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ABSTRACT

Integrating omics data with quantification of bi-
ological traits provides unparalleled opportunities
for discovery of genetic regulators by in silico in-
ference. However, current approaches to analyze
genetic-perturbation screens are limited by their
reliance on annotation libraries for prioritization
of hits and subsequent targeted experimentation.
Here, we present iTARGEX (identification of Trait-
Associated Regulatory Genes via mixture regres-
sion using EXpectation maximization), an associa-
tion framework with no requirement of a priori knowl-
edge of gene function. After creating this tool, we
used it to test associations between gene expres-
sion profiles and two biological traits in single-gene
deletion budding yeast mutants, including transcrip-
tion homeostasis during S phase and global protein
turnover. For each trait, we discovered novel regula-
tors without prior functional annotations. The func-
tional effects of the novel candidates were then val-
idated experimentally, providing solid evidence for
their roles in the respective traits. Hence, we con-
clude that iTARGEX can reliably identify novel factors
involved in given biological traits. As such, it is ca-
pable of converting genome-wide observations into
causal gene function predictions. Further application
of iTARGEX in other contexts is expected to facilitate
the discovery of new regulators and provide obser-
vations for novel mechanistic hypotheses regarding
different biological traits and phenotypes.

GRAPHICAL ABSTRACT

INTRODUCTION

One of the broad challenges in molecular biology is to iden-
tify the genetic factors responsible for certain cellular func-
tions and phenotypic traits. In the past two decades, vast
amounts of transcriptomic data have been generated, facil-
itating the mapping of intricate molecular interactions the
underlie phenotypic traits (1,2). Two major strategies have
been established to analyze transcriptome data in studies
of how genetic regulation influences traits. Using forward
genetics, approximate loci of genetic variants can be asso-
ciated with particular phenotypes, and methods such as ex-
pression quantitative trait loci (eQTLs) have been utilized
for genome-wide mapping by statistical correlation (3–5).
Alternatively, reverse genetics screens examine phenotype-
genotype associations by inducing genetic perturbations
across the genome, including mutations (6), gene knock-
downs (7) or genome editing with CRISPR–Cas9 (8). These
screening methods provide rich molecular datasets that can
reveal novel insights into the consequences of transcrip-
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tomic regulation; however, the methods of analysis are often
limited.

Although both forward and reverse genetics approaches
have been successfully applied in many studies, identifica-
tion of phenotypic determinants by these strategies has typ-
ically involved prioritizing candidate genes through a com-
bination of prior knowledge and targeted experimentation.
In addition, the application of vast genomic data is often
limited to the specific questions addressed in a study or the
conditions under which the data are gathered. Importantly,
novel analyses of previously generated genome-wide tran-
scriptome data may reveal unexpected causal connections
and allow for inter-study comparisons to uncover broad
regulatory mechanisms. Herein, we describe the application
of one such new method, which analyzes transcriptome data
from a reverse genetics screen and can be used to infer novel
regulators of biological traits (Figure 1A).

The dataset we chose to analyze comprises microarray
results from Saccharomyces cerevisiae single-gene deletion
mutants (9). This dataset was especially attractive because
expression patterns in isogenic populations tend to exhibit
relatively low variability; cellular systems often maintain
phenotypic stability in the face of environmental or genetic
perturbations through complex regulatory networks and
genetic capacitors (10,11). Additionally, cell–cell variability
in this dataset is masked because gene expression levels were
measured in bulk populations of isogenic strains. Hence,
the expression profiles between different populations with
the same genetic background should exhibit only negligi-
ble variations, and these stochastic variations would not be
associated with any biological traits. Another important as-
pect of the dataset is that deletion of a particular gene may
affect the expression of many other genes either directly or
indirectly. As a result, significant correlations between a mu-
tant and phenotype can be understood as the effect of the
gene mutation on the entire cellular system, and a correla-
tion between the expression level of a particular gene and a
given biological trait may be observable in strains with mu-
tations in several different genes.

In this work, we leveraged these features of the dataset
to establish a statistical framework that incorporates a mix-
ture regression model, and we implemented it as an analyti-
cal tool called identification of Trait-Associated Regulatory
Genes via mixture regression using Expectation maximiza-
tion (iTARGEX). Since biological data are usually noisy,
global correlation across all data points (genes) may lack
power due to the blurred signals, especially in the case of
marginal regulators that only affect the expression of a lim-
ited number of genes. Our mixture regression model can
account for this potential heterogeneity in transcriptional
responses to single-gene deletion mutants. As such, we as-
sume that the data are a mixture of two Gaussian distribu-
tions (correlated and uncorrelated groups), and we incorpo-
rate the covariates (gene effects of interest) into the model
of mixture regression.

To illustrate the utility of predictions made by
iTARGEX, we associated gene expression in a set of
1,484 budding yeast deletion mutants (9) with two bio-
logical traits, gene expression buffering during S phase
and global protein turnover rate. After identifying gene
candidates with highly significant associations, we con-

ducted biological experiments to further evaluate the
phenotypes of those mutants. Our results revealed that
Elg1 is associated with transcriptional buffering during S
phase. Moreover, four mutants of mrn1, upf3, ram1 and
ssn3 showed significantly delayed protein turnover when
compared to the wild type (WT). Thus, iTARGEX is a
robust analytical tool that can be used to identify novel
determinants of wide-ranging biological traits, and it
can thus convert genome-wide observations into specific
predictions of causal gene functions.

