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Abstract

Predictions of COVID-19 case growth and mortality are critical to the decisions of political

leaders, businesses, and individuals grappling with the pandemic. This predictive task is

challenging due to the novelty of the virus, limited data, and dynamic political and societal

responses. We embed a Bayesian time series model and a random forest algorithm within

an epidemiological compartmental model for empirically grounded COVID-19 predictions.

The Bayesian case model fits a location-specific curve to the velocity (first derivative) of the

log transformed cumulative case count, borrowing strength across geographic locations and

incorporating prior information to obtain a posterior distribution for case trajectories. The

compartmental model uses this distribution and predicts deaths using a random forest algo-

rithm trained on COVID-19 data and population-level characteristics, yielding daily projec-

tions and interval estimates for cases and deaths in U.S. states. We evaluated the model by

training it on progressively longer periods of the pandemic and computing its predictive

accuracy over 21-day forecasts. The substantial variation in predicted trajectories and asso-

ciated uncertainty between states is illustrated by comparing three unique locations: New

York, Colorado, and West Virginia. The sophistication and accuracy of this COVID-19

model offer reliable predictions and uncertainty estimates for the current trajectory of the

pandemic in the U.S. and provide a platform for future predictions as shifting political and

societal responses alter its course.

Author summary

COVID-19 models can be roughly classified as mathematical models that simulate disease

within a population, including epidemiological compartmental models, or statistical

curve-fitting models that fit a function to observed data and extrapolate forward into the

future. Bridging this divide, we combine the strengths of curve-fitting statistical models
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and the structure of epidemiological models, by embedding a Bayesian velocity model and

a machine learning algorithm (random forest) into the framework of a compartmental

model. Fusing these models together exploits the particular strengths of each to glean as

much information as possible from the currently available data. We identify the velocity

of log cumulative cases as an excellent target for modeling and extrapolating COVID-19

case trajectories. We empirically evaluate the predictive performance of the model and

provide predicted trajectories with credible intervals for cumulative confirmed case count,

active confirmed infections and COVID-19 deaths for each of the 50 U.S. states. Combin-

ing sophisticated data analytic methods with proven epidemiological models offers an

empirically grounded strategy for making realistic predictions and quantifying their

uncertainty. These predictions indicate substantial variation in the COVID-19 trajectories

of U.S. states.

Introduction

Rapid spread of SARS-CoV-2 virus across the planet has precipitated a global pandemic, kill-

ing millions and infecting tens of millions. Governments around the world have undertaken

unprecedented interventions aimed at curtailing the spread and lethality of the virus. These

interventions have relied heavily on predictions of COVID-19 case growth and mortality.

COVID-19 prediction models can be roughly classified as mathematical models that simu-

late disease within a population or statistical models that fit a function to observed data and

extrapolate forward into the future. We will discuss the features of both types of models. Most

COVID-19 models are compartmental models [1–61], a type of mathematical model used by

epidemiologists to simulate infectious disease epidemics for over a century. Compartmental

models divide a population into mutually exclusive compartments that denote disease status

and supply a set of differential equations that define the flow of the population between com-

partments [62]. Traditionally they are named after their compartments with the SIR (suscepti-

ble-infectious-recovered) [63] and SEIR (susceptible-exposed-infectious-recovered) models as

classic examples.

In an infectious disease compartmental model, S(t) is the number of susceptible individuals

at time t, and new infections are represented by the flow of individuals out of the S compart-

ment. This is governed by the first derivative of S(t) with respect to time, dS(t)/dt. Classic SIR

and SEIR models express this as proportional to the product of S(t), I(t), and a rate constant β,

dSðtÞ
dt
¼ bSðtÞIðtÞ; ð1Þ

where I(t) is the number of infectious individuals at time t. The rate β is often interpreted as

disease transmissibility and may be expressed as a function of the reproductive number R0—

the expected number of individuals infected by an infectious person—and contact rates

between individuals. It may also be normalized in Eq 1 by division by the total population size.

