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Spin Hall voltages from a.c. and d.c. spin currents
Dahai Wei1,*, Martin Obstbaum1,*, Mirko Ribow1,2, Christian H. Back1 & Georg Woltersdorf1,2

In spin electronics, the spin degree of freedom is used to transmit and store information. To

this end the ability to create pure spin currents—that is, without net charge transfer—is

essential. When the magnetization vector in a ferromagnet–normal metal junction is excited,

the spin pumping effect leads to the injection of pure spin currents into the normal metal. The

polarization of this spin current is time-dependent and contains a very small d.c. component.

Here we show that the large a.c. component of the spin currents can be detected efficiently

using the inverse spin Hall effect. The observed a.c.-inverse spin Hall voltages are one order

of magnitude larger than the conventional d.c.-inverse spin Hall voltages measured on the

same device. Our results demonstrate that ferromagnet–normal metal junctions are efficient

sources of pure spin currents in the gigahertz frequency range.
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F
or spin electronic technology, the ability to create pure spin
currents—that is, without net charge transfer—is essential.
Spin pumping is the most popular approach to generate pure

spin currents in metals1–5, semiconductors6,7, graphene8 and even
organic materials9. When the magnetization vector in a
ferromagnet (FM)–normal metal (NM) junction is excited at
ferromagnetic resonance (FMR), spin pumping leads to the
injection of pure spin currents in the NM. The polarization of
this spin current is time-dependent1 and contains a very small d.c.
component10, as illustrated in Fig. 1. Spin torque corresponding to
the a.c. component has been observed by magneto-optical11 and
X-ray methods12, while the spin accumulation because of the d.c.
component was observed by light scattering13. Recently, also
d.c. voltage signals in ferromagnetic insulator/ferromagnetic
conductor bilayers have been interpreted as spin rectification in
the ferromagnetic conductor material14. These experiments provide
strong evidence for the presence of a large a.c. component of the
spin current generated by spin pumping. The d.c. component of the
injected spin current has been intensely studied in recent years and
given rise to controversial discussions concerning the magnitude of
the spin Hall angle, which is a material-dependent measure of the
efficiency of spin-to-charge current conversion15,16. However, in
contrast to the rather well-understood d.c. component4,5,17 the two
orders of magnitude larger a.c. component has escaped
experimental detection so far18.

The time dependence of the polarization of a spin current
injected by spin pumping is related to the dyamics of the
magnetization vector m and given by rBm� dm/dt (ref. 1) as
illustrated in Fig. 1. The absorption of a spin current in a
nonmagnetic metal with a finite spin Hall effect leads to an
electric field E and is referred to as the inverse spin Hall effect
(ISHE). The voltage UISHE transverse to the spin current JS and
spin polarization r is:

UISHE � E � JS�r: ð1Þ
Therefore, the d.c. and a.c.-ISHE voltage components may be

measured as shown in Fig. 1.
In the following, we demonstrate experimentally the presence

of a large a.c. component in the ISHE voltage signal in NM/FM
bilayers, where the a.c. spin current is generated by spin pumping
at FMR. The magnitude of the a.c.-ISHE signal is measured as a
function of frequency, angle and power. In addition, the d.c.- and

a.c.-ISHE signals are measured in the same device in order to
compare their relative amplitudes. The spectral shape, angular
dependence, power scaling behaviour and absolute magnitude of
the signals are in line with spin pumping and ISHE effects. Our
results demonstrate that FM–NM junctions are very efficient
sources of pure spin currents in the GHz frequency range and we
believe that our result will stimulate the development of a.c.
spintronics18,19.

