
Introduction
Capsule endoscopy (CE) has revolutionized the investigation of
suspected small bowel disease. Colon capsule endoscopy (CCE)
was developed as a minimally invasive alternative to conven-
tional colonoscopy for detection of colorectal disease, particu-

larly in the setting of colorectal cancer screening [1]. This diag-
nostic tool overcomes some of the drawbacks associated with
colonoscopy, including the potential for pain, use of sedation,
and the risk of bleeding and perforation [2]. CCE represents a
viable alternative for patients with previous incomplete colo-
noscopy, or for whom the latter is contraindicated, unfeasible,
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ABSTRACT

Background and study aims Colon capsule endoscopy

(CCE) is a minimally invasive alternative to conventional co-

lonoscopy. However, CCE produces long videos, making its

analysis time-consuming and prone to errors. Convolutional

neural networks (CNN) are artificial intelligence (AI) algo-

rithms with high performance levels in image analysis. We

aimed to develop a deep learning model for automatic

identification and differentiation of significant colonic mu-

cosal lesions and blood in CCE images.

Patients and methods A retrospective multicenter study

including 124 CCE examinations was conducted for devel-

opment of a CNN model, using a database of CCE images in-

cluding anonymized images of patients with normal colon

mucosa, several mucosal lesions (erosions, ulcers, vascular

lesions and protruding lesions) and luminal blood. For CNN

development, 9005 images (3,075 normal mucosa, 3,115

blood and 2,815 mucosal lesions) were ultimately extrac-

ted. Two image datasets were created and used for CNN

training and validation.

Results The mean (standard deviation) sensitivity and spe-

cificity of the CNN were 96.3% (3.9%) and 98.2% (1.8%)

Mucosal lesions were detected with a sensitivity of 92.0%

and a specificity of 98.5%. Blood was detected with a sensi-

tivity and specificity of 97.2% and 99.9%, respectively. The

algorithm was 99.2% sensitive and 99.6% specific in distin-

guishing blood from mucosal lesions. The CNN processed

65 frames per second.

Conclusions This is the first CNN-based algorithm to accu-

rately detect and distinguish colonic mucosal lesions and

luminal blood in CCE images. AI may improve diagnostic

and time efficiency of CCE exams, thus facilitating CCE

adoption to routine clinical practice.
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or unwanted by the patient [3]. Nevertheless, a single CCE ex-
amination may produce up to 50,000 images, revision of which
is burdensome, requiring approximately 50 minutes for com-
pletion [3]. Abnormal findings may be restricted to a very small
number of frames and the risk of overlooking important lesions
is significant [3].

Automatic image analysis using artificial intelligence (AI)
tools has received much attention in recent last years. Convolu-
tional neural vetworks (CNN) are multi-layered algorithms de-
signed for automatic image analysis and have shown high per-
formance levels in diverse medical fields [4–6]. Application of
these technologies to endoscopic imaging, particularly in CE,
has produced exciting results [7]. These technological advan-
ces in evaluation of CE images may allow to improve diagnostic
efficiency and to optimize the reading process, including its
time cost, which constitutes one of its main drawbacks [8].

Most studies regarding CCE applications focus on detection
of colorectal neoplasia [9]. Nevertheless, the potential of CCE in
other clinical settings, including the assessment of disease ex-
tent and severity in inflammatory bowel disease (IBD) patients
(particularly those with ulcerative colitis), has been suggested
[10, 11]. Thus, the identification of findings other than protrud-
ing lesions (including vascular lesions, ulcers/erosions and
blood content) is clinically relevant. Enhanced reading of CCE
images using AI tools may improve the diagnostic rate of these
lesions. Nevertheless, the development and testing of deep
learning algorithms in this context has scarcely been reported.
Therefore, we aimed to develop and test a CNN-based algo-
rithm for the automatic detection colonic mucosal lesions and
luminal blood or hematic vestiges in CCE exams.

Material and methods
Study design

A multicenter study was performed for development and vali-
dation of a CNN for automatic detection of colonic mucosal le-
sions and luminal blood/hematic residues. CCE images were
retrospectively collected from the two different institutions:
São João University Hospital (Porto, Portugal) and ManopH Gas-
troenterology Clinic (Porto, Portugal). One hundred and 24 CCE
exams (124 patients), performed between 2010 and 2020,
were included. Data retrieved from these examinations were
used for development, training and validation of a CNN-based
model for identification. The full-length video of all participants
was reviewed (total number of frames: 3,387,259), and 9,005
images of the colonic mucosa were ultimately extracted. Inclu-
sion and classification of frames were performed by three gas-
troenterologists with experience in CCE (MJMS, HC and MMS),
each having reviewed more than 1,500CE exams before the
start of this study. A final decision on frame labelling required
the agreement of at least two of the three researchers.

