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Abstract

Abdominal aortic aneurysms (AAA) have been rigorously investigated to understand when their 

risk of rupture - which is the 13th leading cause of death in the US – exceeds the risks associated 

with repair. Clinical intervention occurs when an aneurysm diameter exceeds 5.5 cm, but this 

“one-size fits all” criterion is insufficient, as it has been reported thatup to a quarter of AAA 

smaller than 5.5 cm do rupture. Therefore, there is a need for a more reliable, patient-specific, 

clinical tool to aide in the management of AAA. Biomechanical assessment of AAA is thought 

to provide critical physical insights to rupture risk, but clinical translataion of biomechanics-

based tools has been limited due to the expertise, time, and computational requirements. It was 

estimated that through 2015, only 348 individual AAA cases have had biomechanical stress 

analysis performed, suggesting a deficient sample size to make such analysis relevant in the 

clinic. Artificial intelligence (AI) algorithms offer the potential to increase the throughput of 

AAA biomechanical analyses by reducing the overall time required to assess the wall stresses 

in these complex structures using traditional methods. This can be achieved by automatically 

segmenting regions of interest from medical images and using machine learning models to predict 

wall stresses of AAA. In this study, we present an automated AI-based methodology to predict 

the biomechanical wall stresses for individual AAA. The predictions using this approach were 
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completed in a significantly less amount of time compared to a more traditional approach (~4 

hours vs 20 seconds).
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1. Introduction

Abdominal aortic aneurysm (AAA) is a localized dilatation of the aorta that if left untreated 

may rupture, an often-fatal cardiovascular event associated with a 90% mortality rate 

(Vorp, 2009). Currently, clinicians will intervene when a patient’s aneurysm exceeds a 

maximum diameter of 5.5 cm for men and 5.0 cm for women. However, it has been 

reported that aneurysms that are smaller than this cut-off still rupture at significant rates 

from 13 to 23.4% (Kontopodis et al., 2016; Vorp, 2009). To better assess rupture risk, 

there has been considerable research efforts in the field of biomechanics with the aim 

of replacing this 50-year-old maximum diameter criterion. These studies have included 

experimentally measuring the biomechanical behavior of the AAA wall to develop material 

models (Raghavan and Vorp, 2000, Vande Geest et al., 2006, Martino, S., and Vorp, 2003, 

Holzapfel, 2006, Sacks and Sun, 2003, Tierney, Callanan, and McGloughlin, 2012) and 

performing computational finite element analysis (FEA) simulations of 3D reconstructed 

AAA geometries to assess transmural wall stresses (Vande Geest et al., 2006, Raghavan et 

al., 2000, Vorp, 2007, Truijers et al., 2007, Fillinger et al., 2002, Chung et al., 2017).

The traditional workflow for FEA wall stress analysis of a patient-specific AAA includes 

acquiring a computed tomography (CT) angiogram image stack, performing tedious image 

segmentation and 3D reconstruction of the aneurysm wall and lumen, appropriately meshing 

the reconstructed aneurysm geometry, assigning material properties from experimentally 

measured material models, and applying boundary conditions including pressure loads on 

the surface of the lumen (Fig. 1A) (Vande Geest et al., 2006, Raghavan et al., 2000, Fillinger 

et al., 2002, Raghavan et al., 2005, Fillinger et al., 2003, Vande Geest, 2005). Clinical 

adoption of biomechanical assessments of AAA has been slow, due in part to the tediousness 

of this workflow, which often requires a trained biomechanics expert, and the need for 

expensive FEA software. This is evident in a 2015 survey performed by Khosla et al., where 

it was reported that there has been a total of only 348 patient-specific AAA models reported 

in the literature spanning 20 years, with most of them already clinically sized (> 5.0 cm) 

(Khosla, Morris, and Moxon, 2015).