Results
Experimental setup. The experimental configuration is shown in
Fig. 2a, the NM–FM bilayer stripes are either integrated on top of
the signal line or in the gap between the signal and ground lines of
a grounded coplanar waveguide (CPW). In these two configura-
tions, the magnetization in the FM is excited by an in-plane and
out-of-plane microwave magnetic field hrf, respectively. The diffi-
culty to detect the a.c.-ISHE signal lies in the ability to measure
sub-mV GHz signals and isolate them from a large background
signal caused by the excitation of FMR at the same frequency. As
sketched in Fig. 2a, the microwave signal is transmitted from
terminal 1 to terminal 2, where FMR can be measured inductively.
In order to measure a.c.-ISHE signals, the NM–FM stripe is con-
nected to a 50-O waveguide (terminal 3). In addition, the sample
structure was designed as a transmission line (as microstrip for in-
plane excitation and as CPW for out-of-plane excitation) such that
the a.c.-ISHE voltage signal can propagate along the NM–FM
stripe. The microwave signal isolation from terminal 1 to terminal
3 is only about 10 dB and is frequency-dependent (as shown in
Supplementary Fig. 1) leading to a large crosstalk a.c. signal
amplitude on terminal 3. This signal is 2 orders of magnitude
larger than the expected a.c.-ISHE signal. In order to suppress the
background signal, an additional reference signal is added in a
power combiner where amplitude and phase can be adjusted to
almost fully compensate the crosstalk signal. The expected ISHE
signal has a magnitude in the mV range allowing for detection by a
power meter (detection scheme 1) or by a rectifying diode and a
lock-in amplifier (detection scheme 2). For lock-in detection the
static magnetic field is modulated with an amplitude of 0.5 mT.
The lock-in signal is converted into the a.c. voltage amplitude at
terminal 3 using field integration and the power to voltage con-
version characteristics of the Schottky detector.

Dynamic properties. First the dynamic properties of the bilayer
devices are studied by frequency-dependent FMR measurements.
For these measurements, in-plane excitation is used and the
magnetic field is applied along the x axis (fH¼ 90�). The results
are summarized in Fig. 2b where a typical FMR spectrum
obtained at a microwave frequency of 8 GHz is shown as the
upper left inset. The resonance field Hr and line width DH are
extracted from the spectra as a function of frequency. The
frequency dependence of Hr can be well reproduced by a Kittel fit
with effective magnetization m0Meff¼ 0.9 T. DH is strictly pro-
portional to the microwave frequency, and the Gilbert damping
constant determined from the slope of DH(f) is a¼ 0.016, which
is enhanced compared with a¼ 0.008 obtained for a reference
Ni80Fe20 layer, because of spin pumping1,3.

Typical signals of the a.c.-ISHE Uac
ISHE

� �
measured at fH¼ 90�

on a Pt/Ni80Fe20 stripe at 8 GHz using in-plane excitation are
shown in Fig. 2c. The top spectrum (red line) is the amplitude of
the a.c. voltage along the Ni80Fe20/Pt stripe measured directly
with a microwave power meter (detection scheme 1), as outlined
in Fig. 2a. At the resonance field, a step-like feature with an
amplitude of 1 mV is observed. This signal is attributed to the
a.c.-ISHE. The bottom spectrum (blue line) is the a.c.-ISHE
signal measured by field modulation and lock-in amplification
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Figure 1 | Spin pumping and ISHE voltage signal. A spin current is

generated by spin pumping at the FM–NM interface (grey arrows). The

time-dependent spin polarization of this current (indicated as purple arrow)

rotates almost entirely in the y–z plane. The small time-averaged d.c.

component (yellow arrow) appears along the x axis. Due to the inverse spin

Hall effect both components lead to charge currents in NM and can be

converted into a.c. and d.c. voltages by placing probes along the x and y

directions, respectively.
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(detection scheme 2). This spectrum was converted into the
voltage Uac

ISHE by numerical integration. Line shape and amplitude
are in agreement with the spectrum observed by the power meter;
however, the signal-to-noise ratio is significantly improved. In the
following, the line shape, frequency, power and angular
dependence of the observed a.c.-ISHE signal will be examined
in detail.