This study was approved by the ethics committee of São João
University Hospital/Faculty of Medicine of the University of Por-
to (No. CE 407 /2020) and was conducted respecting the decla-
ration of Helsinki. This study is retrospective and of non-inter-
ventional nature. Any information deemed to potentially identi-
fy the subjects was omitted. Each patient was assigned a ran-

dom number in order to guarantee effective data anonymiza-
tion. A team with Data Protection Officer (DPO) certification
(Maastricht University) confirmed the non-traceability of data
and conformity with the general data protection regulation
(GDPR).

Colon capsule endoscopy system

All procedures were conducted using the PillCam COLON 2 sys-
tem (Medtronic, Minneapolis, Minnesota, United States). This
capsule has 2 high-resolution cameras, with a combined 344º
field of view, and an adjustable frame rate ranging from 4 to
35 frames per second [3]. This system was launched in 2009.
No hardware modifications were introduced during the time-
span of the included CCE exams. Therefore, image quality re-
mained unaltered during this period. The images were re-
viewed using PillCam software v9 (Medtronic, Minneapolis,
Minnesota, United States).

Each patient received bowel preparation according to pre-
viously published guidelines [12]. Summarily, patients initiated
a clear liquid diet in the day preceding capsule ingestion, with
fasting in the night before examination. A bowel preparation
consisting of 4 liters of polyethylene glycol solution was used
in split-dosage (2 L in the evening and 2 L in the morning of cap-
sule ingestion). Prokinetic therapy (10mg domperidone) was
used if the capsule remained in the stomach 1 hour after inges-
tion. Two boosters consisting of a sodium phosphate solution
were applied after the capsule has entered the small bowel
and with a 3-hour interval.

Development of the CNN

A deep learning model was constructed with the objective to
automatically identify and classification of three categories:
normal colonic mucosa; blood or hematic residues within the
lumen of the colon, and colonic mucosal lesions. The latter in-
cluded ulcers, erosions, vascular lesions (red spots, angiectasia
and varices) and protruding lesions (e. g., polyps, epithelial tu-
mors, submucosal tumors, nodes). From the collected pool of
images (n=9,005), 3,075 contained normal colonic mucosa,
3,115 showed luminal blood or hematic residues, and 2,815
had mucosal lesions. This pool of images was split for constitu-
tion of training and validation datasets. The training dataset
was composed by the first 80% of the consecutively extracted
images (n =7,204). The remaining 20% was used as the valida-
tion dataset (n =1,801). The performance of the CNN was as-
sessed using the validation dataset. A flowchart summarizing
the study is presented in ▶Fig. 1.

The CNN was created using the Xception model with its
weights trained on ImageNet (a large-scale image dataset
aimed for use in development of object recognition software).
To transfer this learning to our data, we kept the convolutional
layers of the model. We removed the last fully connected layers
and attached fully connected layers based on the number of
classes we used to classify our endoscopic images. We used
two blocks, each having a fully connected layer followed by a
dropout layer of 0.3 drop rate. Following these two blocks, we
add a dense layer with a size defined as the number of categor-
ies (three) to classify. The learning rate of 0.0001, batch size of
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16, and the number of epochs of 100 was set by trial and error.
We used Tensorflow 2.3 and Keras libraries to prepare the data
and run the model. The analyses were performed with a com-
puter equipped with a 2.1 GHz Intel Xeon Gold 6130 processor
(Intel, Santa Clara, California, United States) and a double NVI-
DIA Quadro RTX 4000 graphic processing unit (NVIDIA Corpo-
rate, Santa Clara, California, United States).

Model performance and statistical analysis

The primary outcome measures included sensitivity, specificity,
positive and negative predictive values, and the accuracy in dif-
ferentiating between images colonic mucosal lesions, blood/
hematic residues, and normal findings. Moreover, we used re-
ceiver operating characteristic (ROC) curves analysis and area
under the ROC curves (AUROC) to measure the performance
of our model in the distinction between the three categories.
The network’s classification was compared to the specialists’ a-
nalysis, the latter being considered the gold standard. A sub-
group analysis was performed in order to assess the sensitivity
of the network for detection of each group of lesions classified
as mucosal abnormalities.