MATERIALS AND METHODS

Data resources

The Deletome collection of mRNA expression profiles for
individual gene deletions in yeast S. cerevisiae was created
by Holstege’s group (9). The Deletome contains the tran-
scriptional responses of 1,484 single-gene deletion mutants
in S. cerevisiae that each lack a single nonessential gene, as
measured by microarray. The targets of this genetic pertur-
bation assay covered 25% of the entire yeast transcriptome
and include most of the genes with high potential to exhibit
regulatory functions. As described in the original article,
mutant lines with at least one significant differentially ex-
pressed gene (P < 0.05 and log2FC > 1.7) were considered
to be responsive mutants.

Statistical framework of iTARGEX

Estimation of mixture regression models using EM algo-
rithm. The transcriptomic changes caused by a genetic
perturbation can be associated with a given phenotype of
interest in two scenarios, depending on the role of the dis-
rupted gene. iTARGEX considers models of both associ-
ation scenarios with a statistical framework implemented
in R/mixtools package (12). For each deletion mutant,
the n-vector corresponds to the number of genes for the
given phenotype of interest. X = (x1, x2, . . . , xn) and Y =
(y1, y2, . . . , yn), respectively denoting the vector of pheno-
type of interest and the vector of gene expression changes.
Each variable is centered, such that it has a zero mean across
the samples. For vector X, the variables are scaled using
the scale function in R. For vector Y, the variables are log-
transformed fold changes in gene expression for the given
mutant, as obtained from the original paper (9). In the first
association scenario, ‘global’ association represents a gen-
eral pattern across the whole transcriptome and the pheno-
type of interest. In this case, the likelihood function given
the n observed data is defined as

L
(
β0, β1, σ

2|y1, . . . , yn
) =

n∏

i=1

∅ (
yi |μ = β1xi + β0, σ

2) ,

where φ(.) is the pdf of normal distribution, β1 is the slope,
β0 is the intercept, μ is the mean of the normal density, and
σ 2 is the random error.

In the second scenario, an association only exists along a
subset of genes, and it is defined as a ‘partial’ association.
The probability density function of the observed data would
be a mixture of two regression models; one contributes to
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Figure 1. iTARGEX flowchart. (A) Strategy for identification of candidate regulators by analyzing associations between gene expression changes and traits.
(B) iTARGEX analysis proceduRes. The fold change (FC) values of gene expression for 1484 single-gene deletion mutants were log-transformed, and the
magnitudes of biological traits of interest were scaled using scale() function in R. In the first step of association analysis, iTARGEX obtains the value
of β1 by performing a generalized linear mode analysis. Second, the given β1 is used as an initial value for the EM algorithm to estimate the parameters
in the regression mixture model. Then, the mixture weights of each gene are estimated as the probabilities for two regression components reported in
the following steps. Third, each gene is assigned to either regression component according to the mixture weights, according to a threshold of 0.5; the
associations of two distinct subpopulations are examined using linear regression. The weights for the significant associated components are then used
to estimate the weighted Pearson’s correlation. Finally, the significance threshold for a high-confidence regulator is set as q-value of weighted Pearson’s
correlation coefficient (WPCC) < 10–3.

the association and the other does not. An additional pa-
rameter is needed to account for the proportion of data
points that are genuinely associated with each other. The
likelihood function is thus modified as

L
(
β1, β0, π, σ 2

1 , σ 2
2 |y1, . . . , yn

)

=
n∏

i=1

(
π · ∅ (

yi |μ = β1xi + β0, σ
2
1

)

+ (1 − π ) · φ
(
yi |μ = 0, σ 2

2

))
,

where π represents the ratio of associated genes.
For each independent dataset, iTARGEX accounts for

the scenario of partial association and estimates the pa-
rameters (i.e. β1, β0, π, σ 2

1 , σ 2
2 ) by maximizing the likelihood

through an iterative Expectation Maximization (EM) algo-
rithm (13). Of note, we provide an initial β1 for the EM
algorithm from the slope generated by performing gener-
alized linear model (glm) with identity link function on the
dataset. When the EM algorithm converges, a set of mixture
weights (wi , 1 − wi ) for each gene are reported, represent-
ing the probabilities of belonging to either estimated com-
ponent (regression models). We then used the set of mixture
weights for all genes to select candidate regulators in the fol-
lowing steps.

Significant regression component selection. In iTARGEX,
a selection procedure is applied to identify which regression
component shows a strong association relationship in the
single-gene deletion mutants. First, every gene in a given
mutant is assigned as either component 1 or component 2
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based on a threshold of its mixture weight (set at 0.5). Be-
cause the sum of mixture weights for each gene equals 1,
the two regression components include distinct sets of genes
with higher probabilities of belonging to the assigned group.
Then, the association of the two components with distinct
subpopulations of genes is estimated by performing linear
regression and separately obtaining the significance levels
of the regression slopes. In order to avoid inflation of type
I error due to application of multiple tests, all P-values are
adjusted by a Bonferroni correction to obtain q-values. An
association for a given component in each mutant is con-
sidered significant if the q-values of regression slopes of the
assigned component pass a stringent cutoff value of <10–3.
If the slopes of the two components in a given mutant are
both significant, the component with a smaller significant q-
value is used to represent the significant association of the
mutant. As a result, iTARGEX identifies single-gene dele-
tion mutants with a significant association of the selected
component as candidate regulators.

