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Abstract

DNA evolution models made invaluable contributions to comparative genomics, although it seemed formidable to include
non-genomic features into these models. In order to build an evolutionary model of transcription networks (TNs), we had to
forfeit the substitution model used in DNA evolution and to start from modeling the evolution of the regulatory
relationships. We present a quantitative evolutionary model of TNs, subjecting the phylogenetic distance and the
evolutionary changes of cis-regulatory sequence, gene expression and network structure to one probabilistic framework.
Using the genome sequences and gene expression data from multiple species, this model can predict regulatory
relationships between a transcription factor (TF) and its target genes in all species, and thus identify TN re-wiring events.
Applying this model to analyze the pre-implantation development of three mammalian species, we identified the conserved
and re-wired components of the TNs downstream to a set of TFs including Oct4, Gata3/4/6, cMyc and nMyc. Evolutionary
events on the DNA sequence that led to turnover of TF binding sites were identified, including a birth of an Oct4 binding
site by a 2nt deletion. In contrast to recent reports of large interspecies differences of TF binding sites and gene expression
patterns, the interspecies difference in TF-target relationship is much smaller. The data showed increasing conservation
levels from genomic sequences to TF-DNA interaction, gene expression, TN, and finally to morphology, suggesting that
evolutionary changes are larger at molecular levels and smaller at functional levels. The data also showed that evolutionarily
older TFs are more likely to have conserved target genes, whereas younger TFs tend to have larger re-wiring rates.
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Introduction

Biologists have long sought to dissect what genes and what

changes to their coding and regulatory sequences are responsible

for the diversity of life. It has been argued that morphological traits

evolve to a large extent through changes in transcription networks

(TNs) that regulate gene expression patterns [1,2]. However,

except on a relatively small set of well characterized enhancers, it

appears difficult to quantitatively analyze cis contribution to TN

evolution (see reviews [2,3,4]). This is in part due to the

computational difficulties in finding cis-regulatory sequences or

enhancers [5], assessing the binding affinity of an enhancer to a set

of transcription factors (TFs) [6], and associating enhancer binding

affinities with gene expression levels [7]. Still lacking are principled

approaches and evolutionary models to quantitatively analyze the

effects of changes in cis-regulatory sequences, gene expression, and

TNs (Table S1).

The question that inspired us to model TN evolution is the

conservation of early embryonic development in mammals. The

earliest stages of embryonic development are thought to be highly

conserved among placental mammals, because these species all

progress through the same morphologic stages before implanta-

tion. This traditional view is challenged by recent reports on large

inter-species differences in gene expression [8] and TF binding

patterns [9]. During pre-implantation development (PED), an

unexpected fraction of 40% of orthologous gene triplets exhibited

different expression patterns among humans, mice and cattle [8],

accompanied by an even more unexpected fraction of 95% of the

binding sites of the core TFs, Oct4 and Nanog, in human and

mouse embryonic stem (ES) cells not being located in orthologous

genomic regions [9]. Large interspecies differences of gene

expression [10] (Figure S1) and transcription factor binding sites

[11] were also observed in matched tissues in vertebrates. How can

we understand the discrepancy between morphological conserva-

tion and molecular differences across species? We hypothesized

that the structure of TN, i.e. the regulatory relationship between

transcription factors (TFs) and target genes, may be more

conserved than suggested by TF binding site (TFBS) or gene

expression data. For instance, some TFBSs turn over quickly

during vertebrate evolution, without necessarily changing TF-

target relationships. To test this hypothesis and to provide a

general tool for studying TN evolution, we set off to develop an

evolutionary model for TN structure based on multi-species

genome sequence and gene expression data.

Previous work has made excellent progress in modeling the

evolution of regulatory genomic sequences. Earlier attempts were
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focused on identifying putative regulatory sequences highly

conserved across multiple species [12,13] or containing conserved

TF binding motifs [14,15]. Recent efforts extended the earlier

work by accommodating lineage-specific changes and alignment

errors [16,17], incorporating the modular structure of regulatory

sequences [5,18], and direct modeling of TF occupancy [6,19].

Although these models have been evolved to accommodate many

evolutionary events on DNA, it is difficult to extend these models

to incorporate the evolutionary changes of non-genomic features.

This difficulty can be partially appreciated by noticing that even in

a single species, the state-of-the-art models resort to a regression

strategy to incorporate DNA sequence and gene expression into

one model (see [20] and references within).

In parallel to sequence evolution models, evolutionary models

for gene expression are being developed and tested. A neutral

evolutionary model for gene expression was proposed [21],

enabling statistical tests for evolutionarily selected genes [22]. A

major challenge in comparing expression data between organisms

is that gene expression is not static and the level of expression is

influenced by external conditions. A prominent approach to

circumvent this difficulty is to compare co-expression patterns

rather than the expression of individual genes [23,24]. This

approach has recently been formalized into evolutionary models of

co-expression networks, which are based on explicitly stated

probabilistic rules [25,26]. These evolutionary models did not

explicitly study the evolution of genomic regulatory relations. In

fact, while expression data can be useful in predicting co-

regulation (in particular, among target genes of the same TF),

such data alone can hardly predict which gene is regulated by

which TF as the correlation between expression patterns of a TF

and that of its targets may not be pronounced [27,28].

