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Hepatocellular carcinoma (HCC) is the most common primary liver tumor. It is ranked the
sixth most common neoplasm and the third most common cause of cancer mortality. At
present, the most common treatment for HCC is surgery, but the 5-year recurrence rates
are still high. Patients with early stage HCC with few nodules can be treated with resection
or radiofrequency ablation (RFA); while for multinodular HCC, transarterial
chemoembolization (TACE) has been the first-line treatment. In recent years, based on
medical engineering cooperation, nanotechnology has been increasingly applied to the
treatment of cancer. Photodynamic therapy and photothermal therapy are effective for
cancer. This paper summarizes the latest progress of photodynamic therapy and
photothermal therapy for HCC, with the aim of providing new ideas for the treatment
of HCC.
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INTRODUCTION

Cancer is the second most common cause of death among all diseases (1). Hepatocellular carcinoma
(HCC) is a common digestive system tumor and the sixth most common type of cancer worldwide
(2). Treatment includes radical surgery (3), molecular targeted therapies (4) and neoadjuvant
therapy (5). Although progress has been made in the treatment of HCC, the prognosis of HCC
patients is still poor and the 5-year survival rate is only about 18% (6). Therefore, new treatment
methods are urgently needed to change this situation.

The toxicity and adverse effects of antitumor drugs have led researchers to seek new tumor
treatment strategies (7) and photothermal therapy (PTT) and photodynamic therapy (PDT) have
gradually emerged because of their specific spatial selectivity and lower invasiveness and initial
resistance (8–10). PTT is a tumor treatment strategy that utilizes photothermal agents to induce
thermal energy by laser. Absorbed light energy can be transformed into heat energy to achieve
thermal ablation of tumor cells; therefore, tumors can be killed in the high temperature
environment (11–13). PDT takes advantage of the active metabolism of tumor tissue; whereby
non-toxic photosensitizers accumulate in tumor tissue after injection. When the tumor tissue is
irradiated with harmless visible light, the activated photosensitizer transfers its energy to
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surrounding intracellular oxygen that forms reactive oxygen
species (ROS), which specifically destroy the tumor cells and
neovascularization (14–17) (Figure 1).

PTT and PDT have played a significant role in the treatment
of tumors, and they have been used to treat HCC. This paper
reviews recent studies on the treatment of HCC by PDT and
PTT, with the aim of exploring new ideas and strategies for the
treatment of HCC (Figure 2).
PTT

PTT for HCC
The application of light to heat energy conversion in tumor
diagnosis and treatment has attracted the extensive attention of
researchers (18) (Table 1). Metal nanoparticles play an
important role in the diagnosis and treatment of tumors (23).
Strong near-infrared light absorption is the basis of metal
nanoparticles in PTT. Compared with traditional treatment,
metal nanoparticles have the characteristics of high selectivity
and efficiency and they are minimally invasive (24). Gold
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nanomaterials are the most widely used (25) because they have
tunable surface plasma resonance properties and strong
photothermal conversion efficiency (26). Juan Hu et al.
synthesized cubic gold nanoparticles with different sizes, which
could be excited by near-infrared light at 808 nm wavelength,
showed strong near-infrared light absorption, optical stability,
photothermal effect and high biocompatibility and were effective
for treating liver cancer cells and animal models (19).

The absorption wavelength of near-infrared light in zone I is
650–1000 nm, which has poor tissue penetration. The tissue
penetration of near-infrared light in zone II is good, with a
wavelength of 1000–1700 nm, but it is rarely used at present (27).
Huijing Xiang et al. polymerized and self-assembled boron
difluoride formazanate dye to turn it into a two zone near-
infrared dye. In vivo and in vitro studies confirmed that the
nanoparticles had deep tissue penetration of light in zone II and
inhibited HCC (20).

Chimeric antigen receptor (CAR) T-cell therapy is an important
emerging treatment for tumors. T cells of tumor patients are
modified in vitro to carry tumor specific antigens, and then
injected into patients to attack tumor cells (28). CAR-T-cell
FIGURE 1 | PTT and PDT for HCC.
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therapy has shown clinical efficacy and safety for hematological
malignancies and solid tumors (29). CAR-T cells can specifically
recognize tumor-associated antigens and eliminate tumor cells
through the single chain variable region. This region is derived
from the heavy and light chains of polyclonal antibodies and can be
expressed on the cell membrane of CAR-T cells (30). Weijie Ma
et al. synthesized mesoporous silicon with 2-[2-(2-chloro-3-[(1,3-
dihydro-3,3-dimethyl-2h-1-propyl-indole-2-subunits) ethylidene]-
1-cyclohexene-1-base) vinyl]-3,3-dimethyl-1-propyl indole
Weng iodide.