The simplest approach for simulating infections is to assume a value for β or its constituent

parts from the literature or other prior information [1–17]. While this is convenient, the pre-

dictive accuracy can suffer. Another approach that has been used by other studies is to estimate

β (or a related quantity) by fitting a statistical model or other optimization procedure to

observed data [18–39]. This empirical approach can make these models more realistic, but

they still may be limited in their ability to accurately model the COVID-19 pandemic. Disease

transmission rates in COVID-19 have changed substantially over time depending upon the
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political and societal responses and possibly other factors [54]. As a result, modelers operating

within this framework often resort to modeling transmission rate changes by applying an

adjustment factor that modifies transmission rates upward or downward in a somewhat ad

hoc manner.

This has motivated modeling efforts that allow the disease transmission rate to vary over

time, i.e., replacing β in Eq 1 with β(t) [40–50]. This is a promising approach, but to be useful

for forecasting, estimates of β(t) must extrapolate beyond the observed data to describe trans-

mission at unobserved times and not simply interpolate the observed data, which is straight-

forward with a flexible model. Several studies have paired machine learning algorithms with

COVID-19 compartmental models to accommodate time-varying effects, which may be useful

at least when inference on the inputs to β is not required. Yang et al. fit a long short-term

memory neural network to data from the 2003 SARS outbreak adjusted by the output of their

SEIR model [45]. Dandekar and Barbastathis augmented their compartmental models with a

neural network that models time-varying transmission by estimating intervention efficiency

from reported data as a function of time [42].

Recovery, death, and other states (e.g., hospitalization) may be incorporated into the model

as separate compartments. Solutions to the differential system provide values for each com-

partment at each time, allowing for easy joint modelling of disease states once their derivative

is specified. This is an advantage of compartmental models over many other approaches,

which may require separate models for each quantity.

A number of agent-based COVID-19 models have been developed or adapted from influ-

enza pandemic models to simulate the individuals of a population and their interactions [64–

68]. This provides a mechanism for modelling interventions that target contacts between indi-

viduals and does not assume the population exists in homogeneous compartments as compart-

mental models generally do, but also requires a number of assumptions regarding the behavior

and interactions within a population as well as the infectivity of COVID-19.

Serial growth models for COVID-19 simulate an epidemic by expressing the number of

new infections at a given time as a weighted sum of new infections on previous days usually

scaled by the reproductive number, which may be time-varying [69–72]. The weights are sam-

pled from a probability distribution defining the amount of time between an individual being

infected and infecting another person. Deaths or other outcomes may be modeled as a second

step.

Statistical models often eschew deterministic population dynamics and fit the observed

data as a function of time and possibly other covariates in a regression (or equivalent) frame-

work. Log-linear [73], generalized Richards [74], ARIMA [75, 76], exponential [77], Gaussian

CDF [78], and logistic [79–81] models, which all accommodate the generally sigmoidal shape

of the cumulative infection count that is often observed in epidemics, as well as various other

models [82–85] including machine learning algorithms [86–88] have been proposed for

COVID-19. Murray et al. and Woody et al. take similar approaches for modeling COVID-19

deaths using the error function (ERF) [89, 90]. Count models (e.g., negative binomial) for the

number of daily deaths is an alternative for modeling COVID-19 deaths [91]. Modeling deaths

is appealing, because they have been more reliably reported than infections. However, because

deaths lag infections by some amount of time, it may not enable projections to incorporate the

latest information on disease spread.

Within the framework of a statistical (or other regression-like) model, it is easier to fit

observed data, assuming an appropriate functional form is selected, but it may be challenging

to accurately project the future trajectory of an epidemic. Time-varying covariates like mobile

phone tracking data [90], Google trends [88, 92], and social media [93] are easily incorporated

into such a model and may be quite predictive of the observed data. These data are not a
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panacea, however, as forecasting requires knowledge of their values at future times, which are

as yet unobserved. The forecasting accuracy of a model incorporating these covariates can

depend heavily upon the accuracy of the assumptions made regarding their future values.

Because of the challenges in jointly modeling multiple, non-Gaussian outcomes in a statistical

model, regression approaches generally only model one outcome (e.g., infections or deaths)

and additional steps must be taken to predict other quantities.