There have been reports examining correlations of key quantifiable AAA morphological 

features with wall stresses to better understand their interplay. Morphological indices studied 

have included localized principal curvatures (Sacks et al., 1999, Martufi et al., 2009) and 

mean curvatures (Sacks et al., 1999) of the AAA wall surface, asymmetry (Doyle et al., 

2009), aneurysm centerline tortuosity (Sacks et al., 1999, Georgakarakos et al., 2010), 

and AAA maximum diameter (Raghavan et al., 2000, Shum et al., 2011, Vorp, Raghavan, 

and Webster, 1998) that are measured objectively through algorithms. However, there is 
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significant variability when reporting biomechanical wall stresses (peak and mean) of 

AAA based on how the finite element model was defined and constructed. Differences 

in aneurysm models include variations of the material model used for the aneurysm wall 

(e.g., isotropic; Raghavan and Vorp, 2000, Vande Geest, 2005, Raghavan, Webster, and Vorp, 

1996) or anisotropic (Vande Geest, 2005, Vande Geest et al., 2008)), the presence or absence 

of the intraluminal thrombus (ILT (Wang et al., 2002)), the use of ideal systolic blood 

pressure (120 mmHg) or patient-specific blood pressure (Vande Geest et al., 2006, Truijers 

et al., 2007, Fillinger et al., 2003, Maier et al., 2010), and the presence of thrombus (ILT). 

Some studies do not consider the ILT (Truijers et al., 2007, Fillinger et al., 2002), raising 

the possibility that the calculated wall stress magnitudes and distributions are inaccurate 

(Martino, S., and Vorp, 2003, Vande Geest et al., 2008, Reeps et al., 2013).

Continual advancements in artificial intelligence (AI) algorithms and software tools have 

provided methods to perform automated image segmentation using U-NETs, a type of 

convolutional neural network (CNN) optimized for biomedical image sets (Martufi et al., 

2009, Zhang, Kheyfets, and Finol, 2013, López-Linares et al., 2019, Wang et al., 2018) and 

for improved machine learning (ML) based regression models for accurate prediction (Chen, 

2016, Olson and Moore, 2019). A few groups have demonstrated that CNN can be used for 

reliable segmentation of AAA image sets to provide volume reconstructions on axial CT 

image stacks for the extraction of ILT, the aneurysm wall and the lumen (López-Linares 

et al., 2019, Wang et al., 2018, Ronneberger, Fischer, and Brox, 2015). Using a U-NET 

can alleviate the need for tedious manual segmentation, which can facilitate automation of 

biomechanical stress analyses, and potentially lead to higher throughput analyses of larger 

clinical imaging datasets.

In this paper, we present for the first time an AI framework to predict the biomechanical 

wall stresses of AAA resulting in decreased processing time and increased throughput. 

The AI framework allows us to perform automatic CT image segmentation, 3D geometric 

reconstruction and prediction of biomechanical wall stresses (Fig. 1B) based on localized 

morphological indices and compare the results with those obtained via traditional FEA. The 

proposed AI framework would allow for high-throughput studies of AAA medical images, 

reduce the overall energy consumption required to perform stress analysis, and minimize the 

expertise required to perform computational analyses.

2. Methods

2.1. Biomechanical analysis overview

A total of ten computed tomography angiogram (CT) image set files in Digital Imaging and 

Communication (DICOM) format were used for this study and were anonymized using an 

honest broker following an approved IRB protocol at the University of Pittsburgh (protocol 

#PRO13080334). Our previously described methods (Martino, S., and Vorp, 2003, Raghavan 

et al., 2000, Vorp, 2007) (Fig. 1A) were used to manually segment regions of interest 

(ROI) from the CT image sets, reconstruct the lumen and wall geometries from point 

clouds, perform 2D and 3D meshing in ANSYS ICEM (Ansys Inc., Canonsburg, PA), 

prepare an Abaqus input file using an in-house MATLAB (Mathworks Inc., Natick, MA.) 

script, and perform simulations in Abaqus Standard (Dassault Systemés, Providence, RI). 
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Post-processing was performed for each aneurysm to extract the von Mises wall stresses 

(N/cm2) for each wall node and a heat map was generated to be visualized in Paraview 

(Kitware Inc., Clifton Park, NY). Wall stresses calculated using Abaqus FEA served as the 

ground truth metrics for the AI-predictive models generated in this study as described below.