In order to build an evolutionary model of TNs, we had to

forfeit the substitution model used in DNA evolution and the co-

expression model used in expression evolution, and to start from

modeling the evolution of the regulatory relationships. In this

paper we present a quantitative evolutionary model of TNs,

subjecting the changes of cis-regulatory sequences, gene expression

and network structure to one probabilistic framework. This model

aims to address the following question: with the genome sequences

and gene expression data from multiple species, can the TF-target

gene relationships be derived in all these species? Taking

advantage of the multi-species data and based on the maximum-

likelihood principle, this model predicts the evolutionary changes

of TF-target relationships, i.e. re-wiring of TNs (Figure 1). The

major benefits of this model include: 1) it takes advantage of the

possible synergism between genome sequence and gene expression

data. For instance, if a gene is predicted to be a TF target from

sequence data, other genes co-regulated with this gene, according

to the expression data, may also be a target. 2) By analyzing data

in the evolutionary context, the model is still able to utilize pattern

of conservation to predict regulatory relationship (similar to the

evolutionary models of regulatory sequences we discussed earlier),

while allowing for lineage-specific changes. 3) The unified

probabilistic framework allows us to quantify the extent of changes

and the uncertainty of the inference results.

Results

Simulation study
We simulated a series of six synthetic datasets and used 5-fold

cross validation to test the model (see Text S1). Cross-validation

results showed almost identical prediction accuracies in training

and testing datasets, across all simulated noise levels in sequence

and in expression data, and across all choices of the weight

parameter (b), suggesting that it is fairly difficult to make model

overfit (Figure S2).

Transcriptional re-wiring in yeasts – a test of the model
To test the TN evolution model with real data, we used the

recent discovery of a re-wiring event in yeast species. We wanted

to use the analysis of this relatively well described re-wiring event

to test the validity and precision of the new model.

Genes coding for mitochondrial and cytoplasmic ribosomal

proteins display a strongly correlated expression pattern in Candida

albicans, but this correlation is lost in the fermentative yeast

Saccharomyces cerevisiae. Ihmels et al. associated this change in gene

expression with the loss of a specific cis-regulatory element,

AATTTT, from dozens of mitochondrial ribosomal protein

(MRP) genes [29]. We attempted to reproduce this finding and

potentially explore it in greater details with new data and the TN

evolution model. Because the inferred loss of the cis-regulatory

element happened after the separation of aerobic and anaerobic

yeast species, we chose to analyze two anaerobic species,

Saccharomyces cerevisiae, and Candida glabrata, and one aerobic species

Candida albicans. We identified in the three species the orthologs of

51 MRP genes, 58 rRNA genes, and 73 stress response (STR)

genes. While the three gene sets formed their individual expression

clusters in S. cerevisiae and C. glabrata, MRP and rRNA genes

appeared to be co-expressed in C. albicans (Figure S3-A). An

enriched sequence motif was found by MEME [30] in the

promoters of rRNA genes of all three species, as well as in the

promoters of the MRP genes in C. albicans (Figure S3-B New

Motif). We hypothesized that this motif may represent the binding

specificity of a conserved TF, which we termed TFa. If Ihmels et

al.’s finding can be reproduced, there should exist a TF that

regulates MRP genes only in C. albicans but not in anaerobic

species. We let our evolutionary model predict the transcriptional

targets of TFa in all three species. We compared the model-

predicted regulatory relationships to Ihmels’ theory and found

strong consistency (Figure S3-B) (Methods). This suggests that the

TN evolution model captured the re-wiring of MRP genes as

Ihmels et al. reported and provides additional support to the

hypothesis that the re-wiring event is correlated with the

divergence of aerobic and anaerobic species.

Author Summary

DNA evolution models made invaluable contributions to
comparative genomic studies. Still lacking is an evolution-
ary model of transcription networks (TNs). To develop such
a model, we had to forfeit the substitution model used in
DNA evolution and to start from modeling the evolution of
the regulatory relationships, and then subject the phylo-
genetic distance and the multi-species DNA sequence and
gene expression data to one probabilistic framework. This
model enabled us to infer the evolutionary changes of
transcriptional regulatory relationships. Applying this
model to analyze three yeast species, we found the
anaerobic phenotype in two species was associated with
the evolutionary loss of a larger cis-regulatory motif than
previously thought. Analyzing three mammalian species,
we found increasing conservation levels from genomic
sequences to transcription factor-DNA interaction, gene
expression, TN, and finally to morphology, suggesting that
evolutionary changes are larger at molecular levels and
smaller at functional levels. We also found that evolution-
arily younger TFs are more likely to regulate different
target genes in different species.

An Evolutionary Model of Transcription Networks
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Since the TN evolution model enabled the analysis to include

the expression and the sequence data of a third species, C. glabrata,

which was not present in Ihmels’ analysis, we expected the model-

based analysis to reveal more details regarding TFa and its

regulatory rules. To this end, we asked whether the 6bp cis-

regulatory element, AATTTT, identified by Ihmels et al. was

optimal. We compared AAATTTTT (new) and AATTTT

(Ihmels) by the number of target genes they can correctly predict

in the three species. The new motif was more informative in

predicting both the target genes and the non-target genes (Figure

S3-B, panel ALL, Table S2). To assess the robustness of this result,

we investigated every gene group (MRP, rRNA, STR), and we

varied the weight of expression data (b) used in the model. The

new motif better distinguished the target and the non-target genes

in all the settings tested (Figure S3-B), suggesting the new motif is a

more faithful representation of TFa’s binding preference. These

results corroborated our expectation that the precision of the

model is suitable for making discoveries.

How different are the TNs among mammals during early
embryonic development?

To investigate the discrepancy between morphological conser-

vation and molecular differences in mammals, we hypothesized

that the TN structure does not evolve as quickly as the TF binding

sites and gene expression. In other words, we hypothesized that

although there are substantial amounts of TFBS turnovers and

gene expression changes across mammals, there are fewer changes

in TN structure, i.e. TF-target regulatory relationships.