Here we project COVID-19 cases and deaths using a combination of Bayesian and machine

learning data analytic methods to learn transition functions for a compartmental model. We

introduce the velocity of log cumulative cases as a useful target for predicting case growth, and

propose a Bayesian time series model that provides location-specific trajectories that extrapo-

late well within a full probability model, including uncertainty quantification. We use a ran-

dom forest algorithm for the death transition function that learns the relationship between

COVID-19 cases and population characteristics to predict deaths. We fuse the case and death

models together by embedding them within a compartmental model that also provides projec-

tions for active cases and confirmed recoveries. The next section opens by introducing the

data and presenting an overview of the model. Then it lays out in detail the Bayesian velocity

model, the random forest death model, and the SIRD compartmental model. Lastly the paper

closes with results and a discussion.

Materials and methods

Data

Daily COVID-19 confirmed cases and deaths for each state were obtained from the COVID

Tracking Project, which combines information from state health departments and other

sources [94]. The relationship between confirmed COVID-19 cases and the true number of

infections is complicated, especially for the U.S., due to the substantial proportion of infections

which are asymptomatic [95] and severely limited testing early in the pandemic [96]. Not only

are confirmed cases a subset of COVID-19 infections, but the proportion of confirmed infec-

tions has differed across states and over the course of the pandemic as the prevalence and

severity of cases as well as the availability of testing have changed. These difficulties pose chal-

lenges for basing a COVID-19 model on confirmed cases. As noted above, some modelers

have focused on modeling deaths, since the death data is more reliable, and estimate infections

in the preceding weeks as a second step [89, 91].

We model COVID-19 confirmed cases despite these challenges, because they are the best

source of information on the current state of infections. The death data may be more accurate,

but since deaths lag infections by several weeks they do not provide up-to-date insight into

infections. While confirmed cases are a poor estimate of the total number of infections, they

are still indicative of the prevalence and severity of disease spread. The shifting meaning of a

confirmed case is indeed suboptimal, which motivates the use of a death model with a flexible

mean structure that can learn the changing relationship between cases and deaths over the

course of the pandemic.

Model overview

There are three primary components to our model: (1) the velocity model for predicting new

confirmed cases, (2) the death model for predicting how many cases end in death, and (3) a

four compartment epidemiological model that fuses these together to provide joint predictions

of cases, deaths and recoveries. The case model and the death model become transition func-

tions within the compartmental model. There are several advantages to this combined

approach. First, the SIRD model provides a joint model for cases, deaths and recoveries,
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allowing simultaneous forecasting of these. This is an advantage over univariate models,

including statistical regression models and machine learning prediction tools, which can only

forecast one outcome. Second, the combined approach incorporates information on projected

case growth into death predictions in a very flexible manner, which would not be available if

the models were separate or if a less flexible death model were used. Third, the velocity model

for projecting case growth both fits the observed data and extrapolates well, which is a chal-

lenge for curve-fitting approaches. Fourth, we incorporate uncertainty of model fit into the

compartmental forecasts, by running it many times—once for each posterior sample from the

Bayesian case model. R code for fitting the models, producing forecasting and generating fig-

ures is available at https://github.com/gregorywatson/covidStateSird.

Bayesian velocity model for forecasting cases

We forecast new COVID-19 cases by modeling the velocity of the log cumulative cases. Fore-

casting COVID-19 cases in this velocity domain is appealing, because it reveals seemingly sub-

tle shifts in case trajectory that are not obvious when considering raw case counts. Let ui(t)
denote the cumulative case count for location i at time t. The velocity (the first derivative with

respect to time) of the log transformed cumulative cases is the instantaneous rate of new cases

to cumulative cases at a given time,

d
dt

log uiðtÞ ¼
duiðtÞ
dt
�

1

uiðtÞ
;

which is related to the reproductive number, but is readily estimated from the data. Calculating

the reproductive number at a particular time, on the other hand, requires knowing the number

of active infections. There is currently no reliable data on this, as most infections resolve on

their own outside of a clinical or otherwise supervised setting in which their transition from

active case to recovered might be recorded.