2.2. U-NET convolution neural network (CNN)

The main objective of developing the U-NET was to train a model to automatically segment 

medical images, the initial step that is required before 3D surface reconstruction of the 

aneurysm wall and lumen. A U-NET (a type of convolutional neural network, CNN) that 

utilizes Keras (Version 2.4.0, Open-ended Neuro-Electronic Intelligent Robot Operating 

System, Google, Mountain View, CA) and Tensorflow (Google, Mountain View, CA) open 

source software libraries that are widely used in biomedical image-based applications 

(Ronneberger, Fischer, and Brox, 2015) was trained to automatically segment AAA ROI 

from medical image sets due to the U-NET’s ability to segmented pixel borders. A clinical 

expert adjudicated and verified that the manual segmentations were representative ground 

truth images that defined the lumen, ILT, and aneurysm wall. There was a total of 10 

unique AAA patient image sets with ground truth images corresponding to each axial slice 

of the entire dataset. Two dimensional axial slices (448 images) were used to construct 

a training set for the U-NET image classifier. Each axial image had a raster size of 512 

by 512 pixels that were associated with their corresponding ground truth mask that was 

manually segmented. Training was performed using a custom python script for U-NETs 

and implemented on both a local workstation optimized for multi-GPU training with four 

NVIDIA (NVIDIA Inc., Santa Clara, CA) 2080TI’s graphics cards and an Amazon Web 

Services Elastic Computing Node EC2 (Amazon Inc., Seattle, WA). The optimization of the 

U-NET classifier was performed altering training parameters that included the sub-image 

pixel size, the number of sub-images for the entire training set, and the number of epochs. 

The final trained U-NET included 3.5 million sub-images with an initial patch size of 36 

by 36 pixels with 500 epochs. After the U-NET was trained, the test data was input and 

additional performance metrics were calculated by comparing the predicted image with 

ground truth images using accuracy, precision, sensitivity and specificity.

Each AAA image set was input into our trained U-NET model for automatic segmentation, 

and a post-processing script was used to extract the point cloud of the lumen and wall 

geometries. Point cloud geometries for the lumen and wall were converted into a preliminary 

mesh using triangular elements and Laplacian surface-preserving smoothing (Sousa et al., 

2007) was applied. Several morphological indices were calculated for each mesh that 

includes AAA volume, ILT volume, average curvature, maximum diameter (normal to 

centerline), wall and lumen tortuosity to compare manually and automatically segmented 

geometries that were reconstructed. A two-sample t-test using unequal variances was 

used to compare morphological indices between the two groups (manual vs. automatic 

segmentation).

2.3. Finite element analysis of AAA

The FEA used in this study followed a well-established general process (Raghavan and 

Vorp, 2000, Vorp, 2007, Chung et al., 2017, Fillinger et al., 2003, Wang et al., 2002, 
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Doyle et al., 2013) and incorporates previously published, experimentally measured material 

properties of the aneurysm wall and ILT (Vande Geest et al., 2006, Vande Geest et al., 

2006, Vande Geest et al., 2008, Wang et al., 2002). After the segmentation of the ROI, point 

clouds for the lumen and wall were converted into polysurfaces that were imported into 

ANSYS ICEM. There the geometries were meshed to incorporate both 2D shell elements 

for the wall/lumen geometries and 3D volumetric elements for the ILT. The final FEM 

model constructed utilized 2D shell elements (S3R) for the aneurysm wall, 3D tetrahedral 

elements (C3D8) for the ILT, hyperelastic isotropic ILT material properties, and a uniform 

AAA thickness wall of 1.9 millimeters (mm) with anisotropic material properties. Boundary 

conditions included the distal and proximal ends of the AAA being constrained in the X, Y, 

and Z directions and an ideal systolic pressure of 120 mmHg applied to the luminal surface. 

All simulations were performed in Abaqus Standard with Microsoft Visual Studio 2017 

(Microsoft Inc., Redmond, WA) and Intel Fortran Compiler (Intel Inc., Santa Clara, CA) 

using a user-defined function to prescribe the anisotropic material properties of the wall.