Correlation test for ranking high-confidence regulators. In
order to evaluate the overall correlation between the
gene expression changes and the phenotype of interest,
iTARGEX performs a weighted Pearson’s correlation test,
wherein each data point has a corresponding weight deter-
mined by the EM algorithm and selection procedures out-
lined above. In order to avoid inflation of type I errors due
to multiple correlation tests, a Bonferroni correction is also
applied to adjust the P-values for the weighted Pearson’s
correlation coefficients (WPCC). Finally, iTARGEX sorts
high-confidence regulators by their q-values after applying
a stringent cutoff value of <10–3 for significant correlations.

Bioinformatics analysis pipeline for RNA-seq

The raw sequencing reads (FASTQ files) were trimmed
using Trimmomatic (14) to remove illumine adapter se-
quences and reads with low quality. The quality of the
trimmed reads was then evaluated using FastQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), and
after passing quality control, the transcript level abundance
was quantified against a reference sequence of S. cerevisiae
S288c genome (SGD, R64-2-1) using salmon v0.13.1 (15).
For all comparisons in this work, TPM counts were used to
normalize the differences in sequencing depth.

Quantification of expression homeostasis during DNA dupli-
cation

In order to investigate gene expression buffering, we
adopted a quantification method from a previous study
(16) with slight modifications (Supplementary Figure S1).
Briefly, 500 early and 500 late replicated genes (17) were
selected for quantification of transcript level abundance.
For RNA-seq data from different time-points, the regulated
genes, which were defined by Voichek et al. (2016), and the
gene expression values with TPM � 1 were excluded in sub-
sequent steps. Next, the expression level of each gene at ev-
ery time-point was divided by its signal in G1 phase and
then log2 transformed. To calculate the average signal, the
expression levels were averaged separately over early and

late replicated genes for each time-point. The ‘% Signal
early vs. late’ value was calculated by dividing the average
early and late signals at each time-point and multiplying by
100.

Yeast strain and growth conditions for expression homeosta-
sis

Experiments were conducted using S. cerevisiae haploid
strains. Strains used in this article are derivatives of BY4741
(RNA experiments) or BY4742 (proteomic experiments),
unless otherwise indicated. For gene disruptions, the indi-
cated gene was replaced with the KanMX gene or disrupted
through a PCR-based strategy. All yeast cells were supple-
mented with 2% (vol/vol) glucose in YPD medium.

G1 arrest and release

To synchronize cells from G1 to S phase, cells were arrested
at G1 by �-factor, using a standard protocol (18).

Nascent RNA labeling by 4-thiouracil (4tU)

The protocol for labeling nascent RNA with 4tU was de-
scribed previously (16). Cells were harvested at –10 min (be-
fore G1 release) and at 6 min intervals up to 1 h after release.

Biotinylation and purification of labeled RNA

Yeast RNA was prepared by extraction with hot acidic phe-
nol (19). Total RNA was extracted, and 4tU-containing
mRNA was biotinylated and isolated as previously de-
scribed (20,21). To obtain high quality RNA, samples were
further subjected to the clean-up protocol with the RNeasy
Mini Kit (Qiagene, Cat. #74104), and quality was checked
with gel electrophoresis. Nascent RNA was then biotiny-
lated as described (20,21), using 400 �l (∼40 �g) total RNA
and 4 �g MTSEA biotin-XX (Biotium) and purified by My-
One Streptavidin C1 Dynabeads (Invitrogen). The isolated
RNA was further purified and concentrated using Qiagen
miRNeasy columns (#217084), according to the manufac-
turer’s protocol. The isolated RNA was then prepared for
sequencing using the Ovation SoLo or Ovation Universal
RNA-seq System kits (Tecan), according to the manufac-
turer’s instructions. Libraries were sequenced on the Illu-
mina NextSeq high output platform using single reads 75
in Institute of Molecular Biology of Academia Sinica

Flow cytometry

To assess cell cycle synchronization efficiency and progres-
sion of the cell cycle, a standard protocol was followed (18).
Samples taken throughout the experiment were stained for
DNA, and the DNA content was quantified by flow cytom-
etry in the instrument core facility of the Institute of Cellu-
lar and Organismic Biology at Academia Sinica.

Yeast growth conditions for protein turnover

S. cerevisiae strains were grown in synthetic medium con-
taining 6.7 g/l yeast nitrogen base, 2 g/l dropout mix (US

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Biological) containing all amino acids except lysine and
2% glucose. For heavy pre-labeling, heavy [13C6/15N2]
L-lysine (Cambridge Isotope Labs) was added to a final
concentration of 30 mg/l. Cells were precultured in 5 ml
medium containing heavy lysine overnight at 30◦C; the pro-
cedure was repeated twice.