A crude estimate of the derivative can be obtained using first differences, but smoothing

allows for more precise estimates, as calculating the derivative requires some notion of func-

tion smoothness [97]. We estimate the velocity by fitting a cubic spline to the observed log

cumulative case count and then evaluating its derivative at the observed time points. Since

there is relatively little noise in the cumulative counts, we assume any uncertainty introduced

by this procedure is negligible.

Fig 1 depicts cumulative cases, log cumulative cases, and the velocity of log cumulative

cases for 3 example U.S. states, New York (NY), Colorado (CO), and West Virginia (WV). The

horizontal axis enumerates days since 100 or more confirmed cases were reported in that state,

a milestone that proxies for the establishment of community transmission. Community trans-

mission or its proxy is a sensible time point for data alignment, because there is substantial var-

iation observed in the length of time between the detection of the first cases in a location and

the acceleration of cases accompanying community transmission. This variation likely reflects

both the possibility of containing a small number of initial cases and the increased uncertainty

accompanying small samples.

The velocity of a cumulative function cannot be negative, since cumulative functions are

monotonically increasing. Consequently, we employed a log link to map velocity to the entire

real line and modeled it with a Bayesian autoregressive (AR-1) time series model. We esti-

mated location-specific parameters, borrowing strength across locations for more precise esti-

mates while accommodating individual variation. Borrowing strength can be particularly

helpful for estimating the trajectory of locations with smaller populations or less advanced

outbreaks.
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Let yi(t) denote the derivative of log cumulative cases for location i at time t, i.e.,

yi(t) = d log ui(t)/dt. Log-transformed velocity is modeled as

log yiðtÞ ¼ mi þ �i log yiðt � 1Þ þ �iðtÞ; ð2Þ

where yi(t) is the velocity at time t 2 {2, . . ., ni}, μi is a location-specific constant, ϕi a location-

specific coefficient encoding the dependence on the previous time point, and �i(t) is indepen-

dently distributed Gaussian noise with mean 0 and precision (inverse variance) τi, i.e.,

�i j ti � Nni
ð0; t� 1

i IniÞ; ð3Þ

where Nni
is an ni dimensional Gaussian distribution, its mean 0 is a vector of zeros, and Ini is

the identity matrix. The precision parameters were assigned a gamma prior distribution with

mean μτ and variance s2
t
,

ti j mt; s
2
t
� Gammaðm2

t
=s2

t
; mt=s

2
t
Þ; ð4Þ

with μτ itself having a gamma hyperprior. The location-specific constant μi is assumed to be

nonpositive, since we know that the velocity must eventually go to zero. Consequently, it was

assigned a negative lognormal prior distribution, i.e.,

� log mi j mm; s2
m
� Nðmm; s2

m
Þ; ð5Þ

with μμ having a Gaussian prior. The autoregressive coefficients ϕi were given a beta prior with

mean μϕ and variance s2
�
,

�i j m�; s
2
�
� Beta

1 � m�

s2
�

�
1

m�

" #

m2
�
;

1 � m�

s2
�

�
1

m�

" #

m2
�

1

m�
� 1

" # !

; ð6Þ

with μϕ having a uniform hyperprior between 0 and 1. The prior mean and variance values

used for the predictions presented here are listed in S1 Table.

Posterior inference was conducted via Markov chain Monte Carlo (MCMC) simulation

using JAGS 4.3.0 and the R2jags [98] package of R. Three chains of 200,000 iterations each

were run after a burn in of 10,000 iterations and thinned to save every 1,500th sample.