Line shape. First, we would like to address the shape of the a.c.-
ISHE signals. The signals we measure are a superposition of a
field-independent microwave electric field (crosstalk between
terminals 1 and 3), the actual a.c.-ISHE signal and a small
inductive contribution. The antisymmetric line shape observed in
Fig. 2c is a consequence of this superposition. Since the relative
phase shift F0 between the electric crosstalk and the a.c.-ISHE
signal is frequency- and sample-dependent, any line shape
(symmetric to antisymmetric) can result. This is demonstrated by
recording Uac

ISHE spectra at frequencies between 3.5 and 10.5 GHz
(from bottom to top) shown in Fig. 3a. As a function of micro-
wave frequency, the a.c.-ISHE signals are observed at the negative
and positive resonance fields of FMR, indicated by the grey line.
The shapes of the resonance in Uac

ISHE can be peaks, dips or fully
antisymmetric signals depending on the microwave frequency
and device. The line shape of these spectra can be well explained
by the superposition of two a.c. signals. A numerical simulation of
the sum of Uac

ISHE and the background signal because of the
crosstalk (Ubac) for different phase shifts, F0 between these two
signals20 is shown in the Supplementary Fig. 2.

Power dependence. Figure 3b shows the rf-power dependence of
UISHE at 6 GHz. UISHE is measured at fH¼ 90� and fH¼ 0�,

respectively. The red dots and blue squares are for the a.c.- and
d.c.-ISHE amplitudes, respectively. Uac

ISHE and Udc
ISHE are measured

on different devices with in- and out-of-plane excitation fields,
respectively. Udc

ISHE is proportional to the rf-power P5,21, while
Uac

ISHE scales with
ffiffiffi
P
p

as will be discussed below.

Angular dependence. The angular dependence of Uac
ISHE

measured at 6 GHz is shown in Fig. 3c,d. For this experiment,
out-of-plane excitation is used and a rotatable magnetic field H is
applied in the x–y plane; thus, the magnetic excitation and the
spin pumping process do not depend on the in-plane field angle
fH. The spectra for fH between 90 and � 90� (from top to
bottom) are shown in Fig. 3c. The spectrum at fH¼ 90�
(H applied along the stripe) shows a symmetric line shape, and its
intensity decreases monotonically to zero when fH is 0�
(H perpendicular to the stripe); for even smaller angles the signal
reverses. The amplitude of Uac

ISHE as a function of fH is shown in
Fig. 3d and can be well fitted to a sine function, as expected from
Equation 1. At fH¼ 0�, since the a.c. spin current polarization r
is rotating in the x–z plane, the a.c.-ISHE voltage is generated
along the y direction, leading to a vanishing voltage along the
x direction (along the stripe). For the in-plane excitation, the
measured a.c.-ISHE signals are symmetric under magnetic field
reversal as expected from the symmetry of the susceptibility
(cf. Fig. 3a Supplementary Fig. 3, and Supplementary Note 1).

Signal amplitude. In the following, we compare the amplitudes
of the d.c.- and a.c.-ISHE signals. For the d.c.-ISHE measure-
ments the voltage is measured by connecting a nanovoltmeter to
terminal 3 of the sample. In Fig. 4a, the top (red) and bottom
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Figure 2 | Detection of a.c. spin currents by ISHE. (a) Layout of the measurement configuration. The microwave signal is split into a part that excites

the sample and a reference arm where amplitude and phase can be adjusted independently. The signal on terminal 2 is used for inductive FMR

measurements, while the signal on terminal 3 originates from a.c.-ISHE. This signal is either measured using a power meter or a lock-in amplifier. In-plane

rf excitation (hy) is used when the bilayer stripe is placed on top of the signal line of the CPW, while placing the bilayer in the gap between signal line

and ground planes leads to an out-of-plane excitation field (hz). (b) FMR resonance field as a function of microwave frequency. The upper left inset

shows a typical FMR spectrum of the Pt/Ni80Fe20 bilayer measured at 8 GHz, the bottom right inset shows the frequency dependence of the resonance

line width m0DH. (c) a.c.-ISHE spectra at 8 GHz measured using a power meter (red) and using field modulation and lock-in amplification (blue).
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(black) spectra are the a.c.- and d.c.-ISHE voltages measured at
6 GHz with out-of-plane excitation. One can clearly see that the
a.c.-ISHE signal is much larger than the d.c.-ISHE signal. For the
measurement of the a.c.-ISHE the applied field is oriented at
fH¼ 90�, while for the d.c.-ISHE fH¼ 0� is used (cf. Equation 1
and Fig. 1). For the measurements in Fig. 4a, we obtain a mag-
nitude of Uac

