootstrap 
approach that could estimate the confidence intervals for estimates of 
average phase obtained from transfer function analysis between ABP 
and cerebral blood flow velocity (CBFV), under the assumption of ad-
ditive random noise in the output signal CBFV. They validated the 
method in a small cohort of young adults for identifying confidence 
intervals of phase estimates in individual short recordings. O’Keeffe 
et al. (O’Keeffe and Mahdi, 2018) used Bayesian parameter inference to 
estimate the error in the Autoregulation Index ‘ARI’ outputs. In both 
these examples, the data were represented by short recordings of 
non-invasive ABP and CBFV of healthy young subjects and were 
underpinned by a concrete physiological model-derived theoretical 
relationship between the analysed variables. PRx, on the other hand, is 
an entirely non-parametric index which does not lend itself to such 

Table 1 
Modalities considered in the analysis.  

Variable Description calculation 
window 
(seconds) 

update 
window 
(seconds) 

ABP mean ABP 60 60 
ABP_dt detrended ABP. An infinite 

response DC-filter with a 
frequency cut-off of 0.001 Hz 
was applied to 10sec 
averages of ABP 

10 10 

ABPslow the power of slow waves in 
ABP was estimated with the 
Standard deviation of 10sec 
averages of ABP 

600 60 

ABPslow_entropy entropy of the power of the 
power spectrum of ABP in 
the range 0–0.05 Hz. 

3600 60 

sdABP single difference between 
consecutive data points of 
10sec average ABP 

10 10 

SDsdABP_1h standard deviation of the 
single difference of ABP 

3600 60 

ICP mean ICP 60 60 
ICP_dt detrended ICP. An infinite 

response DC-filter with a 
frequency cut-off of 0.001 Hz 
was applied to 10sec 
averages of ICP 

10 10 

Coh_ABP_ICP mean modulus coherence 
between ABP and ICP, in the 
frequency range 0–0.05 Hz, 
calculated with cross- 
spectral analysis (Hamming 
window, 5 segments, 50% 
overlap) 

300 60 

ICPslow the power of slow waves in 
ABP was estimated with the 
Standard deviation of 10sec 
averages of ICP 

600 60 

ICPslow_entropy entropy of the power of the 
power spectrum of ICP in the 
range 0–0.05 Hz. 

3600 60 

sdICP single difference between 
consecutive data points of 
10sec average ICP 

10 10 

SDsdICP_1h standard deviation of the 
single difference of ICP 

3600 60 

CPP (mean ABP) – (mean ICP) 10 10 
sdCPP single difference between 

consecutive data points of 
10sec average CPP 

10 10 

SDsdCPP_1h standard deviation of the 
single difference of CPP 

3600 60 

AMP amplitude of the 
fundamental harmonic 
within the frequency range of 
40–180 b/min using Fast 
Fourier Transform. This 
analysis was performed on 
full resolution, waveform 
level, data of ICP 

10 10 

sdAMP single difference between 
consecutive data points of 
10sec average AMP 

10 10 

SDsdAMP_1h standard deviation of the 
single difference of AMP 

3600 60 

etco2 mean EtCO2 10 10 
Etco2slow the power of slow waves in 

ABP was estimated with the 
Standard deviation of 10sec 
averages of EtCO2 

600 60 

Etco2slow_entropy entropy of the power of the 
power spectrum of etco2 in 
the range 0–0.05 Hz. 

3600 60 

All variables were further down sampled to 0.0167 Hz by coarse graining using 
60 s, non-overlapping averages. 
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approaches. Therefore, in our work we explored general, short-term 
variability metrics, such as interquartile range and standard deviation, 
that could quantify uncertainty over 1 h of data of minute-by-minute 
PRx. While this represented an initial step in this field, further meth-
odological explorations are warranted in identifying suitable metrics for 
quantifying the uncertainty of PRx time trends in TBI. 