2.4. Dataset preparation for training a machine learning regression model

ML was used to train a regression model to predict wall stresses. Datasets from the 10 AAA 

were prepared from the wall stress outputs of the FEA model along with morphological 

indices to train a ML regression model using Tree-Based Pipeline Optimization Tool 

(TPOT) targeting von Mises wall stress (Olson and Moore, 2019). The automatically 

segmented and manually segmented surface reconstructed geometries were prepared and 

input into the trained ML regression model to predict the wall stress distribution of 

AAA. Additional indices were calculated by using the wall surface nodes as a reference 

frame relative to the lumen surface nodes and centerline of each AAA and a dataset was 

constructed to train a predictive ML model. The wall and lumen surfaces were extracted 

from the Abaqus input file and the following indices were tabulated in columns for each 

wall node (rows): Cartesian coordinates (X,Y,Z) with the centroid of each geometry placed 

at the origin (0,0,0) through translation, minimized Euclidean distance from each wall 

node to lumen node representing intraluminal thrombus thickness, minimized Euclidean 

distance from the wall to the centerline representing the maximum circumferential radii, 

max and min principal curvatures for each wall node, and six closest nodal neighbors’ 

principal curvatures in rank order from nearest to furthest distance providing a localized 

regional curvature map for each node Regions of the wall surface were labeled to identify 

the proximal and distal displacement boundary and each node’s Euclidean distance to the 

nearest nodal boundary (Fig. 2). For example, the boundary nodes were labeled with ‘0’ 

with striated regions in the proximal or distal direction labeled 1 through 5, with 5 being at 

the centroid of each aneurysm relative to the superior or inferior boundary. The nodal wall 

stresses from the Abaqus output file were input into the last column of the prepared dataset 

as the desired predictive output for regression modeling.

2.5. Machine learning regression modeling

The datasets that were prepared from a list of various morphological indices and the 

calculated wall stresses were used to train a ML regression model with the objective to 

be used for wall stress prediction. The prepared dataset of ten AAA cases with 253,823 

nodes and 27 features (as prescribed in the dataset preparation) was input into an in-house 
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custom python script utilizing Tree-based Pipeline Optimization Tool (TPOT). TPOT is a 

type of Auto Machine Learning (AutoML) that tunes hyperparameters using python libraries 

(sci-kit learn and XGBoost) to export an optimized regression model that reflects the lowest 

cross-validation score. The model with the lowest cross-validation score was an Extra 

Tree Regressor and the trained model was exported. Prepared datasets from the manual 

and automated geometric reconstructions were input to the trained classifier to predict 

the wall stress distribution in each AAA, which were visualized in Paraview. A paired 

student t-test was performed using two biomechanical indices, the peak wall stress (99th 

percentile) and mean wall stress to quantitatively compare the FEA stress results (ground 

truth) with the ML-predicted wall stress data from both the manual and automated geometric 

reconstructions pipelines.

3. Results

The optimal U-NET classifier was trained with 448 images, 3.5 million sub-images and 500 

epochs and the training axial slices were input resulting in 99.8% accuracy, 97.2% precision, 

96.0% sensitivity and 99.9% specificity. Fig. 3 displays the precision-recall curve, receiver 

operator characteristics (ROC) curve of the trained automated segmentation classifier, 

and the qualitative results of the predicted automatic segmentation of the ILT region. 

There was no statistical difference (p > 0.05) between the manually and automatically 

segmented geometries using the calculated morphological indices between the manually and 

automatically segmented geometries.

The prepared datasets from automatic and manual segmentation of all AAA were input into 

the trained ML model (Extra Tree Regressor) to produce the predicted wall stress values that 

are displayed in Fig. 4. Comparisons were made between the FEA wall stress results and 

the predicted wall stresses using both the manually and automatically segmented geometries 

(Fig. 5). The ground truth FEA-calculated stresses revealed a peak wall stress of 24.7 ± 3.80 

N/cm2 and a mean wall stress of 9.51 ± 1.81 N/cm2 (averaged across all ten AAA). For 

the ML-predicted wall stresses using the original manually segmented AAA geometries and 

their respective morphological features we found a peak of 25.4 ± 3.60 N/cm2 and a mean of 

10.1 ± 1.92 N/cm2, which exhibited an R2 of 0.99 and 0.997 when compared to the ground 

truth. For the ML-predicted wall stresses using the AI-assisted segmented AAA geometries 

and their respective morphological features we found a peak of 26.3 ± 2.64 N/cm2 and a 

mean of 8.42 ± 1.16 N/cm2, or an R2 of 0.840 and 0.860 when compared to the ground truth.

