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Direct observation of chiral currents and magnetic
reflection in atomic flux lattices
Fangzhao Alex An, Eric J. Meier, Bryce Gadway*

The prospect of studying topological matter with the precision and control of atomic physics has driven the
development of many techniques for engineering artificial magnetic fields and spin-orbit interactions. Recently,
the idea of introducing nontrivial topology through the use of internal (or external) atomic states as effective
“synthetic dimensions” has garnered attraction for its versatility and possible immunity from heating. We en-
gineer tunable gauge fields through the local control of tunneling phases in an effective two-dimensional
manifold of discrete atomic momentum states. We demonstrate the ability to create homogeneous gauge fields
of arbitrary value, directly imaging the site-resolved dynamics of induced chiral currents. Furthermore, we en-
gineer the first inhomogeneous artificial gauge fields for cold atoms, observing the magnetic reflection of
atoms incident upon a step-like variation of an artificial vector potential. These results open new possibilities
for the study of topological phases and localization phenomena in atomic gases.
INTRODUCTION
The purity and microscopic understanding of ultracold atomic matter
have made it an ideal platform for the study of topological phenomena
(1). In addition, the high level of control over atomic systems has
enabled the exploration of topological phases not readily accessible
in real materials. The past decade has seen steady progress toward
the realization of stable, low-temperature atomic samples with non-
trivial topology. Lattice-based techniques using lattice modulation
(2–4) and laser addressing (5–7) have proven capable of reaching
the regimes of large effective magnetic fields and strong spin-orbit
coupling, a feat that has eluded bulk gas techniques, such as rotation
(8) and bulk Raman addressing (9–11). Still, nontrivial heating re-
mains an issue for lattice-based schemes (12, 13).

Recently, the use of atomic internal states as synthetic dimensions
(14–18) has emerged as an interesting alternative strategy that may
obviate some sources of heating. Although various analogs of real-
space transport have previously been studied (19–22), the application
of spectroscopically controlled, field-driven transitions has led to re-
cent key developments, including the realization of two-dimensional
(2D) systems with fixed artificial flux (16, 17).

Here, we expand the capabilities of synthetic dimension–based
simulation by engineering fully tunable flux lattices in multiple syn-
thetic dimensions. We directly image chiral atomic currents induced
by a homogeneous flux and observe magnetic reflection of atoms from
a step-like jump of an effective magnetic vector potential generated by
an inhomogeneous flux. These advances in the creation of artificial
gauge fields should greatly expand the variety of topological systems
open to investigation through cold-atom simulation.

Our implementation (23–25) laser couples the discrete momentum
states of ultracold 87Rb atoms to mimic tunnel-coupled lattice sites. In
one dimension, we drive the two-photon Bragg transitions coupling
these momentum states using counterpropagating laser fields with a
wavelength l2 of 1064 nm (wave number k2 = 2p/l2). Here, we extend
this scheme to higher dimensions by adding a second set of Bragg
laser beams (shown in Fig. 1A), copropagating and having an in-
commensurate wavelength (l1 = 781.5 nm, k1 = 2p/l1) with respect
to the l2 laser. The wave vectors k1,2 define an effective 2D manifold
of discrete momentum states carrying momentum pm,n = 2ℏ(mk1 +
nk2) (depicted in Fig. 1B on top of the free-particle dispersion rela-
tion). Starting with a Bose-Einstein condensate at rest, we populate
these states by applying m and n two-photon Bragg transitions from
the k1 and k2 lasers, respectively. This mapping between the atoms’ 1D
momentum distribution and the 2D lattice with site indices (m, n) is
depicted with sample data in Fig. 1 (C and D). By imprinting a multi-
frequency spectrum onto each pair of lasers, we individually address
every allowed transition in our fully synthetic 2D ladder system (Fig.
1E) with spectroscopic precision, allowing for full control of all
tunneling terms and site energies (see the Supplementary Materials
for more details).
RESULTS AND DISCUSSION
Chiral currents in the homogeneous flux ladder
We begin by directly mimicking a magnetic vector potential in the
Landau gauge, Â ¼ ð0;Bx; 0Þ, through coordination of the tunneling
phases on a 2 × 5 site ladder. This gives rise to a uniform effective
magnetic field, as shown in Fig. 2A. The dynamics of our cold atoms
are effectively governed by the Hamiltonian