To test this hypothesis, we applied the TN evolution model to

analyze the sequence and expression data in PED of humans, mice

and cattle. Out of a total of 7046 orthologous gene triplets in the

three species, 1489 of them fell into some co-expression modules

(had non-constant expression and were not clustered as singletons).

We chose Oct4 as the TF of focus in this study. The output of our

evolutionary model is the regulatory relationship between a TF,

Oct4 in this case, and every gene in every input species. Among

the 1489 orthologous gene triplets, 823 (55.3%) were predicted to

be regulated by Oct4 in all three species, and 113 (7.6%) were

predicted to be only regulated in one species [nodes, Figure 2A].

In particular, only 40 (2.7%) orthologous triplets were regulated by

Oct4 specifically in humans. This estimated fraction (2.7%) is

much smaller than the fraction of genes with human-specific PED

expression (45%, p-value,1E-10) [8], which in turn is much

smaller than the fraction of human-specific Oct4 binding sites

(95%, p-value,1E-10) [9] [Figure 2B].

To assess whether the model-inferred smaller interspecies

difference in TF-target relationship than the previously reported

interspecies difference of gene expression is due to model priori,

we did two control experiments. First, the gene expression data

alone was fed to the same evolutionary model, which led to an

estimated 62.3% re-wiring rate [Figure 2C, Exp+Phy]. In this case

the estimated re-wiring rate should be interpreted as the

percentage of genes with unconserved expression patterns among

A

B

Figure 1. A model for TN evolution. (A) An example of evolving TNs. Transcription factors and target genes are depicted in purple and blue
nodes. Conserved and species-specific regulatory relationships are depicted with red and black arrows. (B) The regulatory states are modeled as a
continuous time Markov chain, and the regulatory sequence and the gene expression data are emitted from the hidden regulatory states.
doi:10.1371/journal.pcbi.1002064.g001

An Evolutionary Model of Transcription Networks
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the three species, which is consistent with previously reported 55%

[8]. Second, both sequence and expression data were fed to the

evolutionary model together with randomly permuted Oct4 DNA

binding motifs, which led to a distribution of the estimated re-

wiring rates [Figure 2C, red curve]. The mode of this distribution

was 0.66, and 82.2% of the estimated rates lay between 0.5 and

0.8. Both control experiments subjected gene expression data to

the same model priori as the TF-target analysis, and consistently

reported larger estimated interspecies changes of gene expression

than TF-target relationship, considering the model inferred 44.7%

(100%-55.3% conserved targets) re-wiring rate for Oct4.

We then asked to what extent the interspecies difference in Oct4

target genes affects the downstream gene regulatory networks. We

mapped protein-protein interactions and transcriptional regulato-

ry relationships among all the genes [Figure S8, Figure 2A].

Among all the possible protein-protein interactions (PPIs)

[31,32,33,34], 134 interactions were found between the genes

that were predicted to be conserved targets in all three species,

whereas 0 interactions were found between the genes that were

specifically regulated by Oct4 in any one species [gray edges,

Figure S8] (Chi-square test p-value = 6.6E-210). Among all the

transcriptional regulatory relationships [35,36], 270 regulatory

relationships were found between the genes that were predicted to

be conserved targets in all three species, whereas 1 interaction was

found between the gene that were specifically regulated by Oct4 in

only one species [gray edges, Figure 2A] (Chi-square test p-

value = 8.7E-307). In summary, the data above suggest that

compared to the changes in TFBS and gene expression, the

transcriptional targets of Oct4 are more conserved, and so are the

interaction and regulatory relationships of these Oct4 target genes

[Figure 2B, Figure S6].

Evidence for re-wiring of TNs in PED
There is as yet no proven example of TN re-wiring events

reported for early development in mammals, like the example

Ihmels et al. demonstrated in yeast species. We wanted to identify a

few concrete cases of TN re-wiring events. The TN evolution

model provides a systematic approach to look for TN re-wiring

events (Text S2 and Figure S4). Our model predicted 40 genes as

Oct4 targets in humans but not in mice, and vice versa for 24

genes [Figure S5]. We applied two further criteria to these 64

genes to select for re-wiring events with the strongest evidence.