In addition, the image processing performance of the net-
work was determined by calculating the time required for the
CNN to provide output for all images in the validation image da-
taset.

For each image, the trained CNN calculated the probability
for each of the three categories. A higher probability translated
in a greater confidence in the CNN prediction. The category
with the highest probability score was outputted as the CNN’s
predicted classification (▶Fig. 2). Sensitivities, specificities, po-
sitive and negative predictive values are presented as means
and standard deviations (SD). ROC curves were graphically. Sta-
tistical analysis was performed using Sci-Kit learn v0.22.2 [13].

▶ Fig. 1 Study flowchart for the training and validation phases.

▶ Fig. 2 a Heatmaps and b output obtained from the application of the convolutional neural network. a Examples of heatmaps showing
detection of blood and a protruding lesion as identified by the CNN. b The bars represent the probability estimated by the network. The finding
with the highest probability was outputted as the predicted classification. A blue bar represents a correct prediction. Red bars represent an
incorrect prediction. The gold standard classification (specialists’ consensus) is reported between brackets. N – normal mucosa; B – blood;
ML – mucosal lesions.
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Results
Construction of the network

A total of 124 patients underwent CCE and enrolled in this
study. The full image dataset was composed by 9,005 frames.
A total of 1,801 frames (20%) were used as a validation dataset.
The latter subset of images was composed by 623 (34.6%) ima-
ges with evidence of blood or hematic residues, 563 (31.3%)
images with mucosal lesions and 615 (34.1%) images with nor-
mal mucosa. The CNN demonstrated increasing levels of accu-
racy as data was repeatedly inputted into its multi-layer archi-
tecture (▶Fig. 3).

Overall performance of the network

The results are summarized in ▶Table1. Overall, the mean (SD)
sensitivity and specificity of the CNN were 96.3% (3.9%) and
98.2% (1.8%), respectively. The network provided accurate pre-
dictions in 97.6% (1.9%). The positive predictive value and neg-
ative predictive value were 96.4% (3.3%) and 98.2% (1.7%)
(▶Table2).

CNN performance for the detection of mucosal le-
sions and blood

The analysis of the performance of the CNN revealed a sensitiv-
ity of 92.0% and specificity of 98.5% for the detection of muco-
sal lesions (▶Table 2). The AUROC was 0.99 (CI 95% 0.98–1.00)
(▶Fig. 4). Blood and hematic residues were detected with a
sensitivity and specificity of 99.5% and 99.8% (▶Table 2),
respectively, and had an AUROC of 1.00 (CI 95% 0.99–1.00)

(▶Fig. 4). Classification as a normal mucosa occurred with a
sensitivity and specificity of 97.1% and 96.3% (▶Table 2),
respectively, and an AUROC of 1.00 (CI 95% 0.99–1.00)
(▶Fig.4).

Our model was able to differentiate blood/hematic vestiges
from normal mucosa with a sensitivity of 99.8% and specificity
of 100.0%. Mucosal lesions were distinguished from normal
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▶ Fig. 3 Evolution of the accuracy of the convolutional neural net-
work during training and validation phases, as the training and
validation datasets were repeatedly inputted in the neural net-
work.

▶Table 1 Confusion matrix of the automatic detection versus expert classification.

Expert classification

Normal Blood Mucosal lesions

CNN classification

Normal 597   1  43

Blood   0 621   2

Mucosal lesions  18   1 518

CNN – convolutional neural network; normal – normal colonic mucosa; blood – blood or hematic residues.

▶Table 2 CNN performance for detection and differentiation of normal colon mucosa, free blood and several mucosal lesions.

Sensitivity Specificity PPV NPV

Overall, (mean % ± SD) 96.3 ± 3.9  98.2 ± 1.8  96.4%±3.3% 98.2%±1.7%

ML vs. all, % 92.0  98.5  96.4 96.4

Blood vs. all, % 99.5  99.8  99.7 99.8

Normal vs. all, % 97.1  96.3  93.1 98.4

ML vs. Normal, % 92.3  97.1  96.6 93.3

Blood vs. ML, % 99.8  99.6  99.7 99.8

Blood vs. Normal, % 99.8 100.0 100.0 99.8

CNN – convolutional neural network; blood – blood or hematic residues; normal – normal mucosa; ML – mucosal lesions; SD – Standard deviation; PPV – positive
predictive value; NPV – negative predictive value.
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mucosa with 92.3% sensitivity and 97.1% specificity. Addition-
ally, for the distinction between blood versus mucosal lesions,
the CNN was 99.8% sensitive and 99.6% specific (▶Table2).