Ĥ ¼ �½tx∑n ĉ
†
1;nĉ0;n þ ty∑m;ne

ifm;n ĉ†m;nþ1ĉm;n� þ h:c: ð1Þ

where ĉm;n (̂c
†
m;n) is the bosonic annihilation (creation) operator for

the state with indices (m, n). In terms of the effective magnetic field
strength B, the engineered tunneling phases along y are given by
fm,n = −mf, where f = 2pd2B(q/hc) is the flux associated with
closed loops around individual four-site plaquettes, d is the effec-
tive spacing between synthetic lattice sites, q is the effective charge
of the particles, h is the Planck constant, and c is the speed of light.
Here, and in the remainder of this work, we use approximately homo-
geneous tunneling strengths and engineer hard-wall (open) system
boundaries.

To probe the influence of our tunable field B on these “charged”
particles, we observe their nonequilibrium response to a quench of the
effective field. In particular, we study the response of atoms initially
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prepared in a symmetric superposition of occupation on sites (0, 0)
and (1, 0). Because of the lack of interior lattice sites, this two-leg
ladder geometry does not host the same bulk localization and con-
ductance at the boundary typical of the integer quantum Hall effect.
However, as depicted in Fig. 2A, the applied fluxes lead to anisotrop-
ically conducting chiral currents or a “shearing” of the initial symmet-
ric state along the m = 0 and m = 1 legs. We define this shearing as

shearing ≡ 〈n〉0 � 〈n〉1 ð2Þ

where 〈n〉0(1) is the average site index along the m = 0 (m = 1) leg.
In general, application of a positive flux f will induce a clockwise
chiral current and a positive shear, as shown in Fig. 2A. A sign re-
versal of the flux should result in a reversal of the shearing direc-
tion, and, for fluxes of zero or ±p, we expect only symmetric spreading
of the initial state along the y direction. Although recent experiments
(16, 17, 26) have observed chiral currents on similar ladder geometries,
our use of a fully synthetic lattice allows us to engineer arbitrary fluxes
and, furthermore, enables direct observation of all site populations and
shearing dynamics at the site-resolved level.

Figure 2B shows the observed shearing dynamics for applied fluxes
f = −p/2 (top, violet) and f = +p/2 (bottom, red). Initially, all of the
population resides in the middle sites and thus should give zero shear
(see the Supplementary Materials regarding the small initial nonzero
shear). The atoms thus follow the general trend described above: Pos-
itive flux causes atoms to move clockwise around the ladder, and neg-
ative flux leads to motion in the opposite direction. Because of the
finite system size, the value of the shearing saturates and decreases,
as the atoms reach the ends of the ladder and move between the
two legs. Figure 2C shows the population distributions after a quench
duration of 500 ms (dashed vertical lines in Fig. 2B) for fluxes f = ±p/2.
A clear distinction between the cases of positive and negative fluxes can
be seen at this time, corresponding to the case of near-maximum shear.
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For longer times (as seen in Fig. 2B), the data tend to deviate from the
simple theory simulations. The dashed curves are the predictions of
Eq. 1 for a tunneling rate t/ℏ = 2p × 338 Hz, which exceeds the
calibrated tunneling rates in Fig. 2 (B and D) by ~25 and ~31%,
respectively. Solid curves represent a more detailed model, including
the influence of off-resonant Bragg transitions [(23); see Supple-
mentary Text], but still ignoring the influences of interactions, finite
condensate size, and decoherence due to both the phase instability
of the Bragg lasers and the physical separation of wave packets with
different momenta.

Figure 2D shows the measured shearing after 500 ms for the full
range of applied flux values, demonstrating our wide control over
homogeneous effective fields. Although almost no shear is measured
for f = 0 (corresponding to symmetric spreading along y), maximum
shearing magnitudes are observed for flux values near ±p/2. The data
are in excellent qualitative agreement with the theory curve, which
has been scaled by a factor of 0.45 to account for reductions of
shearing due to decoherence and other influences. Most of the devia-
tions from the idealized dynamics of Eq. 1, including the small, non-
zero shear for zero flux, are reproduced by this theory, accounting
for residual off-resonant Bragg couplings [(23); see Supplementary
Text]. Our complete control of flux values is a necessary step toward
measurement of the Hofstadter spectrum in cold atoms (5).