Pulse SILAC

The experiment was adapted from a previously described
protocol (22). Briefly, after pre-culture or nSILAC label-
ing, cells were cultured in biological duplicates up to op-
tical density at 600 nm = 0.4. After three washes at 4◦C
with cold SILAC medium without lysine, cells were trans-
ferred to SILAC medium containing light lysine and har-
vested at 0, 60 and 180 min. For each time-point, ∼3 OD
units of cells were harvested by centrifugation. Cell lysates
were prepared, digested, and fractionated as described (22).
Eluted peptides from the column were directly electro-
sprayed into the mass spectrometer located in the MS fa-
cility of Academia Sinica. Mass spectra were acquired and
protein half-lives were determined following a procedure
described previously (23).

RESULTS

Overview of iTARGEX

To identify candidate regulators associated with biologi-
cal traits, we developed a novel tool, iTARGEX, for the
identification of Trait-Associated Regulators via mixture
regression using EXpectation maximization (Figure 1B).
iTARGEX is written in R with embedded code in C for ac-
celerating EM and can be easily executed by users. The sta-
tistical framework of iTARGEX primarily considers partial
associations between the trait of interest and gene expres-
sion changes in the single-gene deletion mutants by a gener-
alization of multiple linear regression. Association analyses
are then iteratively performed for each individual deletion
mutant. A key step in this approach is use of an EM al-
gorithm to consider partial associations, in order to iden-
tify genuine association in subpopulations. Next, a strin-
gent selection procedure is applied to identify the signifi-
cant association in the subpopulation of data points in a
given mutant using linear regression analysis. The candi-
date regulators are called as hits if the regression slope of
either of two components is significant (q-value < 10–3).
Consequently, the weights of each gene from the signifi-
cant regression component are integrated in the calculation
of weighted Pearson’s correlation coefficients (WPCC). Fi-
nally, the high-confidence regulators are reported based on
the significance levels of WPCC, using a threshold of q-
value < 10–3. The output of iTARGEX includes the gene
names of candidate regulators with their WPCC, -log10(q-
value) and π of the associated component.

Use of iTARGEX to identify regulators of gene dosage
buffering during DNA replication

To demonstrate the effectiveness of iTARGEX, we per-
formed a screen to identify candidate genes needed for
buffering transcription during the replication process. The

transcriptional profiles of 1,484 deletion mutants (9) were
used to identify genes required for maintaining expression
homeostasis during DNA replication (28). In this in silico
screen, candidates that appear to play a role in expression
homeostasis were deduced using a simple correlation be-
tween the time of replication per gene and gene expression
changes in the mutants. Of note, there is no statistical pro-
cedure that can be used to validate their candidate selec-
tion, and the candidates were instead verified directly by
empirical analyses. In contrast, the statistical framework of
iTARGEX provides a reasonable computational procedure
for candidate selection. For each mutant, the q values of
correlation coefficient were generated (Table 1 and Figure
2) and were then used to select candidate genes that may
regulate the buffering process. In comparison with the pre-
vious literature (28), iTARGEX identified seven out of nine
mutants that were empirically shown to be required for ex-
pression homeostasis. Several of the candidates with highly
ranked q values in our list were also identified and veri-
fied previously, including genes involved in cell-cycle control
and DNA replication (MRC1 and CLB5), and chromatin
assembly or modification (ASF1, RTT109 and HOS4). In-
terestingly, we found that genes encoding components of
the CTF18 complex (CTF8, CTF18 and DCC1) were clus-
tered together with high q-value ranks. As one of the three
RLC (replication factor C-like) complexes (25), Ctf18-RLC
has been shown to interact with PCNA (the sliding repli-
cation clamp for DNA polymerases) during both loading
and unloading (26,27). In addition, the deletion of ELG1,
which encodes a subunit of an alternative replication fac-
tor C complex (28), exhibited a very high rank based on q-
value in the iTARGEX analysis. With regard to chromatin-
related genes, the rank of ELG1 was only lower than that of
ASF1 and even higher than the value for RTT109. These re-
sults suggested that PCNA loading and unloading activities
may be important for buffering gene dosage during S phase.
Taken together, these results showed that iTARGEX (as-
sisted by statistical power) was able to identify known reg-
ulators and also potentially reveal novel factors for a given
genetic trait.

Verification of mutants that lose expression homeostasis dur-
ing S phase

RTT109 and ASF1 were previously shown to suppress tran-
scription from replicated DNA depending on the acetyla-
tion of histone H3 on lysine 56 (H3K56ac) (16). As a first
step to establish the role of PCNA loading/unloading in
expression homeostasis during S phase, we decided to re-
examine the role of RTT109 in expression homoeostasis.
Yeast cells were collected, and nascent mRNAs were pro-
filed from synchronized cell cultures during S phase pro-
gression. (Figure 2B). WT and RTT109-deleted (rtt109Δ)
cells were analyzed at a time resolution of 6 min. The DNA
content analysis indicated that the WT cells entered S phase
at 18 min after release from G1 and reached G2/M phase
at 42 min after release. The rtt109Δ cells exhibited a slower
cell cycle, with entry into S phase at 24 min after G1 release
and arrival at G2/M phase at 48 min post-release. Despite
these differences in cell cycle progression, the temporal dy-
namics of transcription profiles through the cell cycle were
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Table 1. Summary of iTARGEX results from the association analysis for replication time of genes and regulators that play a role in expression homeostasis
during DNA replication. Stars indicate genetic mutants with q-values of correlation below the threshold of 10–3 in the iTARGEX but that did not pass
in the simple correlation. PCC: Pearson’s correlation coefficient; WPCC: Weighted Pearson’s correlation coefficient; q-values are log-transformed; π : the
proportion of genes were estimated to be significant association by EM