It was also measured that on average that it took ~20 seconds to perform the automated 

image segmentation, conversion of the point clouds to the prepared dataset, and prediction 

of wall stresses for each aneurysm. Whereas it takes about 4 hours on average per 

patient specific AAA to perform the traditional pipeline that requires manual segmentation, 

meshing, finite element analysis, and post-processing.

4. Discussion

In this study, a new AI framework was compared to a traditional workflow in terms of 

reconstructing AAA geometries and calculating wall stresses within patient AAAs. It was 
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found that the trained U-NET performing automatic segmentation produced a 3D surface 

reconstructed geometry statistically no different to the manually constructed geometry 

(Table 1) and with regards to a list of morphological indices that included maximum 

diameter (normal to centerline), asymmetry factor, aneurysm tortuosity, aneurysm surface 

area, AAA volume, ILT Volume, and mean curvature. However, the ILT volume had the 

highest percent mean difference between manual and automated segmentation approach due 

to the inability of the U-NET to appropriately predict the boundary fo the aneurysm wall. 

Morphological features were tabulated and prepared for training a ML regression model for 

predicting AAA wall stresses, using those derived from FEA as the ground truth or predicted 

output. There was no qualitative or statistical difference when either the automatically 

segmented or manually segmented ground truth geometries were input into the wall stress 

prediction regression model (Figs. 4 and 5, respectively).

Previous studies have investigated the relationships between wall stress and either localized 

morphological features (curvatures (Sacks et al., 1999, Martufi et al., 2009), ILT thicknesses 

(Vande Geest et al., 2006, Wang et al., 2002), wall thicknesses (Chung et al., 2017, Doyle 

et al., 2008)) or global morphological features (maximum diameter (Vorp, Raghavan, and 

Webster, 1998), volume (Wang et al., 2002, Martufi et al., 2013), asymmetry (Doyle et al., 

2009, Vorp, Raghavan, and Webster, 1998), ILT volume (Wang et al., 2002)). Soudah et al., 

2015 proposed a method to predict the mechanical stress in AAA using neural networks 

but relied on idealized geometries without the presence of ILT and anisotropic material 

models. There has not been, to our knowledge, any attempts to perform AAA wall stress 

predictions using a ML model trained with FEA stress results from a finite element model 

that incorporates anisotropic wall and ILT material properties (Vande Geest et al., 2008). In 

studies investigating principal curvatures, a correlation between principal wall stresses can 

be seen when ILT is omitted (Sacks et al., 1999). Therefore, it stands to reason that the 

use of ML regression models in conjunction with additional morphological features is more 

robust in the prediction of wall stresses than solely relying on localized surface features of 

the aneurysm wall.

The initial results of this study are promising, but there are several limitations and challenges 

to overcome for future studies. The automatically segmented ILT volume was overestimated 

when compared to manually segmented surface reconstructions. This is directly related to 

the performance of the U-NET, and an unintended consequence of using medical images 

of varying quality (slice thickness relating to number of images per 3D stack). Future work 

will improve the U-NET by using a large GPU accelerated supercomputing platform to 

accommodate more data in the model used for automatic segmentation. Training the ML 

regression models relied on a model with the highest internal cross validation score using 

10% of the entire dataset. The relatively small sample size (n = 10) and the trained model 

was only tested on the AAA surface reconstructions from the automated pipeline. Additional 

studies will include inputting a new dataset of patient medical images (that were not used 

during training) into the stress prediction pipeline to increase the sample size and data 

variability to assess and improve the overall AI framework tools. Future studies will expand 

on the number of training cases to further validate the U-NET and ML model that will 

provide accurate stress predictions of AAA geometries.
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Traditional methods to perform geometric reconstruction and finite element analysis of AAA 

require a substantial commitment of time (hours per AAA), money, and expert personnel. 

For the AI framework presented here, average process times per AAA were only 15 seconds 

for the automatic segmentation (using a single NVIDIA 2080Ti GPU) and 5 seconds for 

the wall stress predictions. Furthermore, we propose that this framework will have utility 

to other soft tissue organs and structures where mechanical stress is linked to disease 

propagation and poor patient outcomes (e.g., thoracic aortic and cerebral aneurysms, heart 

valves, ligaments, etc.).