First, because Oct4 itself shows an upward trend of expression

during PED, peaking at the blastocyst stage in humans and at the

morula stage in mice [8], we selected the genes with clear up-

regulation in the late stages of PED. Second, we selected the genes

whose predicted Oct4 binding regions harbored clear gain or loss

of Oct4 binding motifs. These selections produced four TN re-

wiring events associated with the human-specific regulation of

OVOL1 by Oct4 and mouse-specific regulation of Id3, Ccng1, and

Rap1gap [Figure 3]. Because embryonic stem (ES) cells were

derived from the inner cell mass of blastocyst stage embryos (the

last developmental stage of PED), we speculated that TN re-wiring

events could be corroborated by gain or loss of Oct4 binding in ES

cells. ChIP-seq data in human and mouse ES cells were consistent

with this hypothesis [37,38] [‘‘TFBS’’ track, Figure 3]. By

reconstructing the ancestral sequence, we identified the evolution-

ary events including indels and mutations that mediated the TFBS

turnovers [Figure S5]. In particular, the birth of the Oct4 TFBS

near Id3 gene appears to be mediated by a 2bp deletion from

ACAgtACCGTG (ancestral) into ACAACCGTG (murine) [Fig-

ure S5-B]. TFBS birth by deletion has rarely been reported in

vertebrates.
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Figure 2. Conservation and rewiring of Oct4 downstream TN. (A) Venn diagram of model-inferred Oct4 target genes in three species. Each
node is a gene and each edge represents a transcriptional regulatory link. When a set of genes are linked to a regulatory hub gene, this set of genes is
suppressed into one node, annotated with the name of the hub gene followed by the number of other genes transcriptionally linked to the hub. (B)
Inferred conservation levels for DNA, TFBS, gene expression, TN, and morphology. (C) Comparison of model-inferred re-wiring rates with
(Exp+Seq+Phy) and without (Exp+Phy) DNA sequence data. The re-wiring rate of TF was calculated as the percentage of non-conserved TF-target
relationships among all TF-target relationships. A background distribution (red curve) of the re-wiring rate is derived from randomly permuting the
rows and columns of the Oct4 position specific score matrix (PSSM) and feeding the permutated PSSM to the model with unperturbed sequence and
gene expression data.
doi:10.1371/journal.pcbi.1002064.g002
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Quantitative clues about cis changes that affect TN
re-wiring

A long standing question is to what extent the evolutionary

changes of the TF-target relationship are associated with cis

changes. In other words, for a conserved TF, can we use the cis

changes to infer changes in regulatory relationships? Except for

testing done on a small set of experimentally characterized

enhancers [39], genome-wide analysis attempts seemed to provide

negative answers. For example, changes in DNA binding motifs do

not seem to correlate well with changes in TF-DNA binding [40],

and loss (gain) of in vivo TFBS may not affect target gene

expression because they can be compensated by gain (loss) of in

vivo TFBS in other regulatory regions of the same target gene [9].

The TN evolution model enabled us to revisit this question. In the

case of Oct4 regulated genes, the conserved target genes (regulated

by Oct4 in three species) harbored cis-regulatory regions (20 k bp

flanking TSS) with larger binding affinities to Oct4, as compared

to the non-conserved target genes [Figure 4A]. This is consistent

with the fact that motif information was used in the model.

Moreover, the interspecies difference in the binding affinities, as

determined by the Oct4 motif and the cis-regulatory regions, is

inversely correlated with the conservation level of the TF-target

relationship [Figure 4B]. More specifically, the average interspe-

cies cis difference in the target genes that are conserved in all three

species is 55% of the average interspecies cis difference of the

target genes conserved in two species (not a target gene in the third

species) (p-value = 5.15407E-76). The latter difference is in turn

75% of the average interspecies cis difference of the target gene in

only one species (not a target in the other two species) (p-

value = 2.877E-17); However, it is not statistically different from

the interspecies cis difference of non Oct4 target genes (p-

value = 0.1204).

Figure 3. Examples of model-inferred species-specific target genes of Oct4 in humans (A) and mice (B). Oct4 is zygotically expressed (4–
8 cells), and it is strongly increased at the late stages of pre-implantation development, including morula (M) and blastocyst (B). The target genes’
expression is zygotically activated in a species-specific manner (Left panel). The species-specific binding of Oct4 to target genes is observed in ChIP-
seq experiments (TFBS track, right panel). The genomic sequences of the Oct4 binding regions are shown in yellow, with Oct4 binding motifs shown
in red boxes.
doi:10.1371/journal.pcbi.1002064.g003
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Do younger TFs have larger re-wiring rates?
Some TFs are evolutionarily younger than others. We asked

whether the divergence time of a TF from its ancestor is correlated

with its re-wiring rate. The re-wiring rate of a TF is defined as the

percentage of non-conserved TF-target links among all TF-target

links of a TF. Since our model infers the target genes of a TF in

every species fed to the model, re-wiring rate can be directly

derived from the model output. An extensive survey of TFs that

may regulate cell fate decisions in mouse PED reported 29 TFs

[41], among which there were two sets of paralogous genes

including Gata3/Gata4/Gata6 and cMyc/nMyc [Figure 5].

Using the HKY DNA substitution model [42] implemented in

TreeFam [43], we inferred the divergence time of each TF to the

closest common ancestor of the paralogous group [Figure 5B,C].

In all four comparisons (cMyc vs. nMyc, Gata4 vs. Gata3, Gata6

vs. Gata3, Gata6 vs. Gata4), the TF with a shorter divergence time

always showed a smaller re-wiring rate (the largest pairwise

comparison p-value,1E-10), suggesting in mammalian PED,

evolutionary younger TFs are more likely to change their

regulatory targets.

Discussion

A major goal in biology is to understand the evolution of

complex traits, such as morphology and behavior [44]. Pursuit of

this goal may be catalyzed by evolutionary models for the

molecular substrates, including the coding sequences, the cis-

regulatory sequences [45,46], the epigenome, and the transcrip-

tome [26], as well as by evolutionary models for the interaction or

regulatory networks of these molecular substrates.

Figure 4. Relationship between conservation and binding affinities. (A) The distribution of the average binding affinities between Oct4 and
orthologous regulatory sequences in three species. (B) Interspecies difference in binding affinities of the 20 kb upstream sequences of orthologous
genes. The orthologous genes are put into four categories of conservation. Error bars show 95% confidence intervals.
doi:10.1371/journal.pcbi.1002064.g004

An Evolutionary Model of Transcription Networks
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A challenge in modeling these networks lies in the question of

how to quantitatively associate gene expression with the

‘‘strengths’’ of cis-regulatory regions. From a single species

perspective, this challenge has been approached by using sequence

rules to predict gene expression under a classification scheme [47]

and a regression scheme [48]. Because these schemes both

resorted to statistical association, at least in some of their analysis

steps, we could not generalize them onto an evolutionary model.