iTARGEX Simple correlation

Regulators WPCC –log10(q-value) � PCC –log10(q-value)
Reported in
literatures

Validation in
this study

MRC1 − 0.232 71.929 0.879 − 0.132 21.752 Voichek et al., 2018 v
CLB5 − 0.154 30.318 0.895 − 0.114 15.505 Voichek et al., 2018
ASF1 − 0.138 23.853 0.857 − 0.120 17.480 Voichek et al., 2016
CKB1 − 0.129 20.710 0.909 − 0.068 4.116
CKB2* − 0.093 9.736 0.910
ELG1 − 0.093 9.650 0.917 − 0.075 5.468 v
RTR1* 0.091 9.278 0.896
DUN1 − 0.089 8.681 0.892 − 0.075 5.437
RTT109 − 0.085 7.762 0.786 − 0.071 4.621 Voichek et al., 2016 v
CTF8* − 0.082 7.149 0.897 Voichek et al., 2018 v
CTF18* − 0.082 7.007 0.837
DCC1* − 0.078 6.223 0.850 − 0.060 2.682
HHT1 − 0.078 6.193 0.915 − 0.066 3.788
HOS4* − 0.073 5.243 0.918 Voichek et al., 2018
SWI6 − 0.072 4.916 0.801 − 0.071 4.765 Voichek et al., 2018
NPT1* − 0.070 4.504 0.924
RNR4 − 0.068 4.126 0.853 − 0.066 3.699

highly similar for WT and rtt109Δ cells. However, the ex-
pression of replicated genes in rtt109Δ cells was increased
at 18 min after release, which was 6 min earlier than the on-
set of S phase (Figure 2C), consistent with the notion that
expression homeostasis is lost in these cells (24). In addi-
tion, we also examined the transcription profiles and cell cy-
cle progressions of MRC1-deleted and CTF8-deleted cells.
We confirmed a pronounced loss of transcription buffer-
ing in mrc1Δ cells (24). The effect of ctf8Δ cells was simi-
lar with rtt109Δ cells, confirming that the activity of Ctf18-
RLC likely plays a role in transcriptional buffering during
S phase.

Elg1 is a novel regulator of transcriptional buffering during S
phase

One of the candidate genes, ELG1, stood out from our
iTARGEX analysis for several reasons. First, ELG1 gene
was not identified in previous screens (16,24), so it was
important to verify its role in transcriptional buffering
during S phase. Furthermore, Elg1 is thought function
as a PCNA unloader (28), and this unloading function
appears to be conserved in humans; as such, ATAD5
(the human Elg1 homolog) is required for removal of
PCNA from chromatin in human cells (29,30). Finally,
the identification of Elg1 as a regulator of transcrip-
tional buffering suggested that the timely unloading of
PCNA from chromatin is required for expression home-
ostasis during DNA replication. Because the molecular
function of Elg1-RLC differs from previously identified
buffering regulators, such as Asf1-Rtt109-H3K56ac (16)
and PAF1-SET1-H3K4me (24), we suspected Elg1-RLC
may be an unexpected and novel regulator of gene dosage
buffering.

To test this possibility, we analyzed the contribution of
Elg1 to expression homeostasis by profiling cell cycle pro-
gression and temporal gene expression of WT and elg1Δ

cells. Similar to rtt109Δ cells, elg1Δ cells exhibited delays
in entry to and exit from S phase (Figure 3A). However, we
surprisingly found a significant reduction in the expression
of early replicated genes at 6 min, almost immediately af-
ter G1 release. Moreover, the transcriptional repression in
elg1Δ cells started to recover at 24 min, concomitant with
entry into S phase, and the level of transcription contin-
ued to increase as the cells progressed to G2/M phase (Fig-
ure 3B). To confirm this unexpected finding, we repeated
the same transcription and cell cycle profiling experiments
in a genetic background (31), other than the conventional
BY4741. Remarkably, we obtained very similar results for
both gene expression and DNA content measurements on
the new background (Figure 3D).

Because Elg1 is an PCNA unloader (28), we considered
the possibility that it regulates expression homeostasis dur-
ing S phase by modulating PCNA occupancy on replicat-
ing chromatin. To test this idea, we took advantage of a
disassembly-prone PCNA mutant with a substitution of as-
partic acid-150 to glutamic acid (PCNA-D150E) (31). This
mutant has been shown to rescue PCNA-mediated DNA re-
pair (31) and replication-coupled nucleosome assembly (32)
that are disrupted in the absence of Elg1. To our surprise,
the PCNA-D150E mutation completely restored the expres-
sion homeostasis of elg1Δ cells to a level similar to WT (Fig-
ure 3C and F). Of note, the PCNA-D150E mutation alone
did not exhibit any observable defect in S phase transcrip-
tion buffering (Supplementary Figure S2).