After T cells were transfected with heparin sulfate
proteoglycan-3 (GPC3)–CAR lentivirus, the cell membrane of
T cells was separated to form the CAR-T capsule (CAR-Tc).
Finally, the CAR-Tc and IM were assembled to form the CAR-
Tc–IM, which showed a good photothermal effect on liver cancer
cells and it killed HCC cells (21).

Traditional photothermal agents (PTAs) perform
hyperthermia ablation via activation of near-infrared I region,
but the penetration depth is not high. At the same time, the heat
resistance caused by heat shock protein also restricts the
therapeutic effect of PTT on tumors (31, 32). At present, the
cost of PTAs used is often expensive. Bismuth is a classical semi-
metallic element and a hot spot of scientific research (33, 34)
because it is cheap and non-toxic (35). Most ZIF-8 nanodrug
carriers are used for intravenous drug delivery, and are
considered to be promising drug release and controlled release
platforms (36). Jinghua Li et al. combined Bi and ZIF-8 through a
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one-step reduction method (Bi@ZIF-8), added gambogic acid to
Bi@ZIF-8 to form Bi@ZIF-8–gambogic acid (GBZ), while
gambogic acid could be an inhibitor of Hsp90. In addition to
good biocompatibility, GBZ is important because the
temperature of PTT is low, the damage to surrounding normal
tissues is small and it has a good killing effect on HCC cells (22).
Hongqiao Cai et al. noted the adverse effects of heat damage to
normal tissues near tumors (11). They synthesized hollow
structure CuS nanoparticles with ataxia telangiectasia mutated
(ATM) inhibitor loaded with surface modified TGF-b antibody
(CuS-ATMi@TGF- bNPs). The nanoparticles not only achieved
low-temperature PTT, but also caused less damage to normal
tissue, and had sufficient targeting and biocompatibility (12).

PTT Plus Doxorubicin Treatment for HCC
PTT and chemotherapy often play a synergistic role. However, low
targeting and poor drug delivery capacity are still the common
shortcomings of photosensitizers and chemotherapeutic drugs.
Therefore, it is of importance to design an effective nanodrug
delivery platform to transport and control chemotherapeutic
drugs and the accurate targeting of photothermal preparations
(37, 38). Due to the depth of penetration, PTT often cannot
eradicate tumors; therefore, PTT is often combined with
chemotherapeutic drugs to achieve synergistic therapeutic effects
and fewer adverse effects (39, 40). Doxorubicin is a classical
chemotherapeutic drug with anthracycline structure. It has been
used in the treatment of a variety of tumors, but there are many
adverse effects, which affect its widespread application (41, 42).

The targeted and controlled release of drugs in the tumor area is
the main difficulty in the treatment of HCC. In order to overcome
this problem, Long Wu et al. designed a platelet cell membrane
encapsulated polypyrole and doxorubicin nanoparticles (PLT
PPy–DOX). These nanoparticles have photothermal activity
because of PPy and chemotherapeutic activity because of
doxorubicin. This platelet-simulated drug delivery system shows
a good therapeutic effect on orthotopic HCC (43).

Polyethylene glycol (PEG), doxorubicin, mesoporous silica
nanoparticles (MSNs) and CuS can be synthesized into
FIGURE 2 | The summary charts.
TABLE 1 | PTT for HCC.

Authors Structure Irradiation wave length

Juan Hu et al. (19) Au-80 CNAs 808 nm
Huijing Xiang et al.
(20)

Nano-BFF 1000–1700 nm

Weijie Ma et al. (21) CAR-T-IM 808 nm
Jinghua Li et al. (22) Bi@ZIF-8-gambogic acid(GBZ) 1064 nm
Hongqiao Cai et al.
(12)

CuS-ATMi@TGF- bNPs 808 nm
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nanoparticles (PEG–DOX–MSN@CuS nanoparticles), which
have photothermal and chemotherapeutic effects on HCC.
Specifically, CuS is irradiated by near-infrared, PTT can
destroy MSNs, and then doxorubicin is released to kill HCC
cells (44).