The posterior samples of this velocity model provide forecasts for log d log ui(t)/dt, which

we convert into a transition function for our compartmental model. Transition out of the

Fig 1. Log cumulative cases and its velocity. The cumulative case count (a), the log cumulative confirmed case count (b) and its velocity (c), i.e., first derivative with

respect to time, for three example states, New York (NY), Colorado (CO), and West Virginia (WV) since 100 or more confirmed cases were reported.

https://doi.org/10.1371/journal.pcbi.1008837.g001
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susceptible compartment is governed by an expression for dSi(t)/dt. The number of individuals

who are no longer susceptible is the number of cumulative cases, i.e., ui(t) = Ni − Si(t), where

Ni is the total population of location i. Since dSi(t)/dt = −dui(t)/dt, we can convert our posterior

distribution for d log ui(t)/dt into a transition function. The autoregressive model for log d log

ui(t)/dt in Eq 2 can be converted into an expression for dui(t)/dt for use in the compartmental

model,

d
dt
uiðtÞ ¼ uiðtÞ

d
dt uiðt � 1Þ

uiðt � 1Þ

� ��i

exp mi þ
1

2ti

� �
SiðtÞ
Siðt0Þ

:

The details of this derivation are in S1 Appendix.

Noting that Ni − Si(t) gives the cumulative number of cases at time t in the compartmental

model described above, we set

dSiðtÞ=dt ¼ � duiðtÞ=dt ¼ � xiðtÞ:

The posterior mean or median of −dui(t)/dt could be used to estimate ξ(t), but simply plugging

in this single function into the SIRD model would ignore the uncertainty of this estimate. To

incorporate this uncertainty explicitly into the SIRD model, we run the model separately for

each posterior sample, giving a distribution of rate transition functions, ξi(t)(1), . . ., ξi(t)(m).

Accounting for uncertainty is important for COVID-19 forecasts, because without interval

estimates quantifying uncertainty decision makers may place undue confidence in their

accuracy.

Death model

We constructed a random forest to predict deaths in each state on each day, using demo-

graphic characteristics of the state population and the number of COVID-19 cases and deaths

reported on each of the preceding 21 days. This model would be useless for predicting deaths

in most context, because lagged cases and deaths are unknown at future dates. However,

within the compartmental model, it uses the case forecast provided by the velocity model in

the previous section.

Random forest is a widely used heuristic machine learning prediction algorithm known to

perform well at a variety of predictive tasks [99] by combining a large number of regression or

classification trees into an ensemble [100]. We selected random forest for the death model

over alternatives such as time series models, for 4 reasons: (1) in this context, we care only

about predicting deaths given recent cases, deaths and other covariates rendering the interpre-

tive and inferential advantages of time series models moot; (2) the flexible mean structure of

random forest accommodates nonlinear effects, interactions and provides implicit variable

selection, all of which are much more challenging in a time series context; (3) each death

model prediction is only one day into the future, not an entire time series; and (4) the relation-

ship between cases and deaths appears to have shifted in the U.S. throughout the course of the

pandemic so far (for reasons that are not entirely clear—increased testing, better treatment

protocols, a younger infected population, and viral attenuation may be contributing factors),

suggesting that a nonstationary time series model would be needed, making the process of fit-

ting such a model even more challenging.

Let dij denote the number of dead reported in location i on day j, where days are indexed

for each location from the first day on which 100 or more cumulative confirmed cases were

reported in that location. Let wij = (wij1, . . ., wijp)0 denote the vector of p covariates for location

i on day j. The conditional expectation of dij given covariates wij is modeled as a random forest,
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i.e., as an ensemble of bootstrapped regression trees,

Edij j wij ¼ f ðwijÞ ¼
1

B

XB

b¼1

Tbðwij;φbÞ; ð7Þ

where b = 1, . . ., B indexes bootstrap samples of the training data, and Tb(wij, φb) is a regres-

sion tree trained on the b-th bootstrap sample that relates covariate vector wij to parameters

φb. The model was fit using the randomForest package [101] of R using the default param-

eter values for the number of trees (500) and the number of covariates considered for each

recursive split of the covariate space (floor(p/3)). To quantify the uncertainty associated with

random forest predictions, we follow the procedure devised by Zhang et al. to produce 95%

prediction intervals from the out-of-bag errors [102, 103]. This results in a prediction interval

for each run of the compartmental model. We take the fifth quantile of the lower bounds and

the 95th quantile of the upper bounds to produce an overall prediction interval.