The effect of Elg1 on PCNA loading during S phase has
been carefully detailed (33,34). Normally, PCNA is loaded
close to the replication origin in early S phase, and it is un-
loaded behind the replication forks (12). However, in the
absence of Elg1, PCNA is retained on replicated chromatin
(33). Thus, the timely removal of PCNA during DNA repli-
cation is disrupted in elg1Δ cells, causing accumulation of
PCNA at origins, and this phenomenon is likely due to a
delay in unloading (33). Even without Elg1, PCNA is un-
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Figure 2. iTARGEX predicts candidate regulators involved in expression homeostasis during S phase. (A) Volcano-like plot shows the candidate regulators
associated with DNA replication time predicted by iTARGEX. (B) Representative flow cytometry profiles of WT, rtt109Δ, mrc1Δ, ctf8Δ after factor arrest
and release reveal defects in postponement of the cell cycle in mutants, as indicated by red arrows. (C) Expression of nascent RNAs during S phase. The
mRNA synthesis rate of early replicating genes relative to late replicating genes was increased during S phase in the rtt109Δ mutant cells compared to WT
cells. (D) Similar effects of lost transcriptional buffering were observed in the mrc1Δ and ctf8Δ mutants.

loaded eventually; however, unloading in the absence of
Elg1 occurs in late S phase (33,35).

The results of our transcriptional profiling combined
with the putative role of Elg1 in modulating PCNA dy-
namics during S phase (33,34) suggest that PCNA may
function to limit RNA pol II loading during replication.
In WT cells (Figure 3G, left panel), PCNA is loaded at
early replicated genes and may be quickly unloaded by
Elg1; this unloading of PCNA is required for the reload-
ing of RNA pol II, which has been evicted by the replica-
tion fork (36) and allows the resumption of transcription at
these regions. PCNA unloading and RNA pol II reloading
also occurs at late firing origins during late S phase. There-
fore, transcriptional homeostasis is maintained by the ef-
ficient PCNA loading/unloading and RNA pol II reload-

ing throughout the S phase. In elg1Δ cells (Figure 3G, right
panel), the accumulation of PCNA at the early replication
chromatin would inhibit the reloading of RNA pol II, con-
sistent with the observed reduction of mRNA synthesis at
early S phase (Figure 3B and E). At late S phase, the reload-
ing of the RNA pol II at late replicated genes is prevented by
the accumulation of PCNA, but the early replicated genes
have resumed transcription on both newly synthesized sis-
ter DNA strands due to unloading of PCNA through an
Elg1-independent mechanism (33,35). The delay in PCNA
unloading may thus introduce a strong imbalance in tran-
scription of early and late replicating genes (Figure 3B and
E) at late S phase. Overall, iTARGEX identified ELG1 as a
novel regulator of transcriptional buffering during S phase,
which is probably based on its PCNA unloading activity.
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Figure 3. Elg1 controls genetic buffering during S phase. (A) Representative flow cytometry profiles of WT (BY4741), elg1Δ, pol30-D150E, and double
mutants after factor arrest and release reveal defects in the ability of elg1Δ mutant cells to postpone the cell cycle, as indicated by red arrows. (B) Expression
of nascent RNAs during S phase. The mRNA synthesis rate of early-replicating genes relative to late-replicating genes was increased during S phase in the
elg1Δ mutant cells compared to WT cells. (C) Transcriptional buffering was rescued in the double-mutant cells. (D) Representative flow cytometry profiles
of elg1Δ mutant and double mutant (elg1Δ and pol30-D150E) on the RDKY5964 genetic background after factor arrest and release. (E) Expression of
nascent RNAs during S phase shows loss of transcriptional buffering in the elg1Δ mutant on RDKY5964 background. (F) Rescue of phenotype in the
double-mutant cells. (G) The proposed model for the role of Elg1 in genetic buffering during DNA replication. The unloading of PCNA by ELG1 protein
is critical for pol II to transcribe the mRNA after DNA replication.
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Table 2. Summary of iTARGEX results from the association analysis for protein turnover rate and regulators of protein turnover. WPCC: Weighted
Pearson’s correlation coefficient; q-values are log-transformed; π : the proportion of genes estimated to be significantly associated by the EM algorithm.
Biological functions were taken from the Saccharomyces Genome Database (SGD) (39)

iTARGEX

Regulators WPCC –log10(q-value) � Biological functions
Validation in

this study

MRN1 0.225 35.444 0.921 Involved in translational regulation v
UPF3 0.210 29.528 0.796 Involved in decay of mRNA decay pathway v
PDE2 0.201 29.028 0.924 High-affinity cyclic AMP phosphodiesterase
YPR153W 0.191 25.323 0.896 ER chaperone for nutrient permeases
CAC2 0.182 24.203 0.907 Involved in DNA replication-dependent nucleosome assembly
SSN3 − 0.179 22.991 0.904 Involved in protein destabilization v
YDR306C − 0.177 21.054 0.947 Involved in ubiquitin-dependent protein catabolic process
MEI5 0.173 20.731 0.931 Involved in meiotic DNA recombinase assembly
SRB8 − 0.172 20.668 0.908 Involved in regulation of transcription by RNA polymerase II
RAM1 − 0.181 20.616 0.896 Involved in protein farnesylation v
SSN8 − 0.168 19.636 0.909 Involved in regulation of transcription by RNA polymerase II
ELP4 0.167 19.002 0.917 Required for Elongator structural integrity
ATG23 0.169 18.314 0.913 Involved in positive regulation of macroautophagy
AZF1 0.161 18.053 0.935 Involved in regulation of transcription by RNA polymerase II
CAF40 − 0.166 17.581 0.886 Involved in positive regulation of transcription elongation
IRA2 0.160 16.808 0.815 Involved in negative regulation of Ras protein signal