5. Conclusion

Our AI framework was shown here to enable 3D reconstruction of the complexly shaped 

AAA and prediction of biomechanical wall stresses acting on them much more rapidly than 

traditional manual reconstruction and FEA. Our results suggest that AI can be employed 

to reliably perform these tasks, which would lend itself to large-scale high-throughput 

biomechanical studies of AAA that are lacking in the literature. The approach could easily 

be adapted to allow for similar analyses of other organs and disease states.

Acknowledgments

This study was supported by University of Pittsburgh Clinical and Translational Science Institute (via the National 
Institutes of Health through Grant Number UL1TR001857) and the NIH (grant HL060670, which was critical for 
the clinical study that is the source of the images used in this research). We would also like to acknowledge Larissa 
Fordyce, an undergraduate research intern at the Vascular Bioengineering Laboratory funded by the Swanson 
School of Engineering and the University of Pittsburgh Office of the Provost. Thanks to Justin Weinbaum, PhD, for 
editorial input on this manuscript.

Abbreviations:

AAA Abdominal Aortic Aneurysm

AI Artificial Intelligence

CNN Convolutional Neural Network

DICOM Digital Imaging and Communication

FEA Finite Element Analysis

ILT Intraluminal Thrombus

ML Machine Learning

References

Chung TK, da Silva ES, Raghavan SML, 2017. Does elevated wall tension cause aortic aneurysm 
rupture? Investigation using a subject-specific heterogeneous model. J. Biomech 64, 164–171. 
[PubMed: 29102265] 

Di Martino ES, Vorp DA, 2003. Effect of variation in intraluminal thrombus constitutive properties on 
abdominal aortic aneurysm wall stress. Ann. Biomed. Eng 31, 804–809. [PubMed: 12971613] 

Doyle BJ, et al. , 2008. 3D reconstruction and manufacture of real abdominal aortic aneurysms: From 
CT scan to silicone model. J. Biomech. Eng 130.

Chung et al. Page 8

Appl Eng Sci. Author manuscript; available in PMC 2023 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Doyle BJ, et al. , 2009. Vessel asymmetry as an additional diagnostic tool in the assessment of 
abdominal aortic aneurysms. J. Vasc. Surg 49, 443–454. [PubMed: 19028061] 

Doyle BJ, Callanan A, Grace PA, Kavanagh E, 2013. On the influence of patient-specific material 
properties in computational simulations: A case study of a large ruptured abdominal aortic 
aneurysm on the influence of patient-specific material properties in computational simulations: A 
case study of a large. Int. J. Numer. Method Biomed. Eng 26, 807–827.

Fillinger MF, Marra SP, Raghavan ML, Kennedy FE, 2003. Prediction of rupture risk in abdominal 
aortic aneurysm during observation: Wall stress versus diameter. J. Vasc. Surg 37, 724–732. 
[PubMed: 12663969] 

Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE, 2002. In vivo analysis of 
mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg 36, 589–597. 
[PubMed: 12218986] 

Georgakarakos E, et al. , 2010. The Role of Geometric Parameters in the Prediction of Abdominal 
Aortic Aneurysm Wall Stress. Eur. J. Vasc. Endovasc. Surg 39, 42–48. [PubMed: 19906549] 

Holzapfel GA, 2006. Determination of material models for arterial walls from uniaxial extension tests 
and histological structure. J. Theor. Biol 238, 290–302. [PubMed: 16043190] 

Khosla S, Morris DR, Moxon JV, 2015. Meta-Analysis of Peak Wall Stress in Ruptured, Symptomatic, 
and Intact Abdominal Aortic Aneurysms. J. Vasc. Surg 61, 836–837.

Chen Tianqi, and Guestrin Carlos. “XGBoost: A Scalable Tree Boosting System.” Proceedings of the 
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 
2016. 785–794. Web.

López-Linares K, García I, García-Familiar A, Macía I & Ballester MAG 3D convolutional neural 
network for abdominal aortic aneurysm segmentation. (2019).

Kontopodis Nikolaos, Pantidis Dimitrios, Dedes Athansios, Daskalakis Nikolaos, Ioannou Christos, 
2016. The – Not So – Solid 5.5 cm Threshold for Abdominal Aortic Aneurysm Repair: 
Facts, Misinterpretations, and Future Directions. frontiers in surgery 3 (January). 10.3389/
fsurg.2016.00001. In press.