ISHE and Udc
ISHE of 120 and 10 mV, respectively.

Theoretically, one can derive the following expressions for the
peak amplitudes22 (see Supplementary Note 1):

Uac
ISHE ¼ aSH

e
s

1
2pMS

lsd

tNM
l tanh

tNM

2lsd

� �

�g"#ohzI wres
zz

� �
cosðotÞ

ð2Þ

Udc
ISHE ¼ aSH

e
s

1
2pM2

S

lsd

tNM
l tanh

tNM

2lsd

� �

�g"#oh2
zI wres

zz

� �
wres

yz

ð3Þ

here aSH and lsd are the spin Hall angle and spin diffusion length
of NM, l is the length of the stripe and wres

yz and wres
zz are the in- and

out-of-plane susceptibilities at FMR, respectively, while hz is the
magnetic out-of-plane microwave field amplitude. gu is the spin
mixing conductance, s is the conductivity of the bilayer and tNM

is the thickness of the NM (for example, Pt) layer. Since the

d.c.-ISHE signal scales with h2
z , one expects Udc

ISHE to scale
linearly with the microwave power P5,21, while for a.c.-ISHE a
scaling behaviour with P1/2Bhz is expected (cf. Equation 2).
This behaviour is perfectly reproduced in our experiment as
shown in Fig. 3b. Furthermore, the expected ratio of the
amplitudes of the a.c.- and d.c.-ISHE voltages is given by (see
also Supplementary Note 1)

Uac
ISHE

Udc
ISHE
¼ MS

wres
yz hz

: ð4Þ

This ratio can be easily calculated for parameters that apply to
the measurements shown in Fig. 3a: f¼ 6 GHz (*Hr¼ 45 mT),
using m0MS¼ 0.9 T, wres

yz ¼ 61:5 and m0hz¼ 0.3 mT22 results

in Uac
ISHE=Udc

ISHE ¼ 50. Experimentally, we only observe
Uac

ISHE=Udc
ISHE ¼ 12; however, one needs to consider the poor

transmission of the rf signal into the 50-O terminal. In the case of
out-of-plane excitation, the bilayer stripe in the gap of the CPW
can be considered as a waveguide with a characteristic impedance
of 250O. The resistance mismatch between this waveguide and
the 50-O terminal leads to a transmission of only 33% of the
signal as can be calculated from the voltage standing wave ratio
T ¼ 1� Z0 �Z1

Z0 þZ1
(see Supplementary Note 2). This implies that the

Uac
ISHE=Udc

ISHE ¼ 12 is in fact three times larger at the sample.
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Figure 3 | The frequency, power and angular dependence of the a.c.-ISHE signals. (a) The a.c.-ISHE voltages measured by a lock-in amplifier at

microwave frequencies from 3.5 to 10.5 GHz using in-plane excitation. (b) The microwave power (P) dependence of Uac
ISHE (in-plane and out-of-plane

excitation) and Udc
ISHE (out-of-plane excitation) at 6 GHz, for comparison the a.c.- and d.c.- signals measured with out-of-plane excitation are multiplied by 5

and 10, respectively. The solid lines are fits to
ffiffiffi
P
p

and P for a.c.- and d.c.-ISHE, respectively. (c) a.c.-ISHE measured at 6 GHz using out-of-plane excitation

with different field angles fH from �90� to 90�. (d) Angular dependence of the amplitude of Uac
ISHE. Note that for in-plane excitation one finds an even

symmetry of the a.c.-ISHE signal with respect to the direction of the applied field (a), while for out-of-plane excitation one finds an odd symmetry (c).