transduction
DDR48 0.159 16.471 0.945 Involved in DNA repair
UTP30 0.156 16.365 0.924 Involved in ribosomal small subunit biogenesis
SAM4 0.155 16.135 0.940 Cause abnormal vacuole, which is main site for protein turnover

iTARGEX predicts novel factors involved in protein turnover

To further assess the applicability of iTARGEX, we per-
formed a similar analysis for another biological trait. This
time, we chose protein turnover, the balance between syn-
thesis and degradation (37) because dysfunction in pro-
tein turnover is associated with aging and diseases, such as
Parkinson’s and Alzheimer’s diseases (38). Despite the clear
importance of protein turnover, our knowledge of what
drives proteostasis is still limited.

We reasoned that the deletion of protein turnover reg-
ulators (either negative or positive regulators) may trig-
ger compensatory feedback responses on gene expression
to buffer the impact on protein abundance. Thus, we ap-
plied iTARGEX to examine the correlations between pro-
tein half-lives (22) and expression changes in the single-gene
deletion mutants. The top 20 candidate regulators predicted
by iTARGEX are listed in Table 2, along with their asso-
ciation test results and their biological functions. Notably,
a few candidate regulators, such as SSN3 and YDR306C,
were reported to regulate protein stabilization processes,
while other candidate regulators are associated with the
transcriptional regulation (e.g. UPF3, SRB8, SSN8, AZF1,
CAF40) and post-transcriptional regulation (e.g. MRN1,
UTP30). Thus, processes upstream of protein biosynthe-
sis may also act as determinants of protein turnover rate.
The candidate regulators were ranked based on their q-
values (Figure 4A), and we selected the MRN1- and UPF1-
deletion strains for further analysis, as these strains were
two top-ranked candidates exhibiting positive correlation
with protein half-lives. The deletions of RAM1 and SSN3
were the top-ranked negative correlations, so we also de-
termined the protein turnover rates in those strains. We
metabolically labeled the WT and mutant yeast cells with
heavy isotope lysine and then replaced the culture medium
with one containing normal lysine. We then analyzed the

decay of the heavy lysine signal in the proteome over time
by high-resolution mass spectrometry-based proteomics, as
reported previously (22). We found that all mutants of inter-
est exhibited higher total retention rates of heavy lysine at 60
min after release into normal lysine medium, indicating that
the average rates of protein turnover in mutant cells were all
slower than that in WT cells (Figure 4B, upper panel). This
trend was further exacerbated in all tested mutants at 180
min after release (Figure 4B, lower panel), with the excep-
tion of mrn1Δ cells. We next analyzed the contribution of
each protein to the overall protein turnover rate by calcu-
lating their degradation constant (Kdp), using a protocol
adapted from a previous study (23) (Figure 4C). The results
indicated that all tested gene deletions influenced turnover
of the majority of yeast proteins, suggesting that these genes
encode general regulators to protein half-life. In sum, these
results demonstrate that iTARGEX is capable of identifying
novel regulators of protein turnover.

DISCUSSION

In this study, we introduce iTARGEX, a bioinformatics tool
that predicts genes involved in the regulation of the bio-
logical traits by using association tests with fine statisti-
cal inference. Previously, researchers identified regulators
that maintain expression homeostasis during DNA replica-
tion (16,24) by performing simple correlations on a pub-
lished dataset of transcriptional profiles for deletion mu-
tants in the budding yeast (9). However, the major weak-
ness of the previous analysis was that it lacked a rigorous
procedure to select plausible candidates from the associa-
tion tests, and therefore, the logical inferences are difficult
to recapitulate. For instance, the authors selected two reg-
ulators for further experiments, SET1 (PCC = −0.053, –
log10(q-value) = 1.56) and SWD3 (PCC = −0.022, -log10(q-
value) = 0.00), which were not significantly associated us-
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Figure 4. iTARGEX predicts novel factors involved in protein turnover. (A) Volcano-like plot shows the candidate regulators associated with protein
turnover rate predicted by iTARGEX. (B) Density distributions of the synthesized proteins that incorporate the heavy label at 60 min and 180 min.
Overall, the new protein synthesis was postponed in four mutant strains compared to wild type. (C) The degradation constants (Kdp) for each protein
were calculated from log2(H/H+L) ratios at two time points using linear regression. The dashed lines denote the mean Kdp values, derived by averaging all
proteins. In comparison with the mean Kdp of the wild-type strain, the P-values of strains showing significant differences were 10–28, 0, 0, and 0 for mrn1Δ,
upf3Δ, ram1Δ and ssn3Δ mutant strains, respectively, according to the Mann–Whitney U test.