Reflection from a magnetic defect
As a second study, we engineer the first inhomogeneous artificial gauge
fields in cold atoms, studying the transport of atomic wave packets in-
cident upon a sharp dislocation of the effectivemagnetic field. As shown
in Fig. 3A, we engineer a step-like jump of themagnetic vector potential
Â by fixing the flux in the leftmost plaquette to zero while retaining a
tunable homogeneous flux f in the remaining plaquettes. Without any
initialization procedure, we begin with all of the population in the corner
of the flux-free region on the zero momentum site (0, 0). By switching
our couplings along y to the range n = 0 to n= 4, we shift the lattice such
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Fig. 1. Two-leg flux ladder. (A) Two sets of lattice laser fields (with wave numbers k1 and k2) addressing transitions between atomic momentum states of a Bose-Einstein
condensate (BEC). (B) Free-particle dispersion relation showingmomentum states on them= 0 (white circles) andm= 1 (gray circles) legs, labeled by (m, n) withmomentum p=
2ℏ(mk1 + nk2). Short red and tall blue arrowsdenote transitions controlledby k1 and k2wavenumber lattices, respectively. Inset: 2D lattice representation,with links addressed by
the k1 (red, vertical) and k2 (blue, horizontal) wave number beams. The recoil energy is given by ER;2 ¼ ℏ2k22=2MRb. (C) Time-of-flight image of atoms inmomentumorders (m, n).
(D) Image from (C) rearranged to show the 2D lattice. This figure and (C) show absorption images using the normalized OD scale at the right. (E) Schematic of a two-leg ladder
with applied tunneling phases fi on each link of the m = 1 leg, resulting in fluxes fi around each four-site plaquette. Max, maximum.
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that atoms with zero momentum naturally start on the corner site. We
quenchon tunneling and the full flux distribution and track the dynamics
of the atomic distributions, monitoring the percentage of atoms that
transmit through the step-like boundary, escaping the leftmost four-site
plaquette.

As shown in Fig. 3B, we probe the full range of f, directly measuring
the transmitted fraction of atoms after an evolution time of 1500 ms
(~2.94 ℏ/t). The tunneling rate t/ℏ = 2p × 311(14) Hz has been
determined from calibrations to two-site Rabi oscillations. A clear trend
is observed: maximum transmission near f = 0, where the step in the
vector potential vanishes, and maximum reflection for flux dislocations
of ±p. This is in good qualitative agreement with the predictions of the
idealized tight-binding Hamiltonian of Eq. 1 (shown as green solid line
in Fig. 3B). Note that this behavior is purely due to the presence of a flux
boundary in this 2D system and is not observed in the limit of zero in-
terleg tunneling, where there are no relevant flux loops. Specifically, for
corresponding data taken on a 1D chain with a step-like tunneling
phase boundary, no reflection is observed.

Although the idealized predictions of Eq. 1 expect full transmission
for f = 0 (and roughly 40% for f =±p), we observe reduced dynamics in
the data, whichwe attribute to experimental sources of decoherence and
dephasing that may be ameliorated in future investigations (see Supple-
mentary Text). Moreover, we find that a sizable fraction of the atoms in
our initial condensate [site (0, 0)] does not participate in the Bragg laser–
driven dynamics. This owes to the widemomentum spread of our finite-
sized condensate compared to the sharp spectral selectivity of our weak
coupling fields [with a tunneling time of ℏ/t = 511(22) ms]. To account
for these deviations (detailed in the Supplementary Materials), we scale
the predicted transmission curve by a factor of 0.48with no extra offsets.
This scaling better matches the lessened transmission near f = 0 but
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diverges from the data for larger values of flux where atoms should re-
flect off the boundary, regardless of the effects that hinder transmission.