To focus on the anti-HCC effect and avoid adverse effects, Huili
Li et al. synthesized PEG–hyaluronic acid (HA) 4–gold nanocages
(AuNCs)–Dox (PEG–HA4–AuNCs–Dox) nanoparticles. PEG–
HA4–AuNCs–Dox play the role of photosensitizers; doxorubicin
is a classic chemotherapeutic drug; HA controls drug release into
the tumor microenvironment; and PEG acts as a surfactant and
increases the circulation time of nanoparticles (45).

Indocyanine green (ICG) has been approved by the US FDA
for medical diagnosis and treatment (46). IR-820 is a cheaper
analog of ICG (47). IR-820 and doxorubicin are hydrophilic
molecules. For the treatment of liver cancer, their disadvantages
are less circulating time in the body and rapid internal
disappearance (48). Yue Jiang et al. has solved the above
problems. Lactosylated IR-820 is assembled with doxorubicin
to form LA-IR-820/DOX nanoparticles. Lactose IR-820 has the
characteristics of liver cancer targeting and photosensitizer (49),
and doxorubicin can lead to immune cell death and consolidate
the effect of PTT (50).

Multidrug resistance (MDR) occurs in the treatment of
various tumors and is a major challenge in tumor treatment
(51). P-glycoprotein (P-gp) is overexpressed in many MDR cell
lines, resulting in an increase of MDR (52).

Weiping Wang et al. found that anti-mir-21 can effectively
inhibit P-gp and upregulate expression of PTEN to enhance
sensitivity to chemotherapeutic drugs. Therefore, a novel
nanoparticle system was synthesized, HA/anti-miR-21/
PPAuNCs (HA-conjugated, anti-miR-21-loaded, PEI-modified
PEGylated AuNCs). In addition to enhancing the sensitivity of
HepG2/ADR cell line to chemotherapy, AuNCs can also play the
role of PTT by mild near-infrared irradiation (53).

The 5-year recurrence rate of patients with liver cancer is 70–
80%, which urgently needs to be resolved. Theoretically, the
treatment of recurrent liver cancer is repeat hepatectomy or liver
transplantation. The results of repeat hepatectomy, transarterial
chemoembolization and radiofrequency ablation are poor (54).
The combination of PTT and chemotherapy has an obvious
synergistic antitumor effect (55). In order to treat recurrent liver
cancer by PTT and chemotherapy, a homotypic tumor cell
membrane drug delivery platform thermosensitive liposome–
HCC cell membrane (HepM–TSL) was synthesized. This
platform consists of thermosensitive liposome vesicles and
HCC cell membranes, and ICG and doxorubicin are
encapsulated by the above platform (ICG–DOX–HepM–TSL).
ICG–DOX–HepM–TSL can avoid the immune system and
directly target recurrent HCC. Excitation at 808 nm can lead
to the decomposition of TSL, and the photothermal and
chemotherapeutic effects of ICG and doxorubicin can be
realized. At the same time, this platform also has good
therapeutic effects and few adverse effects (56).

Tumor thermal ablation has become an effective method for
local treatment of HCC, but it is not recommended for HCC with
Frontiers in Oncology | www.frontiersin.org 4
local recurrence > 3 cm (57). MoS2 has become an ideal PTT
reagent because of its excellent surface plasmon resonance
characteristics, photothermal conversion efficiency and
biocompatibility (58). 300 nm diameter hollow MoS2
nanoparticles were established, and then doxorubicin was
embedded (DOX@MoS2). The antitumor effect of the
nanoparticles was confirmed by in vitro and in vivo
experiments (59).

PTT Plus Sorafenib Treatment for HCC
Sorafenib, a type of multikinase inhibitor, is the first-line drug
treatment for advanced HCC approved by the United States FDA
(60). However, sorafenib’s disadvantages include poor drug
targeting and poor water solubility of oral sorafenib (61). With
the emergence of nanotechnology, sorafenib has become more
effective for treatment of liver cancer.

Tianjun Zhou et al. designed nanoparticles of SP94–PB–SF–
Cy5.5, which included sorafenib (SF), Prussian blue porous metal
organic frame (PB), HCC-specific targeting peptide SP94, and
near-infrared dye cyanine 5.5 (Cy5.5) (62). PB is an FDA-
approved drug for thallium poisoning (63). It can be designed
as a metal organic framework to carry drugs and combine with
fluorescent dyes (64). Sp94 is an HCC-specific targeting
polypeptide that can achieve specific binding between
nanoparticles and HCC cells. Cy5.5 is a near-infrared dye that
can be excited by 808 nm visible light (65). SP94–PB–SF–Cy5.5
achieved no recurrence of HCC in a HepG2 cell line nude mouse
liver cancer model (62).