Maier A, et al. , 2010. A comparison of diameter, wall stress, and rupture potential index for 
abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng 38, 3124–3134. [PubMed: 
20480238] 

Martufi G, et al. , 2013. Multidimensional growth measurements of abdominal aortic aneurysms. J. 
Vasc. Surg 58, 748–755. [PubMed: 23611712] 

Martufi G, Di Martino ES, Amon CH, Muluk SC, Finol EA, 2009. Three-dimensional geometrical 
characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. 
Biomech. Eng 131, 061015. [PubMed: 19449969] 

Olson RS & Moore JH TPOT: a tree-based pipeline optimization tool for automating machine learning. 
in (2019). doi:10.1007/978-3-030-05318-5_8.

Raghavan ML, Fillinger MF, Marra SP, Naegelein BP, Kennedy FE, 2005. Automated methodology for 
determination of stress distribution in human abdominal aortic aneurysm. J. Biomech. Eng 127, 
868. [PubMed: 16248318] 

Raghavan ML, Vorp DA, 2000. Toward a biomechanical tool to evaluate rupture potential of 
abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its 
applicability. J. Biomech 33, 475–482. [PubMed: 10768396] 

Raghavan ML, Vorp DA, Federle MP, Makaroun MS, Webster MW, 2000. Wall stress distribution on 
three-dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg 31, 
760–769. [PubMed: 10753284] 

Raghavan ML, Webster MW, Vorp DA, 1996. Ex vivo biomechanical behavior of abdominal aortic 
aneurysm: assessment using a new mathematical model. Ann Biomed Eng 24, 573–582. [PubMed: 
8886238] 

Reeps C, et al. , 2013. Measuring and modeling patient-specific distributions of material properties 
in abdominal aortic aneurysm wall. Biomech. Model. Mechanobiol 12, 717–733. [PubMed: 
22955570] 

Chung et al. Page 9

Appl Eng Sci. Author manuscript; available in PMC 2023 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ronneberger O, Fischer P, Brox T, 2015. U-net: Convolutional networks for biomedical image 
segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics). 10.1007/978-3-319-24574-4_28.

Sacks MS, Sun W, 2003. Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. 
Eng 5, 251–284. [PubMed: 12730082] 

Sacks MS, Vorp DA, Raghavan ML, Federle MP, Webster MW, 1999. In vivo three-dimensional 
surface geometry of abdominal aortic aneurysms. Ann. Biomed. Eng 27, 469–479. [PubMed: 
10468231] 

Shum J, et al. , 2011. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. 
Eng 39, 277–286. [PubMed: 20890661] 

Soudah Eduardo, Rodríguez Jośe, López Roberto, 2015. Mechanical Stress in Abdominal Aortic 
Aneurysms Using Artificial Neural Networks. Journal of Mechanics in Medicine and Biology 15 
(3).

Sousa FS, Castelo A, Nonato LG, Mangiavacchi N, Cuminato JA, 2007. Local volume-conserving free 
surface smoothing. Commun. Numer. Methods Eng 23, 109–120.

Tierney ÁP, Callanan A, McGloughlin TM, 2012. Use of regional mechanical properties of abdominal 
aortic aneurysms to advance finite element modeling of rupture risk. J. Endovasc. Ther 19, 100–
114. [PubMed: 22313210] 

Truijers M, et al. , 2007. Wall stress analysis in small asymptomatic, symptomatic and ruptured 
abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg 33, 401–407. [PubMed: 17137809] 

Vande Geest JP Towards an improved rupture potential index for abdominal aaneurysms: anisotropic 
constitutive modeling and noninvasive wall strength estimation. 317 (2005).

Vande Geest JP, Di Martino ES, Bohra A, Makaroun MS, Vorp DA, 2006. A biomechanics-based 
rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. 
Ann. N. Y. Acad. Sci 1085, 11–21. [PubMed: 17182918] 

Vande Geest JP, Sacks MS, Vorp DA, 2006. The effects of aneurysm on the biaxial mechanical 
behavior of human abdominal aorta. J. Biomech 39, 1324–1334. [PubMed: 15885699] 

Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA, 2008. The effects of anisotropy on the stress 
analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng 36, 921–932. 
[PubMed: 18398680] 

Vorp DA, 2007. Biomechanics of abdominal aortic aneurysm. J. Biomech 40, 1887–1902. [PubMed: 
17254589] 

Vorp DA, 2009. Biomechanics of abdominal aortic aneurysms. J. Biomech 40, 1887–1902.