We additionally investigate the full dynamics for the cases of ho-
mogeneous zero flux (f =0) andmaximally inhomogeneous flux (f = p),
as shown in Fig. 3 (C and D). In both cases, we compare the complete
momentum-state distributions to those predicted by Eq. 1 and extract
the percentages of reflected and transmitted atoms. The calibrated
tunneling rate for these data [t/ℏ = 2p × 344(21) Hz] differs from that
of the variable flux data discussed above. The normalized integrated
optical density (OD) plots for the f = 0 case in Fig. 3C show a significant
percentage of the population leaving the four leftmost sites (denoted by
white markers) and entering the rightmost sites (gray shaded markers).
The number of transmitted atoms at times exceeds that of which re-
mains in the four leftmost sites, as shown in the reflected and transmitted
population dynamics at the bottom. These data qualitatively agree
quite well with the theory predictions (with the same scaling as in
Fig. 3B).

The observations of significant transmission for f = 0 are contrasted
by our measurements for f = p, as shown in Fig. 3D. Here, in the upper
OD plots, good qualitative agreement is found between the measured
population dynamics and the unscaled theory predictions, with the
population first leaving and then returning to the initial site (leftmost
red marker). Although the f = 0 case showed limited transmission, in
this f = p case we observe significant reflection from the boundary.
At the bottom,we see that the number of atoms in the four leftmost sites
always significantly exceeds that of transmitted atoms. The theory
curves have been scaled down to correct for the limited transmission
near f = 0, so, in this case of maximal reflection, the scaling causes an
underestimate of the transmitted fraction. This observation of reflection
from a flux boundary, with the absence of any variation in the
C

B

2 0

–0.5

– –

–0.25

0.0

0.25

0.5

S
he

ar
in

g 
(s

ite
 in

de
x)

2

BB

0.0

–0.25

0.0

0.25 –

Evolution time

Evolution time

Sh
ea

rin
g 

(s
ite

 in
de

x)

1.0 2.0

0.0
0.0

0.25

0.5

0.75

Sh
ea

rin
g 

(s
ite

 in
de

x)

1.0 2.0

0
Evolution time (μs)

Evolution time (μs)

400 1200800

0 400 1200800

D

A
B

0

1

–1 0 1 2–2

φ φ φ φ
φ

φ

φ

φ

φ–

Fig. 2. Shearing in the flux ladder. (A) Schematic showing atoms undergoing clockwise shear (arrows) for positive flux f, corresponding to an effective magnetic field B
directed out of the page. Red filled-in circles represent the initial state. (B) Shearing dynamics for f = −p/2 (top, blue) and f = +p/2 (bottom, red). Dashed and solid curves
represent numerical simulation results based on Eq. 1 and a more complete model taking into account off-resonant transitions, respectively, both scaled and offset to match
the data. Dashed vertical lines indicate the timewhen the data for (C) and (D) were taken. (C) Site populations for f=−p/2 (left, blue) and f =+p/2 (right, red). Color scale used is
the same as in Fig. 1D. (D) Shearing versus applied flux. Solid line represents results from a simulation of the more complete model. Measurements for (C) and (D) were taken
after 500 ms (~1.06 ℏ/t), indicated bydashed vertical lines in (B). The calibrated tunneling rates for (B) and (D) are slightly different, so this time translates into different tunneling
times for the two. All error bars denote 1 SE.
3 of 5



SC I ENCE ADVANCES | R E S EARCH ART I C L E
underlying potential energy landscape, is a purely quantummechanical
effect, in analogy to previous observations of quantum reflection (27).
CONCLUSION
Our capabilities to directly engineer artificial homogeneous and in-
homogeneous gauge fields and directly image site populations in a syn-
thetic lattice are extremely promising for future realizations of myriad
model systems relevant to topology and transport. These include 2D
models of localization at topological interfaces (28), in disordered quan-
tumHall systems, and in randomgauge fields (29). Although our results
are predominantly driven by single-particle physics, the condensate
atoms in our momentum-space lattice have a long-ranged interaction,
allowing for a straightforward extension to studies of interacting
topological fluids. This could be accomplished through Feshbach-
enhanced scattering properties, longer interrogation, and coherence
times or by mapping to other forms of discrete motional eigenstates
(trapped states instead of plane-wave momentum states) with a more
local interaction (30) or internal spin states (14, 15).