This behaviour is expected from the symmetry of the susceptibility.
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Using published values for the spin Hall angle aSH¼ 0.12 (refs
22,23) and lsd¼ 1.4 nm23,24, the ISHE voltages at resonance
(6 GHz) can be calculated as Uac

ISHE ¼ 0:4 mV and Udc
ISHE ¼ 10mV,

respectively. Note that for the sake of simplicity no backflow
correction as suggested in Jiao and Bauer18 is considered here.
The observed Uac

ISHE=Udc
ISHE ratio and the absolute amplitude (cf.

Fig. 4a) is in agreement with theory18 and previous d.c.-ISHE
experiments. A similar analysis can be performed with the signal
amplitudes shown in Fig. 3a. For example, for FMR at 10 GHz
one obtains the following parameters: wres

yz ¼ 56:5 (because of the
in-plane excitation wres

yz has to be used instead of wres
zz ) and

m0hy¼ 0.27 mT. From this and Equation 2, a peak-to-peak
amplitude of 4.2 mV is expected. In addition, the waveguide
properties of the Ni80Fe20/Pt stack on top of the gold waveguide
need to be considered. As discussed in Supplementary Note 2,
this configuration is equivalent to a microstrip with a
characteristic impedance Z0¼ 480O. One expects a
transmission of only 18% into Z1¼ 50O using the voltage
standing wave ratio. Therefore, the expected amplitude is 0.7 mV.
Experimentally, we find an amplitude of 0.5 mV in excellent
agreement with theory (see Fig. 3a).

Discussion
The measured a.c. signals may also be generated by parasitic
mechanisms instead of ISHE. These are (i) inductive coupling of
the magnetization with the conducting wire loop used for
signal detection and (ii) anisotropic magnetoresistance (AMR).
The magnitude of both of these effects will be addressed in the
following.

The exclusion of an inductive signal component in the
presumed ISHE signal cannot be based on angular or rf-power
dependency since the amount of out-of-plane magnetic flux
generated by the in-plane component of the magnetization has
the same angular and power dependence as the ISHE signal25, as
illustrated in Supplementary Fig. 4. For this reason, we use a
series of different conducting materials with different spin Hall
angles to quantify the importance of inductive coupling in our
experiments. In Fig. 4b,c we show the a.c. voltage signals
generated at 8 GHz by Pt/Ni80Fe20, Au/Ni80Fe20, Cu/Ni80Fe20 and
Al/Ni80Fe20 bilayers with identical thicknesses (only the NM¼Cu
layer has a thickness of 20 nm). The experiments are performed
for both in-plane and out-of-plane configurations (cf. Fig. 2b).
The scale bar for the out-of-plane data in Fig. 4c was chosen such
that the signal amplitude for the Pt/Ni80Fe20 measurement is
equal to the in-plane case. From the fact that the signal for
Au/Ni80Fe20 (90 mV) is about 10% of the Pt/Ni80Fe20 signal
(648 mV) it becomes clear that the inductive contribution
must be less than 10% for the Pt/Ni80Fe20. For further details
we refer to Supplementary Note 3 and Supplementary Fig. 4.
For Al and Cu, it is well accepted that the spin Hall effect is
very small because of the weak spin–orbit interaction26,27.
Therefore, our conclusion is further corroborated by additional
experiments on Cu/Ni80Fe20 and Al/Ni80Fe20 bilayers as shown
in Fig. 4b,c where in agreement with smaller spin Hall angles in
these materials a similarly low signal magnitude was found. It is
also obvious that the signal amplitudes for these different samples
are very reproducible even when a different excitation or coupling
geometry is used as demonstrated by comparing Fig. 4b,c.
Furthermore, if the NM layer thickness is doubled, the inductive
signal amplitude is also doubled (cf. Supplementary Fig. 5).
Samples NM¼ 10 nm Cu and NM¼ 10 nm Pt have almost
identical resistances of 1.6 and 1.7 kO, respectively. Therefore,
comparing the magnitude of the a.c. voltage generated in these
two samples provides the most accurate estimate of the inductive
contribution. From Fig. 4c and Supplementary Fig. 5 we have
Uac