Instead, to link expression and sequence data [49], we

introduced the notion of ‘‘regulatory state.’’ Conditional on the

regulatory state, the probabilistic forms of both the sequence and

the expression data were derived. This enabled a generative

probabilistic model for the expression and the sequence data on a

phylogenetic tree. We chose to model the expression data in a soft

way, in the sense that we only modeled the difference of the co-

expression patterns between the genes with different regulatory

states. This choice suppressed a lot of information from the

expression data, but the model seemed to cope well with the noisy

nature of the expression data and seemed to capture the essential

information on TN in a robust way.

The model can potentially be generalized to treat the

combinatorial control of multiple TFs. To do so, the total number

of regulatory states should be extended to 2TF#, where TF# is the

number of TFs in consideration. The evolution of the regulatory

states can be modeled as a continuous Markov chain with 2TF#

states. The conditional probabilities of the sequence and the

expression data should be derived from proper assumptions [50]

and recently available information on combinatorial transcrip-

tional regulation [51].

Our evolutionary model predicted that TF-target interactions

are more conserved than expression patterns and TF binding

events. These are conceptually sensible in several perspectives.

First, the modular structure of GRNs allows a small change in the

upstream regulators to manifest large changes in the expression of

Figure 5. Re-wiring rate against divergence time. (A) Re-wiring rate against phylogenetic distance. Circles: Gata3/Gata4/Gata6 genes. Cross:
cMyc(MYC)/nMyc(MYCN) genes. TreeFam branch length of a gene is the distance between the speciation event of the gene and the first duplication
event in the paralogous family. (B, C) Phylogenetic trees of the Gata and the Myc families in mammals. Blue dot: gene speciation event. Red dot: gene
duplication event. Branch lengths are estimated for the consensus tree of bootstrapped trees using HKY model. Numbers on branching events are
the support numbers to the consensus tree in 100 bootstrapped trees.
doi:10.1371/journal.pcbi.1002064.g005
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downstream genes without perturbing the cis-trans interactions

between these genes. For example, the change of the expression

pattern or function, such as interactions with other partner

proteins, of a master transcriptional regulator may change

expression patterns of many downstream genes, while preserv-

ing their TF-target relationships by either unperturbed cis-

regulatory sequences and the DNA binding domain on the TF,

or compensatory cis and trans changes that retains regulatory

control [51]. This view is consistent the theory of facilitated

variation [52]. A recent example is the human transcription

factor FoxP2, important for language, on which a small change

in the TF (two amino acids, outside DNA binding domain) lead

to differential regulation of hundreds of downstream genes [53].

Second, changes of TF binding events do not often lead to TN

changes or gene expression changes. The binding sites of a TF

may be gained and lost quickly during evolution, but these do

not necessarily lead to change of TF regulation of a target gene,

as the loss of one site may be compensated by the gain of

another site elsewhere in the regulatory region of that gene [11].

Second, regulatory rewiring may happen where the regulator of

a gene is switched to another TF in a different species without

changing gene expression pattern [54].

The four predicted re-wired Oct4 target genes OVOL1, Id3,

Ccng1, and Rap1gap were related to development, transcriptional

control and signaling, enticing us to speculate that the predicted

TN re-wiring events may contribute to interspecies differences

during animal development. It turned out that PED is highly

conserved among mammals: all progress through the same

morphologic stages. Perhaps the most marked difference is the

amount of time spent at each stage – a human zygote takes

about one day to divide into a 2-cell embryo, whereas a mouse

zygote only takes half a day. The predicted re-wiring event on

Cyclin G1 (Ccng1), a cyclin regulating cell cycle, may be

associated with the interspecies timing difference. This specu-

lation led us to re-examine all of the 64 predicted re-wired

target genes, which led to another gene Orc5l. Orc5l encodes a

subunit of the origin recognition complex, essential for the

initiation of the DNA replication in eukaryotic cells. Further

experimentation is needed to test whether the differential

regulation of Ccng1 and Orc5l could lead to difference in cell

cycle time.

Because changes in mRNA quantities may precede changes in

protein levels, the inferred conservation and changes in TN may

contribute to interspecies differences after the blastocyst embry-

onic stage. Notable differences include that bovine blastocysts

initiate the gastrulation process before implantation, as well as the

general formation and functions of the placenta and yolk sac [55].

We therefore mapped the Oct4 targets onto all developmental

signaling pathways and identified the three pathways (Tgfb, WNT,

mTOR) that contained more than two Oct4 targets [Figure S7].

The three species appear to use Oct4 to regulate conserved

components in these three pathways, with a few exceptions. CtBP,

a canonical inhibitor of the WNT signal pathway, appears to be

regulated by Oct4 in humans and mice, but not in cattle. This

might be correlated with the bovine specific role of WNT in

placenta development [56].

The positive correlation between the evolutionary age of a TF

and the conservation of its regulatory targets has seldom been

exploited. The other studies with a similar flavor are on the

analyses of the developmental hourglass model [57]. The

developmental hourglass refers to the appearance of embryos in

related species converges midway (called phylotypic stage) through

development and diverges thereafter. Major supports of the model

are that genes expressed during the phylotypic stage are both

evolutionarily older and more conserved across the genus than

those expressed at other stages [58]. PED precedes the phylotypic

stage in mammalian development. Still the data showed strong

correlation between a TF’s evolutionary age and its re-wiring rate.

Now that in two separate developmental stages, there are

evidences that evolutionarily older TFs serve to regulate more

conserved sets of target genes. It would be interesting to see if this

relationship checks out in other developmental stages and

biological processes.

Materials and Methods

Symbols
Indices, i: observed species; l: ancestral species; m: gene. k:

sequence locations; Q: nucleotide, Q~fA,C,G,Tg; c: gene clusters.