During the preparation of this manuscript, we became aware of
two related works that have demonstrated spin-orbit coupling using
transitions to long-lived excited states in optical lattice clocks (31, 32),
based on the synthetic dimensions scheme suggested by Wall et al.
(18). In particular, using this technique, Livi et al. (32) has demon-
strated a wide control of homogeneous artificial flux magnitudes in
synthetic two-leg ladders.
MATERIALS AND METHODS
Experimental procedure
Our experiment began with the preparation of a 87Rb Bose-Einstein
condensate with ~5 × 104 atoms. We reached quantum degeneracy
via all-optical evaporation in a trap composed of three optical dipole
beams: two with a wavelength of 1064 nm and one with a wavelength
of 1070 nm. Immediately following evaporation, the condensate was
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transferred to a trap mainly formed by one of these beams (wavelength
l2 = 1064 nm). We then turned on a second beam (wavelength l1 =
781.5 nm) copropagating with this 1064-nm beam. At the same time,
we switched on the acousto-optic modulators (AOMs) in our lattice
setup, which allowed both the l1 and l2 beams to be retroreflected back
toward the atoms, forming optical lattices.

The lattice setup, described in detail by Gadway (23) andMeier et al.
(24), used AOMs to write specific frequencies onto the retro beam.
These frequency components of the retroreflected beam were detuned
from the single-frequency forward-propagating beam so as to resonantly
address momentum-changing Bragg transitions of the atoms. Here, to
extend our previously introduced scheme to two synthetic dimensions,
we added an identical lattice AOM setup to control the additional lattice
beam (wavelength l1), as shown in Fig. 1A. Figure 1B denotes where the
states of the effective two-leg ladder lie on theatoms’ free-particle dispersion
relation. Here, the tall blue arrows denote a two-photon Bragg transition
driven by the l2 beam that changes the momentum of a condensate at
rest to 2ℏk2 [site (0, 1)]. Similarly, the short red arrows denote a transi-
tion driven by the l1 beam that shifts the condensate fromzeromomen-
tum to 2ℏk1 [site (1, 0)]. We applied the specific frequency teeth shown
in fig. S1C to the l1 (red, left) and l2 (blue, right) beams, thereby ad-
dressing transitions between and along the two legs of a 2 × 5 site ladder,
respectively. By controlling the phases and amplitudes of these frequen-
cy components and their detunings from Bragg resonances, we could
engineer arbitrary tunneling phases, tunneling amplitudes, and site en-
ergies. Here, although we had control over next–nearest-neighbor cou-
plings relating to longer-range tunneling, we addressed only first-order
Bragg transitions between nearest-neighbor states that differed by two-
photon momentum.

The lasers addressed the atoms for someduration, duringwhich a set
of Bragg transitions were driven in a phase-, frequency-, and amplitude-
controlled fashion. After this evolution time, during which the dynamics
of an effective tight-binding Hamiltonian were realized (23, 24), all the
traps were turned off and the atoms fell for 18ms of time of flight. The
different momentum states of our condensate atoms separated during
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time-of-flight, transverse to the direction of gravity, and the popula-
tions of the various orders were measured by absorption imaging, as
in Fig. 1C.

Tunneling rate imbalance
The quoted tunneling rates for all experiments were averages of slightly
unequal interleg and intraleg values. The ratios of interleg-to-intraleg
tunneling for each data set were ty/tx = 1.03 ± 0.07 for the shearing dy-
namics of Fig. 2B, ty/tx = 0.93 ± 0.05 for the shearing versus flux data of
Fig. 2D, ty/tx = 0.83 ± 0.07 for themagnetic reflection versus flux data
of Fig. 3B, and ty/tx = 0.90 ± 0.06 for themagnetic reflection dynamics
of Fig. 3 (C and D).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/4/e1602685/DC1
Supplementary Text
fig. S1. 2D lattice implementation.
fig. S2. Phase instability.
fig. S3. Nonzero initial shearing.
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