ing the simple correlation test (24). In this study, iTARGEX
was used to consider not only simple correlations but also
partial correlations, providing an effective and automated
approach to identify associations among sub-populations,
using a mixture model with EM search algorithm. Notably,
iTARGEX could identify seven out of nine important reg-
ulators (except for SET1 and SWD3) reported by previ-
ous studies (16,24) in addition to novel regulators, such as
ELG1, with promising levels of statistical significance (Table
1). In addition, iTARGEX estimated the association pat-
terns of mutant regulators with slightly lower correlation
coefficients and smaller q-values compared to simple corre-
lations (Supplementary Figure S3). Therefore, iTARGEX is
not expected to overestimate correlations. We further exam-

ined how Elg1 might function in gene expression buffering
during DNA replication by a series of genetic experiments
that involved crossing different mutants. With these exper-
iments, we demonstrated that unloading PCNA from du-
plicated chromosomes is probably critical for maintaining
expression homeostasis in the budding yeast (Figure 3). Im-
portantly, the involvement of Elg1 as a regulator of expres-
sion homeostasis was discovered solely based on statistical
inference from heterogeneous data and not prior biologi-
cal knowledge. The use of an explicit statistical framework
allows our method to account for associated relationships
while accommodating noisy expression data.

In addition, we used iTARGEX to measure associations
between gene expression profiles and protein turnover rate,
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assuming the effect of transcriptional changes is linked
to the translation or/and degradation for the continual
renewal of proteins. According to our follow-up SILAC
experiments, the top-ranked candidate regulators indeed
affected the synthesis of most yeast proteins (Figure 4).
These observations further suggest that iTARGEX is re-
liable enough to predict novel regulators of various cellu-
lar functions. Notably, negative or positive correlations be-
tween expression profile and protein turnover rate did not
imply the direction of regulation for degradation or synthe-
sis of proteins. Since our approach utilizes correlation tests,
the correlation outputs cannot carry any causative infer-
ences. Therefore, understanding the potential roles of candi-
date genes requires researchers to rely on current knowledge
and experience to design further experiments that reveal the
mechanisms underlying identified correlations.

Other phenotypes of interest (shown in Figure 1A) are
also worthy of exploration. We have provided lists of po-
tential candidates for all the given phenotypes on GitHub
(https://github.com/bio-it-station/iTARGEX), which will
allow yeast biologists to generate novel hypotheses and in-
vestigate molecular mechanisms beyond the list of regula-
tors. For example, gene expression noise is the outcome of
intrinsically stochastic complex molecular interactions (40),
so it is not easily analyzed to pinpoint potential regulators
without performing large-scale biological screening experi-
ments. We ran iTARGEX to analyze associations between
the Deletome data and gene expression noise, which is rep-
resented as the coefficient of variation of gene expression
from four independent microarray experiments (41). Such
an associative study can identify potential regulators that
affect the variability of expression and the intrinsic noise
levels for other genes.

Our work has some limitations related to the develop-
ment of a novel bioinformatics tool based on an EM algo-
rithm. As a likelihood-based method, the stochastic con-
vergence procedure of the EM approach can handle the ap-
proximation of two mixture models to efficiently estimate
the regression coefficients of the subgroups (42). However,
a major documented drawback of the EM algorithm is the
need for good initial values to avoid trapping in local op-
tima (43). We compared random initialization with alter-
native procedures by independently running the stochas-
tic EM algorithm 20 times, using a β1 estimated from the
slope of linear regression on the replication dataset or con-
straining the slope of another component as zero. In doing
so, we found that the lists of candidate regulators were the
same when using random assignments or initial β1 across
20 runs of implementations (Supplementary Table S1). Ac-
cording to the similarities between estimated proportions of
subpopulations for the component with significant associ-
ation in all the candidate regulators, use of the estimated
β1 for EM initialization is most likely to reach the global
optima. Furthermore, the convergence time was slightly re-
duced when providing an initial β1. In addition to this test,
we also assumed that one component of the subpopulation
of data points was significantly associated and the rest of the
points were not in our proposed statistical scenario. If we
forced the fitting procedures of the EM algorithm to con-
strain the slope of non-associated component as zero, the
outputs were inconsistent among the 20 experimental runs.

In particular, the regulator RTT109, which has been docu-
mented to play a role in expression homeostasis (16), did not
always pass the selection procedures of iTARGEX under
these conditions. Finally, we expect that iTARGEX may not
reliably find significant results when assessing partial asso-
ciations based on small proportions of data points (e.g. 0.1),
which are usually hard to estimate correctly. Hence, we pro-
pose that validation experiments should first be performed
for regulators with significant correlations based on more
than half of the data points.

Imbalanced research efforts focusing on a minority of
known human genes have resulted in an incomplete cata-
log of gene characteristics and features (44). Since the in-
ference method presented in this study is not limited to use
in budding yeast studies, our iTARGEX tool and its con-
ceptual design can be easily extended to perform associ-
ation tests with other organisms and perturbations, such
as RNA-mediated interference or CRISPR-CAS9 screen
systems, with transcriptome data (45,46). To facilitate the
pace of discovery for further exploration, iTARGEX is suf-
ficiently flexible to analyze input datasets of transcriptional
profiles and trait data by researchers with diverse interests.
In summary, the development of iTARGEX opens a win-
dow of opportunity for future work to identify novel regu-
lators without the limitation of prior gene annotations.
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