Observed data, S: regulatory sequences; E: gene expression; N:

total number of species; M: total number of orthologous gene

groups; T : phylogenetic tree; t: phylogenetic distances (divergence

time) between any two nodes. Data derived from observed
data, n0: number of background bases in S; n1: number of TF

binding motifs in S; LR: product of likelihood ratio scores of all

motifs on S; C: gene cluster index derived from E; cj j: number of

gene clusters. Hidden variables, Z: regulatory states. X :

sequence states (background or motif). Pre-computed param-
eters, bQ: nucleotide frequencies. b: a tuning parameter,

representing the weight of the expression data in the likelihood

function. Model parameters, l,m: transition probabilities of

regulatory states in unit time; a: vector of the binary probabilities

of the regulatory state in the root node; v: marginal probability of

the motif state; p~ p1, . . . ,pjcj
� �

: vector of the multinomial

probabilities of the cluster index of a target gene.

q~ q1, . . . ,qjcj
� �

: vector of the multinomial probabilities of the

cluster index of a non-target gene. h: the collection of all model

parameters. h~ l,m,a,p,qf g.

Model
Data and inference. The data required by this model are

genome sequences, gene expression data, a list of candidate TFs

and their DNA binding motifs, and estimated divergence time.

The model does not require prior information on the exact

locations of TFBS or TF-target relationships. The TF-target

relationships, i.e. the target genes of a TF in every species, are to be

inferred by the model.

Regulatory states and overall modeling strategy. Let t

denote the evolutionary time (Figure 1B). We call the regulatory

relationship between a set of TFs (TFx) and a target gene m as the

regulatory state of this target gene, denoted as Zi,TFx,m, where i is

the species indicator. Here TFx can be one TF or a few interacting

TFs. Without loss of generalizability, we suppress the subscript

TFx in Zi,m. Denote Zi,m~1 when gene m is regulated by TFx in

species i, and Zi,m~0 otherwise. Denote Zm~ Z1,m, . . . ,ZN,mf g,
where N is the total number of species. The variable Zm thus

indicates whether the regulatory link between the TF and the

target gene is conserved or changed over evolutionary time. The

general strategy of inferring Zm is: if a gene is regulated by a TF, it

is likely to contain the binding sites of this TF in its regulatory

region and also likely to be co-regulated with other target genes of

this TF.

We describe a probabilistic approach to estimate Zi,m. The

main idea is to express the joint probability of all sequences Si,m

and gene expression data Ei,m as a product of their conditional

probabilities to Zi,m. In other words, the likelihood of all sequence

and expression data is:
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P S,Eð Þ~ P
M

m~1
P Sm,Emð Þ and

P Sm,Emð Þ~
X

Zm
P(Zm)P Sm,EmjZmð Þ~

X
Zm

P(Zm)P
N

i~1
P(Si,mjZi,m)P(Ei,mjZi,m)

� �
ð1Þ

where N is the total number of species and M is the total number of

orthologous gene groups. The model assumption is that in every

species, conditional on the regulatory state of a target gene, the

regulatory sequence of this gene and the expression level of this

gene are independent.

This key assumption enabled us to write down the joint

probability of the regulatory sequence and the expression level of

every gene. We will describe the models for P Zmð Þ,P(Si,mjZi,m)
and P(Ei,mjZi,m) in the following sections.

An evolutionary model of the regulatory states. The

evolution of the regulatory state Zi,m is modeled as a two-state

continuous-time Markov chain, with transition probabilities in unit

time being l(0R1) and m (1R0). The transition probabilities of

regulatory states between two species diverged for time t is:

P00 tð Þ P01(t)

P10 tð Þ P11(t)

� �
~

1

lzm
le{ lzmð Þtzu
� 	

1{P00 tð Þ

1{P11 tð Þ 1

lzm
me{ lzmð Þtzl
� 	

0
BB@

1
CCA,

where Px,y(t) is the transition probability from state x to state y in

time t; x, y = {0,1}. Given a phylogenetic tree T, the probability of

the regulatory state on the leaf node is:

P Zi,mð Þ~P Zroot,mð ÞPi

l~rootPzl ,zparent lð Þ (tzl ,zparent lð Þ ),

is the parent node of l; and Pi

l~root Pzl ,zparent lð Þ (tzl ,zparent lð Þ ) is the

product of transition probabilities on the path starting from the

root and ending at leaf node i. Zm is the collection of the

regulatory states in all leaf nodes, descending from the same root. It

follows that

P Zmð Þ~P Zroot,mð ÞPN

i~1 Pi

l~rootPzl ,zparent lð Þ (tzl ,zparent lð Þ ) ð2Þ

Where N is the total number of observed species (leaf nodes). We

introduce another model parameter a, and let P Zi~root,mð Þ~a.

Sequence model. The conditional probability of the

regulatory sequence of the target gene Si,m given the regulatory

state Zi,m is modeled as a Hidden Markov Model (HMM) [59].