Vorp DA, Raghavan ML, Webster MW, 1998. Mechanical wall stress in abdominal aortic aneurysm: 
Influence of diameter and asymmetry. J. Vasc. Surg 27, 632–639. [PubMed: 9576075] 

Wang DHJ, Makaroun MS, Webster MW, Vorp DA, 2002. Effect of intraluminal thrombus on wall 
stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg 36, 598–604. 
[PubMed: 12218961] 

Wang D et al. Neural network fusion: a novel CT-MR aortic aneurysm image segmentation method. 75 
(2018) doi:10.1117/12.2293371.

Zhang H, Kheyfets VO, Finol EA, 2013. Robust infrarenal aortic aneurysm lumen centerline detection 
for rupture status classification. Med. Eng. Phys 35, 1358–1367. [PubMed: 23608300] 

Chung et al. Page 10

Appl Eng Sci. Author manuscript; available in PMC 2023 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Overview of the two methods used to assess the biomechanical status of an abdominal aortic 

aneurysm. A) Traditional pipeline for stress analysis of AAA includes image segmentation 

to finite element analysis. This pipeline requires manual segmentation from an input AAA 

image stack, point cloud generation, surface meshing, volumetric meshing, and generation 

of a FEA model with appropriate boundary conditions, material properties and loading 

conditions. B) AI framework to predict the wall stresses on a given AAA. This approach 

utilizes a convolution neural network for automatic segmentation, point cloud generation, 

surface mesh generation, input of morphological features, and then training a Machine 

Learning (ML) Regression model.
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Fig. 2. 
Several key morphological features that are extracted for each reconstructed aneurysm 

surface. A) Intraluminal thrombus (ILT) thickness in millimeters (mm) represented on the 

surface of a sample reconstructed AAA. B) Regional striping of the aneurysm in five 

distance zones ranging from 0 to 5, representing the distance away from the proximal and 

distal boundaries of the aneurysm. Region 5 is the maximum distance away from either 

boundary while Region 0 represents the proximal or distal boundaries. C) Map of the 

localized maximum principal curvature on the surface of the AAA (1/mm).
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Fig. 3. 
Assessment of the performance of the trained U-NET image classifier. A) Precision –

Recall curve of the trained U-NET (Area under the curve 0.996). B) Receiver Operator 

characteristic curve of the trained U-NET (area under the curve 0.999). C) Qualitative 

results of a single axial AAA slice with ground truth and U-NET prediction.
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Fig. 4. 
Wall stress maps for a representative AAA obtained using FEA (ground truth, A), and 

predicted using the trained ML model with the manually segmented geometry (B) and with 

the automatically segmented geometry (C).
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Fig. 5. 
Comparison of AI- and FEA-predicted mean (A) and peak/99th percentile (B) wall stresses 

for all 10 AAA cases. For AI-predicted stresses, results are shown for using both manually- 

and automatic-segmented geometries.

Chung et al. Page 15

Appl Eng Sci. Author manuscript; available in PMC 2023 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chung et al. Page 16

Table 1

Comparison of Morphological Indices in Manual and Automated AAA 3D surface Reconstructions

Morphological index Manual AAA geometries Automated AAA geometries % Difference of mean p-value

Maximum Diameter (cm) 6.6 ± 2.2 6.2 ± 1.44 7.02% 0.60

Asymmetry Factor 0.85 ± 0.082 0.80 ± 0.110 5.10% 0.33

Aneurysm Tortuosity 1.24 ± 0.108 1.17 ± 0.110 5.76% 0.16

Aneurysm Surface Area (cm2) 194.5 ± 88.6 179.1 ± 62.4 7.29% 0.88

AAA Volume (cm3) 193.0 ± 171.8 183.2 ± 108.0 5.06% 0.66

ILT Volume (cm3) 91.9 ± 92.2 119.1 ± 85.0 29.6% 0.50

Mean Curvature (mm−1) 0.031 ± 0.0064 0.035 ± 0.0084 7.92% 0.26
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