Subgroup analysis of images with mucosal lesions

The subset of images showing mucosal lesions in the validation
dataset (n =553) was further analyzed to assess the detection
rate of each individual subgroup of lesions. This subset consti-
tuted 329 images of protruding lesions, 188 images of ulcers
and erosions, and 35 images of vascular lesions. The network
accurately detected 293 of 329 protruding lesions (89.1%),
178 of 188 ulcers and erosions (94.7%), and 30 of 35 vascular
lesions (85.7%).

Computational performance of the CNN

The reading of the validation dataset was completed in The
CNN completed the reading of the validation dataset in 28 sec-
onds, at a rate of approximately 65 frames per second (0.015
seconds per image).

Discussion
The use of CNNs has provided promising results for image anal-
ysis in gastroenterology and hepatology [14–16]. In recent
years, significant interest has been devoted to the application
of this technology in CE. Recent studies have demonstrated
high diagnostic performance of CNN-based models for small
bowel CE, including for the detection of ulcers and erosions, ce-
liac disease, vascular lesions, blood content, and protuberant
lesions [17–22]. Nevertheless, the exploration of these tools in
CCE has scarcely been performed.

We developed an accurate CNN model capable of detecting
and distinguishing colonic mucosal lesions as well as blood/he-
matic residues in CCE images. Several aspects of this work are
worthy of highlighting. First, we developed a multicentric study
which is the first to evaluate the performance of a CNN for the

detection of a wide array of findings, specifically blood and
multiple subtypes of colonic lesions in CCE images. Second,
our algorithm demonstrated high performance levels in the de-
tection and differentiation of such colonic pathologic findings.
Our model demonstrated to be highly sensitive for the detec-
tion of mucosal lesions and blood/hematic residues, which is
paramount for a CNN-assisted reading, thus lessening the
probability of missed lesions. Third, our network had high im-
age processing performance, with approximate reading rates
of 90 frames per second, which is superior to most studies pub-
lished so far [18, 19, 22].

The role of CCE in everyday clinical practice has not yet been
completely established. So far, most studies have focused on
colorectal cancer screening and polyp detection. The most
common indications for CCE are previous incomplete colonos-
copy and unwillingness or contraindications for undergoing
conventional colonoscopy [12]. Data have shown that noninva-
sive CCE has an acceptable diagnostic performance, and it
could be viewed as a complement, rather than substitutive of
gold standard colonoscopy [23]. CCE has been shown to out-
perform other non-invasive colorectal neoplasia screening
tests, such as CT colonography [24]. Current guidelines place
CCE as an alternative to colonoscopy for screening in average-
risk population [12]. Recent data reported higher uptake (an
essential parameter in any population-based screening pro-
gram) for CCE comparing to conventional colonoscopy. [25].
Moreover, when applied after a positive fecal-immunological
test, CCE may reduce the need for more invasive conventional
colonoscopy [26]. However, CCE has significant drawbacks
that limit its generalization. These include the need for more
rigorous bowel cleansing, technical limitations, as well as finan-
cial and time costs. CCE is not widely available and most endos-
copists are not familiar with reviewing CCE images. Acquiring
expertise in reviewing CCE images is time-consuming and often
performed in a non-standardized fashion [27]. Recent literature
has been reporting promising results regarding the automatic
detection of lesions in CE images. On the other hand, evidence
reporting the impact of deep learning techniques in CCE re-
mains scarce. The introduction of AI-assisted CCE image review
may enhance acquisition of competences in CCE reading, thus
shortening the learning curve for unexperienced gastroenterol-
ogists. This is particularly important in centers with a low vol-
ume of CCE exams. Therefore, we believe that the development
of sensitive AI tools, as described in this work, have the poten-
tial to significantly enhance the diagnostic and time efficiency
of CCE examinations, which may widen the indications and ac-
ceptance of CCE. These tools may have a pivotal role for wide-
spread adoption of CCE, as the potential increase in the use of
CCE due to implementation of AI-assisted reading may ulti-
mately tackle its financial costs by decreasing CCE system unit
price and the time spent reviewing these images.