The hidden layer, denoted as Xi,m,k, is a two-state (background,

motif) Markov chain, where k is the index of the state random

variable Xi,m. When Zi,m~0, the hidden layer stays at the

background state with probability 1, i.e. P(Xi,m,k~0jZi,m~0)~1
for any k. When Zi,m~1, the hidden layer transits between the two

states with non-zero probabilities. We denote the marginal

probability of an Xk being a motif as v, i.e. P(Xi,m,k

~1jZi,m~1)~v. We approximate the HMM by effectively

assuming the hidden variables X can be inferred from a motif

scanning procedure. Denote n0
i,m and n1

i,m as the number of

observed background bases and the number of observed motifs,

respectively. n0
i,m and n1

i,m are determined by running a motif scan

on Si,m. The motif scan calls a segment on Si,m as a motif when the

likelihood ratio score of this segment reaches a pre-defined

threshold. Under these model assumptions, it follows that

P Si,mjZi,m~0ð Þ~Pk bk,Q ð3:1Þ

where Q~fA,C,G,Tg, k is the index of DNA bases, and bk,Q~bQ

is the background probability of a base being Q. It can be shown

that

P Si,mjZi,m~1ð Þ~P Si,mjZi,m~0ð Þ:LRi,m
:v

n1
i,m : 1{vð Þn

0
i,m ð3:2Þ

where LRi,m is the product of the likelihood ratio scores of all the

reported motifs in Si,m. Thus, we explicitly expressed P(Si,mjZi,m)
by introducing one extra parameter, v, to the model. When there

are multiple TFs to be considered, each with its own weight

matrix, LRi,m becomes the product of the likelihood ratio scores of

all the motifs, reported from the scans of every matrix; n0
i,m and

n1
i,m becomes the number of background bases and the total

number of motifs for every TF.

Expression model. To model the conditional probability of

the expression data, we first considered what makes a sensible and

quantifiable difference in the expression data between the two

regulatory states. We hypothesized that the transcriptional targets

of a TF or a set of interacting TFs are likely to co-appear in co-

expression modules. We implemented this idea by first clustering

the expression data of all the genes. Let Ci,m be the cluster index of

the mth gene, and cj ji be the total number of clusters. Ci,mjZi,m~0
follows a (background) multinomial distribution with parameters

qi~ qi1, . . . ,qi cj j
� �

, i.e.

P Ci,m~cjZi,m~0ð Þ~qic ð4:1Þ

where c~ 1, . . . , cj jf g. When Zi,m~1, the subset of genes, which

are transcriptionally regulated by the TF or the set of interacting

TFs, would tend to concentrate in a subset of the clusters. Thus,

Ci,mjZi,m~1 follows another multinomial distribution with

parameters p~ p1, . . . ,pjcj
� �

, i.e.

P Ci,m~cjZi,m~1ð Þ~pic ð4:2Þ

.

Thus, by inserting probabilities (2) - (4.2) into (1), we derived the

complete likelihood of all data.

Weighing sequence and expression data. The likelihood

model in (1), although it is completely specified, assumes equal

weights of the sequence and the expression data. We further

introduced a tuning parameter b to adjust the relative weights of

the two data types. Thus, the model becomes:

and

P S,Eð Þ~PM

m~1P Sm,Emð Þand

P Sm,Emð Þ~
X

Zm
P Zmð ÞP Sm,EmjZmð Þ~

X
Zm

P Zmð ÞPN

i~1P Si,mjZi,mð ÞP Ei,mjZi,mð Þb
ð5Þ

.

The larger b is, the more weight is given to the expression data.

Model fitting. We developed an estimation-maximization

(EM) algorithm to estimate the model parameters. The E-step

estimates Zm, and the M-step maximizes h~ l,m,a,p,qf g. Denote
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ĥh as the maximum likelihood estimator (MLE) of h. The complete

E-M algorithm is available in Text S2.

Model inference. To identify the most likely regulatory states

of all the genes in an orthologous group m, we use

max
Zm

P ZmjSm,Em,ĥh
� 	

to simultaneously estimate Zm~ Z1,m,f

. . . ,ZN,mg:

Methods
Yeast data. Gene expression data of C. albicans and S. cerevisiae

were downloaded from the online supplementary material of

Ihmels et al. [29]. Gene expression data of C. glabrata were collected

from GEO (GSE6626, GSE6582, and GSE6058). The map of

orthologous genes was obtained from the Yeast Gene Order

Browser v.3 [60]. The genes that do not have orthologs in all the

three yeast species were eliminated. The remaining 51

mitochondrial ribosomal protein (MRP), 58 rRNA, and 73

stress-related (STR) orthologous gene triplets were used in the

TN evolution analysis. The 300bp upstream sequences to the

TSSs were obtained from genome databases (www.yeastgenome.

org, www.candidagenome.org, wolfe.gen.tcd.ie/ygob/Cglabrata_

sequence.fsa (v.3)). We used the phylogenetic topology and the

evolutionary distances estimated by Tuch et al. [61].

Preprocessing yeast data. The 182 genes in each species

were independently clustered by their expression data, using k-

means clustering with 3 centers. An enriched sequence motif was

identified by applying MEME [30] to the upstream sequences of

C. albicans, S. cerevisiae, and C. glabrata rRNA genes, as well as C.

albicans MRP genes (Figure S3-B New Motif).

Comparing model prediction with Ihmels’ theory. Ihmels

et al. suggested that the rRNA genes in all three yeast species and all

the MRP genes in C. albicans are regulated by the conserved

transcription factor TFa; moreover, none of the STR genes in any

species and none of the MRP genes in any anaerobic species is

regulated by TFa (Table S2) [29]. Our prediction is compared with

this theory. For every gene in each species, the TN evolution model

predicts whether it is regulated by TFa. We assumed a prediction to

be correct if it matched Ihmels’ theory, by checking Table S2. By

matching Ihmels’ theory we meant consistent to the notion that the

MRP genes have been re-wired but other genes are not. For

example, if a MRP gene in C. albicans was predicted to be a target of

TFa, this prediction was considered correct. The prediction

accuracy of the model was defined as the ratio between the total

number of correct predictions and the total number of genes in the

three species.