How did the variability of PRx behave in the first 24 h of neuro-
monitoring in TBI patients? In this first exploration we could appreciate 
that the maximum values of the hourly interquartile range and range of 
PRx were very close to 2. Given that PRx can range from − 1 to +1, this 
would mean that PRx would fluctuate from one extreme to the other 
within 1 h of time. This kind of variability seems unlikely to reflect 
physiological variability of CA in TBI patients admitted in intensive care 
unit. We noticed that the variability of PRx slightly decreased over the 
first 12 h (Fig. 3A), as the interquartile range decreased from 0.43 to 
0.38. Whether this is a significant decrease and the reasons for it should 
be investigated in future studies. Importantly, the variability was higher 
and significantly different for epochs where the average PRx was around 
0. Similarly, Sorrentino et al. looked at the critical thresholds for PRx 
and described values between 0 and 0.3 as a ‘grey zone’ in terms of 
relationship with outcome (Sorrentino et al., 2012). Values of PRx close 
to ‘0’ may reflect either working vascular reactivity, or incoherent 
variability in ICP and ABP. Our GAM models seem to support the latter 
and this has important clinical implications, suggesting that PRx values 
in this ‘0’ region should not be fully trusted as representing intact 
reactivity. 

What is the uncertainty and variability of PRx related to? It is 
desirable that the variability in PRx captures the physiological vari-
ability of the autoregulatory mechanism. The main determinant of the 

autoregulatory mechanism, monitored by PRx, is CPP (Brassard et al., 
2021). Hence, one would expect that the variability of PRx would be 
related to the variability of mean CPP. However, the short-term vari-
ability of PRx was not linearly related to average CPP in our cohort and 
the hourly range of CPP only explained 14% of the variability in PRx as 
expressed by R2. This may be explained by the fact that non-linear re-
lationships should be explored instead (Marmarelis et al., 2012; Mitsis 
and Marmarelis, 2004) or by the fact that CPP influences PRx on longer 
time periods. On the other hand, our result might suggest that other 
factors (methodological or physiological) are involved in explaining the 
variability of PRx. Physiological factors may be related to metabolic or 
neurovascular effects on ICP, hence multivariate models could help in 
describing vascular reactivity in a more reliable way. High coherence 
between slow waves in ABP and ICP was related to lower variability in 
PRx. This result was reassuring as it reflects the assumption of PRx for 
which the variability of ICP is driven by variability in ABP. This result 
also supports the idea of using wavelet methods for improving the sta-
bility of PRx calculations, as previously explored by our group (Liu et al., 
2017a, 2018). Ideally a threshold for coherence, above which PRx can 
be computed, could be identified. For low coherence values though, the 
problem of detangling the source of uncertainty in PRx remains. In the 
attempt of identifying the variables that influence the short-term vari-
ability in PRx, we singled out a reasonable number of modalities that 
could be explored further in future studies (see paragraph 3.4). 

Real-time availability of uncertainty metrics at the bedside along 
with the time-trend of PRx, could inform about reliability of the indi-
vidualised CA assessment in TBI patients. The uncertainty metrics of PRx 
would serve to either reassure the clinician on the validity of the 
assessment of vascular reactivity or warn about the possible invalidity of 
the assessments. This would allow a more informed decision-making 
process at the bedside and help the clinician to select the patients and 
the scenarios when the CA assessment could be reasonably imple-
mented, as well as provide reliability weighting in downstream algo-
rithms, like CPPopt. 

We speculate that the information of the determinants of uncertainty 
could also potentially aid in the evaluation of the status of CA. High 
uncertainty of the index would at least warn about the low confidence 
that the clinician should have on the assessment of CA and on the 
derived CPP targets, such as CPPopt. If such uncertainty was associated, 
for example, with high variability in EtCO2, and the assessment of CA 

Table 2 
List of the summary metrics used in the analysis.  

List of metrics used for the assessment of uncertainty and variability 

minimum value (min) 
first quartile (q1) 
mean 
median 
third quartile (q3) 
standard deviation (STdDev) 
maximum value (max) 
range (max - min) 
interquartile range (iqr) 
valid count (n of valid data points within the buffer)  

Table 3 
Basic demographics.  

Variable median (q1:q3) or n (%) data availability, n (%) 

Age 45 (25:55) 698 (76.6) 
Sex (female) 121 (13.3) 558 (61.3) 
Severity  578 (63.4) 
GCS 3-8 408 (44.8)  
GCS 9-13 132 (14.5)  
GCS 14-15 38 (4.2)  

GCS: Glasgow Coma Scale; q1: first quartile; q3: third quartile. 

Table 4 
Descriptive statistics of metrics that describe variability of PRx.  