A macrophage–cancer cell membrane hybrid has been
constructed. The membrane packages hollow CuS nanoparticles
that contain sorafenib; and the membrane is surface modified
with anti-VEGFR antibodies (CuS-SF@CMV NPs). The anti-
VEGFR antibody can kill tumor cells by inhibiting angiogenesis
via PI3K/AKT pathways. The nanoparticles avoid the immune
system through immune escape, accurately locate HCC cells
through liver cancer targeting, and kill tumor cells through PTT
and kinase inhibition (66, 67).

PTT Plus Gene Therapy for HCC
MSNs are widely used because of their high specific surface area,
controllable shape and easy surface functionalization (68, 69).
Silica nanoparticles have a sharp surface, which has strong
plasmid DNA binding ability and transfection performance
(70). Mesoporous silica nanoparticles (MSNs) and Au NR core
can be synthesized into Au@MSNs, and addition of PEG forms
Au@MSN–PGEA. Au@MSN–PGEA, SF, and P53 gene can be
synthesized into Au@MSN–PGEA@SF@P53 nanoparticles.
besides PTT and targeted therapy, Au@MSN–PGEA@SF@P53
nanoparticles also increase the role of gene therapy for HCC (11).
PDT

PDT for HCC
PDT has been widely used for cancer. During PDT, reactive
oxygen species (ROS) are generated, such as singlet oxygen, that
December 2021 | Volume 11 | Article 787780
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can damage cancer cells (71). The principle of PDT is that a
photosensitizer is excited by a specific excitation wavelength of
light, converts energy into oxygen molecules in cell to form ROS,
and ROS act on tumor cells (72), which can directly induce cell
death, disturb tumor vasculature and activate the innate immune
system (73).

As a second-generation photosensitizer, Radachlorin has a
strong absorption band at 662 nm and has excellent physical and
chemical properties, such as weak dark toxicity and rapid in vivo
metabolic rate (74). Hamidreza Mirzaei et al. found that
Radachlorin can induce HepG2 cell apoptosis through PDT,
but it has no obvious harmful effect on HFLF-PI4 cells (75).

Metal phthalocyanines are photosensitizers that have been used
in the treatment of tumors. Jingwei Shao et al. synthesized
photocyanine and a series of analogs: tetra-triethyleneoxysulfonyl
zinc phthalocyanines (ZnPcs). When photocyanine is activated by
670 nm excitation, it promotes apoptosis and necrosis of HepG2
cells by producing ROS, activating caspase-3 and stagnating cells in
G2/M phase (76). ZnPc is also used in PDT of HCC cells. It can
inhibit mitogen-activated protein kinase and extracellular signal-
regulated kinase pathways through PDT, and upregulate Bax and
downregulate Bcl-2 to destroy cancer cells (77). Gold nanoparticles
combined with photosensitizer can be used for PDT of liver cancer
cells. Pu-18-N–butylimide–N-methyl-D-glucamine (NMGA) is a
new photosensitizer that combines with gold nanoparticles to form
Pu-18-N–butylimide–NMGA–GNP. It can significantly reduce
transplanted liver cancer under excitation light of 640–710 nm
(78). Lactosomes are core-shell nanoparticles including
amphiphilic polymeric micelles. ICG lactosomes were injected
into male BALB/c nude mice through the caudal vein for 48 h.
After xenograft tumors were stimulated by near infrared laser
(AVL-15), a large number of apoptotic tumor cells could be
observed (79).