The performance and impact of CNNs for automatic detec-
tion of colorectal lesions in CCE images has scarcely been eval-
uated. To our knowledge, only two other studies have addres-
sed this issue [28, 29]. However, the spectrum of both studies
was restricted to detection of colorectal neoplasia. Blanes-Vidal
et al. adapted a preexisting CNN (AlexNet), and reported a sen-
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▶ Fig. 4 ROC analyses of the network’s performance in the detec-
tion of normal mucosa, blood and colon mucosal lesions. ROC –
receiver operating characteristic.
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sitivity and specificity of 97% and 93%, respectively, and an
overall accuracy of 96% [28]. More recently, Yamada et al. de-
veloped a CNN-based algorithm for detection of colorectal neo-
plasia. Their network detected polyps and colorectal cancers
with a sensitivity, specificity and AUROC of 79%, 87% and
0.90, respectively [29]. These studies pave the way for the de-
velopment of AI systems which may assist in the selection of pa-
tients requiring further exploration with conventional colonos-
copy. The addition of systems predicting the histologic features
of lesions to those providing automatic detection will have a
significant impact in screening patients requiring further colo-
noscopy, thus potentiating the role of CCE in conventional
endoscopic practice.

To date, no other study has been published reporting a CNN-
based deep learning model for the evaluation of multiple colo-
nic lesions by CCE. Our network was capable detecting and dis-
tinguishing a wide range of mucosal lesions and blood with high
sensitivity and specificity. These technologies should be re-
garded as supportive rather than substitutive. Therefore, these
systems must remain highly sensitive in order to minimize mis-
sed lesions. On subgroup analysis, our network demonstrated
to be highly sensitive for the detection of ulcers/erosions, as
well as protruding lesions. The lower detection rate of vascular
lesions may be explained by their frequent small size. Overall,
we believe that our study enlarges the potential of AI algo-
rithms in CCE for the detection of lesions other than polyps.

Recently, the application of CCE for assessment of the sever-
ity and extension of IBD, especially ulcerative colitis (UC), has
generated much interest, although its clinical significance re-
mains to be established. CCE was shown to have a 89% sensitiv-
ity and 75% specificity for the determination of the severity of
UC [30]. Recent evidence was published reporting a high de-
gree of correlation between conventional colonoscopy and
CCE findings in UC patients [31, 32]. Moreover, the possibility
of CCE to provide a pan-enteric evaluation may have reveal
small bowel abnormalities, which ultimately may have signifi-
cant diagnostic and prognostic [33]. Likewise, CCE was shown
to have good correlation with conventional colonoscopy in the
evaluation of the severity of colonic Crohn’s disease [34]. How-
ever, more generalized CCE use is limited by its inability for his-
tologic sampling. Our network demonstrated high perform-
ance levels for the detection of mucosal abnormalities, particu-
larly ulcers and erosions, as well as blood content, which are
common findings in IBD patients. Therefore, the development
of CNNs and their introduction into clinical practice may po-
tentiate the role of CCE in monitoring disease activity and ex-
tension in these patients. Furthermore, the application of auto-
mated tools to CCE, may allow for time efficient pan-enteric
evaluation, ultimately facilitating the follow-up of patients
with known or suspected IBD.

Our network demonstrated high computational perform-
ance, being capable of processing 65 images per second. At
this rate, revision of a full-length CCE video containing an esti-
mate of 50,000 frames would require approximately 13 min-
utes. No value for comparison exists regarding CCE. Neverthe-
less, our image processing rate outperformed those of other
networks processing CE images [18, 22]. In the near future,

these performance marks may translate into shorter reading
times, thus overcoming one of the main drawbacks of CE. Fur-
ther studies are required to assess if increased computational
power translates into enhanced reading time efficiency.

This study has several limitations. First, it is a retrospective
study. Further well-designed prospective studies in real-life set-
tings are necessary to confirm the clinical value of our results.
Second, although our model demonstrated high accuracy in
the detection of mucosal abnormalities, it was not designed to
distinguish its subtypes. Third, although our network demon-
strated high processing speed we did not assess if CNN-assisted
image review reduces the reading time compared to conven-
tional reading. Finally, although a large pool of images was re-
viewed, the number of patients included in this study is small.
Large multicenter studies are required to overcome this limita-
tion.

Conclusions
AI is expected to play a large role in everyday medical practice
in the future. We developed a CNN-based model capable of de-
tecting colon mucosal abnormalities in CCE and blood/hematic
residues. Our model achieved high levels of accuracy and excel-
lent computational performance. These results may lay the
foundations for application of this technology to CCE, thus im-
proving its diagnostic and reading time efficiency and, ulti-
mately, its acceptance.
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