Variability of PRx metrics min max median q1 q3 iqr mean sd 

PRx_iqr 0.000 1.809 0.361 0.273 0.489 0.216 0.398 0.185 
PRx_mean − 0.952 0.992 0.029 − 0.145 0.225 0.370 0.056 0.289 
PRx_median − 0.952 0.995 0.024 − 0.166 0.243 0.409 0.057 0.319 
PRx_range 0.000 1.976 1.164 0.901 1.416 0.515 1.151 0.355 
PRx_StdDev 0.000 0.880 0.276 0.213 0.351 0.138 0.286 0.101 
sdPRx_mean − 0.450 0.383 0.000 − 0.005 0.005 0.011 0.000 0.020 
sdPRx_StdDev 0.000 0.637 0.190 0.150 0.235 0.085 0.195 0.064 

q1, first quartile; q3, third quartile; iqr, interquartile range; sd, standard deviation; sdPRx, single difference between consecutive data points of minute-by-minute PRx. 
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was considered relevant for the clinical management, then stabilizing 
the ventilation (if clinically feasible) could be a means for lowering the 
uncertainty of PRx and hence achieving a reliable assessment of CA and 
derived CPP targets. If the uncertainty was associated with low coher-
ence between slow waves in ABP and ICP, then a brief period of induced 
oscillatory waves with the ventilator sigh function (provided this was 
clinically feasible) could provide with a period of high signal-to-noise for 

PRx (Tas et al., 2022). On the other hand, low uncertainty of the esti-
mation of CA would provide high confidence in utilizing PRx and the 
derived CPP targets for the clinical decision-making process. We spec-
ulate that this will pave the path to reaching consensus among the 
clinical community on accuracy, reliability, and operationalization of 
PRx at the bedside. 

With this first exploration we set out a research agenda for achieving 
the goal of providing real-time availability of uncertainty metrics at the 
bedside along with the time-trend of PRx, and so informing about reli-
ability of the individualised CA assessment in TBI patients. First of all, 
methods for quantifying uncertainty of within patient short-term PRx 
should be explored. Next, factors that are related to high uncertainty 
should be identified. Further, nonlinearity of the autoregulatory mech-
anism should be considered in estimation of CA in those data that are 
considered reliable for assessment of autoregulation in TBI patients 
admitted in intensive care. 

Our study has several limitations. Our cohort included all TBI pa-
tients with ICP monitoring admitted in Addenbrookes hospital that had 
ICM + monitoring data stored in the Brain Physics Lab research data-
base. The availability of ICM + monitoring data depended on re-
searchers’ availability. We do not hold a screening log and thus we 
cannot describe how many TBI patients were monitored out of all those 
that were admitted. We did not address the selection bias in our analysis. 
We only considered the first 24 h of neuromonitoring, and we did not 
reslice the data to the time of injury, but to the neuromonitoring start 
time, which makes our discussion of the time profiles less insightful. 
Each hourly epoch was considered as independent, and we did not count 

Fig. 3. Time profile of PRx variability 
The plots show the GAM models fit (with cubic spline) for PRx_iqr vs time (in hours from the start of neuromonitoring). The grey shaded area represents the standard 
error. In plot An all hourly PRx_iqr values are considered. In plot B, the values are grouped depending on the corresponding average value of PRx: between − 0.3 and 
+ 0.3 (yellow line), below − 0.3 (green line), above 0.3 (red line). IQR: interquartile range. 

Fig. 4. Bar plot of t-statistics 
Absolute values of t-statistics of the linear correlation coefficients between each 
variable and the hourly interquartile range of PRx. The arrow indicates the 
elbow that we visually identified to select the variables with higher influence on 
the variability of PRx. 
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for repeated measures per patient. It is likely that both time and patient 
dependence would be relevant in the assessment of uncertainty of PRx. 
Clinical presentation, demographic variables, and injury severity scores 
were not considered in this analysis. Hence, in this cohort are included 
patients with EVD and patients that underwent decompressive cra-
niectomy. The validity of PRx is questionable in both cases, however we 
attempted to address this issue with careful signal processing. Further, 
the possible demographic indicators of PRx variability were not 
explored. Lastly, the type of modalities that we explored were dictated 
by the data availability. 

5. Conclusion 

PRx is a highly variable parameter, and its short-term dispersion does 
not seem to be linearly related to mean values of ICP, ABP or CPP. 
Variability in CPP explained only 14% of the variability in PRx. High 
coherence between slow waves of ABP and ICP were associated with 
lower uncertainty of PRx. Real-time availability of uncertainty metrics 
along with the time-trend of PRx could inform the reliability of the 
individualised CA assessment in TBI patients. 
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