Cu=Uac
Pt ¼ 6mV=108mV and one can conclude that the inductive

coupling contribution is only 5% in the Pt/NiFe bilayers.
A possible AMR contribution can be determined by examining

the angular dependence of the signal measured for Al/Ni80Fe20

(where no measurable a.c.-ISHE signal is expected). In the
vicinity of fH¼ 90� the precessing magnetization leads to a small
2o variation of the wire resistance because of AMR. This time-
dependent resistance mixes with the inductively or capacitively
coupled microwave current in the metallic bilayer stack oscillating
at o. The corresponding a.c. voltage is given by UAMR¼
I(o)*R(2o) with mixing products oscillating at o and 3o. Using
a band pass filter with a pass band centred at o, only the 3o
contribution can be suppressed. For the given excitation
amplitude, wire resistance and AMR amplitude, the a.c.-AMR
voltage at o can be estimated to have a magnitude of less than
1 mV for the Al/NiFe sample. As derived in equation 4 of Mecking
et al.28 the dominating 2o component of the resistance follows
a cos(2fH) dependence and vanishes at fH¼ 45�. We
experimentally verify the insignificance of the AMR
contribution by comparing signals at fH¼ 90� and fH¼ 45�.
From Supplementary Fig. 6 one sees that the signal amplitude
follows the cos(fH) dependence that is consistent with inductive
coupling.
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The capping layer material dependence, the angular depen-
dence, power dependence, line shape and magnitude of the signal
are in line with the theory of a.c.-ISHE and strongly indicate that
the a.c. signals measured for Pt/Ni80Fe20 bilayers are indeed a
consequence of the spin currents generated by spin pumping and
detected by the ISHE.

In summary, we demostrated the presence of large a.c.-ISHE
signals because of spin pumping at FMR with a.c.-ISHE signals
reaching amplitudes of up to 1.5 mV. The direct comparison of
the a.c.- and d.c.-ISHE voltage on the same device for out-of-
plane excitation shows that Uac

ISHE is B12 times larger than Udc
ISHE,

despite the fact that our experiment can only detect 33% of the
a.c.-ISHE signal. The large a.c.-ISHE voltages indicate the
presence of large rf spin currents in agreement with the theory
of spin pumping. Such spin currents and their detection via ISHE
may prove very useful for the development of future a.c.
spintronic devices19.

Methods
Sample fabrication. The bilayer stripes are prepared by electron beam litho-
graphy, magnetron sputter deposition and lift-off techniques on semi-insulating
GaAs substrates. Subsequently, the CPW and the electrical contacts are fabricated
by optical and electron beam lithography using gold metallization. All FM and NM
layers in this manuscript have a thickness of 10 nm. Only the NM¼Cu layer used
for in-plane excitation in Fig. 4b has a thickness of 20 nm. A thick alumina layer
(50 nm Al2O3) deposited by atomic layer deposition is used to insulate the NM–FM
bilayer stripes and the contact electrodes from the CPW. In all experiments the
stripes are 5 mm wide and 400 mm long.

Electrical sample properties. The electrical resistance of the NM–FM bilayer
stripes are 1.6, 0.7, 0.7 and 2.9 kO for Pt/Ni80Fe20, Au/Ni80Fe20, Cu/Ni80Fe20

and Al/Ni80Fe20, respectively. Note that the Cu/Ni80Fe20 bilayer is 20-nm thick.
A 10-nm-thick Ni80Fe20 single layer has a resistance of 4.2 kO. All measurements
are performed at room temperature. The input microwave power was nominally
constant and fixed at 320 mW (25 dBm) for all experiments except for the
measurements shown in Figure 3b.
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