Mammalian data. The gene expression data of PED in

humans, mice, and cattle were obtained from Xie et al. (GEO:

GSE18290, GSE18319) [8]. The orthologous gene map was

obtained from Xie et al. [8]. The upstream sequence of a gene was

defined as the 20 k bp sequence flanking the TSS. These

sequences were obtained from UCSC Genome Browser. The

Oct4 motif was obtained from Chen et al. [37]. The phylogenetic

distances of the three species were obtained from [62].

Preprocessing mammalian data. The orthologous gene

triplets were filtered out, if none of the triplets had a clear change

of expression levels (coefficient of variation .1.26) during PED.

After the filtering, 1,509 orthologous gene triplets were passed

onto clustering analysis.

The clustering of genes was performed independently within

each of the three species, using a recently developed clustering

method based on a Dirichlet Process [51]. Without requiring a

pre-determined cluster number, this clustering algorithm auto-

matically determines the optimum cluster number supported by

the data. After removing singletons in the clustering result, 1,489

genes formed 27, 22, and 26 clusters in humans, mice, and cattle,

respectively.

The probabilities P Si,mjZi,m~1ð Þ and P Si,mjZi,m~0ð Þ were

computed for every 500bp sliding window on the 20 k bp

sequence of a gene. The sliding window with the largest

P Si,mjZi,m~1ð Þ=P Si,mjZi,m~0ð Þ was selected as the representa-

tive window of the 20 k bp sequence. The P Si,mjZi,m~0ð Þ and

P Si,mjZi,m~1ð Þ from this representative window were used as the

probabilities in (3.1) and (3.2) for the 20 k bp sequence [Figure

S4].

Choosing the weight (b) parameter in PED
analysis. Having a weight (b) parameter in the likelihood

function is a commonly used approach to hybridize probability

functions of heterogeneous data types. In our case the likelihood

calculated from sequence data and the likelihood calculated from

expression data can be in different scales. The weight serves as a

scaling adjustment to make contributions from both sides

comparable. In the analysis of PED data, we assumed that real

data were very noisy and therefore were most similar to the ‘‘weak

sequence signal and weak expression signal’’ case in the

simulation. We directly assigned the weight (b~35) which seems

to work fine in simulation on ‘‘both weak’’ data in the analysis of

real data. We checked two other cases (b~5 and 50) and found in

those cases the model predictions were the same as the model

predictions when ignoring the expression and ignoring the

sequence data, respectively, as expected.

Supporting Information

Figure S1 Histogram of human-mouse gene expression corre-

lations. The human-mouse orthologous genes were identified by

best blast bi-directional hits (BBH). Gene expression data were

obtained from human and mouse gene atlas project, which used

gene-chip microarrays to assay various tissues. In gene atlas data

contained a total of 28 human-mouse matched tissues, and a total

of 2,534 human-mouse BBH gene pairs on the microarrays. For

each orthologous gene pair, a Pearson correlation r of their two-

species gene expression was calculated, based on their expression

levels in 28 matched tissues. 39.7% of the BBH orthologous pairs

are negatively correlated; 64.2% had a correlation ,0.1, and

91.2% had a correlation ,0.6, suggesting large interspecies

expression differences.

(TIF)

Figure S2 Prediction accuracies for simulated datasets. The

predication accuracy was plotted against the relative weight of the

expression data (b). Training and testing datasets were separate

datasets. The prediction accuracies on training and testing datasets

are almost identical, rendering the accuracy curves to overlap.

(EPS)

Figure S3 Rewiring of TNs among three yeast species. (A)

Clustering of gene expression data in each species. The functional

gene groups, including mitochondria protein genes (MRP), rRNA

genes (rRNA), and stress response genes (STR), are correlated with

gene clusters. (B) Prediction accuracy of regulatory relationships using

the new motif (blue) and using the Ihmels et al. reported motif (red).

(TIF)

Figure S4 Preparing the sequence and the expression data for

analysis by the evolutionary model of TNs.

(EPS)

Figure S5 Binding site turnover. Rex box indicates the predicted

transcription factor binding sites (TFBS) in human (A) and mouse

(B–D). Nucleotide sequences in red on top of the red boxes
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represent common ancestral sequence reconstructed by parsimo-

nious reconstruction. Mouse and rat experienced a deletion event

that removed 4 bp out of the 8 bp TFBS, probably causing a death

of the TFBS (A). Another 2 bp deletion from ACAgtACCGTG

(ancestral) into ACAACCGTG gave birth to a murine specific

binding site (B). Species-specific insertion (C) and mutation (D)

could also lead to births of TFBSs.

(TIF)

Figure S6 Numbers of predicted conserved Oct4 target genes,

protein-protein interactions, and gene regulatory relationships.

(TIF)

Figure S7 Conserved and alternatively regulated signaling

pathway components. Canonical components of TGFb, WNT,

and mTOR pathways are shown. A gene in white is not a

transcriptional target of OCT4-SOX2. A gene is colored with

blue, red, or green when its human, mouse, or bovine ortholog is a

transcriptional target of OCT4-SOX2, respectively. A gene with

two or three colors is a target in two or three species. For example,

c-Myc is colored blue, red, and green, and its orthologs in all three

species are OCT4-SOX2 targets.

(TIF)

Figure S8 Model-inferred Oct4 target genes and the protein-

protein interactions among the gene products.

(TIF)

Table S1 Evolutionary models for gene regulatory sequence,

gene expression and using phylogenetic information.

(PDF)

Table S2 The regulatory relationship between TFa and three

sets of genes in three species. The number of genes found in each

set is given in parentheses.

(PDF)

Text S1 Supplementary Data. Description of simulation study

data generation.

(PDF)

Text S2 Supplementary Methods. Parameters for simulation

datasets, methods to measure prediction accuracy and description

of E-M algorithm for parameter estimation.

(PDF)
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