Tumor tissue is different from non-tumor tissue in many
biological and chemical aspects, and the tumor microenvironment
is more likely to be acidic (pH 6.5–6.8) (80); therefore, an acidic
environment is often used for activation of pH-responsive
photosensitizer (81). However, the acidic activation pH of most
pH-responsive photosensitizers is < 6 (82), which means that not
all photosensitizers are pH responsive. Some photosensitizers can
obtain pH-responsive function through being modified by pH-
responsive groups, such as phthalocyanine dimer modified by an
acid-sensitive unit (83), polysaccharide/Ce6 conjugate modified
by pH-induced functional group (84) and cyclometalated iridium
(III) complexes modified by benzimidazole (85). The activation
efficiency of the above photosensitizers is not high, which limits
their application (86). Layered double hydroxides (LDHs) have
attracted much attention because of their ability to carry drugs or
genes, as well as acid sensitivity and anion exchange properties
(87, 88). ZnPcS8 has high photosensitivity efficiency, but it has
the shortcomings of aggregation and rapid metabolism in the
body. In order to overcome these shortcomings, Xingshu Li
et al. synthesized LDH–ZnPcS8. The pH response of LDH–
ZnPcS8 is reflected in high quenching effects at pH 7.4 and high
reactivating effects at pH 6.5. There were strong PDT effects on
HepG2 cells with LDH–ZnPcS8 at pH 6.0/6.5 compared with at
pH 7.4 (86).
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Metal-organic frameworks (MOFs) have been used for PDT
research on tumor cells. Due to the low-oxygen environment in
tumor cells, MOFs are not efficient at converting oxygen
molecules in tumors into singlet oxygen. Platinum nanozymes
can be decorated to MOFs to form high catalase-like activity that
could produce a more efficient PDT effect (89).

PDT Plus Doxorubicin Treatment for HCC
Doxorubicin is a classic chemotherapeutic drug that has been
used in the treatment of many types of tumors, but its adverse
effects are serious and affect its application (90). Sulfonated
aluminum phthalocyanine (AlPcS) has the following
characteristics: good water solubility, strong absorption band
in the red light region, and high singlet oxygen output rate (91).
However, the sulfonated group in AlPcS reduces the affinity of
AlPcS for the cell membrane (92). AlPcS–DOX conjugates can
increase the uptake of AlPcS by HCC cells (hepatology cell line
7701), doxorubicin can act on the DNA of HCC cells, and AlPcS-
mediated PDT targets lysosomes to kill HCC cells (93).

PDT Targeted HCC
Mitoxantrone, a type II topoisomerase inhibitor, is an antitumor
drug (94). At the same time, it is also an efficient photosensitizer
with two major absorption peaks at 610 and 660 nm (95).
Epithelial cell adhesion molecule (EpCAM) is considered to be
an important marker of cancer stem cells (96), and is associated
with poor outcomes of HCC (97). Yong Han et al. grafted
mitoxantrone with anti-EpCAM antibody to synthesize anti-
EpCAM nano-micelles, which can recognize the EpCAM of
HCC cells and have targeting properties, and then mitoxantrone
exhibits excellent chemotherapeutic and PDT effects (95).

Folate receptor (FR) expression is lower in normal cells but
higher in tumor cells. Folic acid (FA) can bind to its specific
receptor (98). Porphyrin MOFs consist of porphyrin and metal
ions, and have excellent biocompatibility and good dispersibility,
as well as being effective for PDT (99). Gd-MOFs are synthesized
in combination with FA. These nanoparticles can be recognized
by fluorescence and magnetic resonance imaging, and can
specifically target FR-positive cancer cells. Once inside the cell,
the effect of PDT is highlighted (100).

Integrin avb3 is an angiogenesis driver in malignant tumors,
and plays an important role in HCC (101). A hydrophilic and
targeted peptide (cRGD) can be recognized by integrin avb3 via
receptor-mediated endocytosis (102). Fluorogens with
aggregation-induced emission (AIE) have been used in
biotechnology. Fluorogen derivatives with AIE (TPETS
nanodots) can be used to treat cancer cells and ROS are
generated by visible light irradiation (103). Yang Gao et al.
modified cRGD on TPETS nanodots, which had the ability to
target cRGD to be recognized by integrin avb3, but also has a
PDT effect on HCC cells (104–106).
CONCLUSION AND FUTURE PROSPECTS

HCC is a malignant tumor with poor prognosis and high
mortality, and is difficult to detect in the early stage, which
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seriously endangers human health. Research efforts have focused
on finding an effective treatment. Over the years, surgical
treatment and chemotherapy, as well as the current emerging
targeted therapies and immunotherapy, have been shown to have
therapeutic effects on HCC. In recent years, the combination of
medical and engineering methods as a treatment strategy for
liver cancer began to achieve results. However, most of the
current studies are based on basic research, and there are still
few clinical PTT- or PDT-based HCC studies. Maybe there are
good strategies combining immunotherapy/targeted therapy
with PTT/PDT; at the same time, accelerating the
transformation of basic research into clinical research and the
promotion of clinical research into clinical application are
effective approaches for the treatment of HCC, With the
development of science and technology and the deepening of
research, effective treatment of liver cancer will improve.
Frontiers in Oncology | www.frontiersin.org 6
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