Fig 2 lists the covariates included in the model and their importance scores. Age, sex and

comorbidity have been consistently reported in the literature as important risk factors for

COVID-19 mortality. Even in the U.S. where testing has been limited, we expected that

COVID-19 deaths on a particular day would be highly related to the number of cases and

deaths reported on preceding days. Consequently the number of newly reported COVID-19

cases and deaths in location i on days t − 1, . . ., t − 21 were included as covariates for predict-

ing deaths on day t.
Covariate importance scores were computed using permutation variable importance.

Briefly, the permutation importance of a covariate is the decrease in predictive accuracy (in

terms of mean squared error (MSE)) comparing the original model and a model in which that

variable is randomly permuted to obscure any signal it might have with the outcome variable.

Fig 2. Death model covariate importance. Covariate importance scores on the log scale for the random forest death model as the mean decrease in MSE associated with

permutation of the variable’s values.

https://doi.org/10.1371/journal.pcbi.1008837.g002
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If a covariate is important in terms of prediction, obscuring its signal should result in a

decrease in predictive accuracy. Not surprisingly, lagged deaths are highly important and to a

lesser extent cases and time. Interestingly there appears to be a weekly periodicity to the lagged

importance as there are peaks at t − 1, t − 8 and t − 15 especially for deaths. This is likely due to

the effect of the workweek on data reporting. Additional lagged data beyond 21 days did not

improve predictive performance, and so were not included in the model.

Fitting the model to data collected through December 31, 2020, resulted in an out-of-bag R2

of 0.96. This is an overly optimistic estimate of prediction error, due to the within-location and

temporal dependence of the data [104], but more significantly due to the lagged data being

very informative covariates. Lagged deaths and cases were far more important than the demo-

graphic characteristics, which is not surprising considering the very strong relationship

between testing positive for COVID-19 and dying of COVID-19, especially in the early days of

the pandemic in the U.S., when testing was quite limited. Within the compartmental model,

the lagged data are estimated, not observed, and so introduce uncertainty into the forecast.

The random forest predictions were capped at a percentage of the new cases to avoid unrealis-

tically high death predictions, which can occur when there are relatively few new cases. This

upper bound was set to be equivalent to a 15% case fatality rate for the first 30 days of the epi-

demic and reduced to 7% subsequently, with the higher initial death rate motivated by the rela-

tive severity of early confirmed cases due to limited testing.

The SIRD compartmental model

We combine the case and death models to forecast the spread and progression of COVID-19

through the populations of U.S. states using a SIRD compartmental model named after the

four compartments into which it partitions the population: S for susceptible, I for infectious, R
for recovered, and D for dead. The compartmental model allows for the joint forecasting of

these quantities, a distinct advantage over many approaches including so-called black

box prediction tools that generally only model a single outcome. The posterior samples from

the velocity model provide a mechanism for uncertainty quantification that can be propagated

through the compartmental model. The compartmental model also allows the case forecast to

be used as covariates in the death model, which otherwise would not provide predictions

beyond one day past the observed data.

The number of population members in each compartment is a function of time, t, and

these functions are linked by a system of ordinary differential equations (ODEs) that govern

the flow of the population through the different disease states:

dSðtÞ
dt

¼ � xðtÞ;

dIðtÞ
dt

¼ xðtÞ � rIðtÞ;

dRðtÞ
dt

¼ rIðtÞ � yðtÞ;

dDðtÞ
dt

¼ yðtÞ:

ð8Þ

Fig 3 graphically depicts the SIRD model with arrows between compartments indicating possi-

ble transitions between compartments. Only deaths due to COVID-19 are permitted within

this framework under the assumption that ignoring other causes of death, as well as the influx
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of new susceptible persons through birth or immigration, will not substantially alter inference

in the short term.

The transition rates between compartments are determined by the functional forms and

parameter values in Eq 8. Given these and initial conditions for the system, S(t0), I(t0), R(t0),

and D(t0), the system of ODEs in Eq 8 is deterministic, but in general does not accommodate

analytical solutions. Consequently, we compute numerical solutions using the lsoda solver

in the deSolve package [105] of R [106].

Due to the novelty of the SARS-CoV-2 virus and a desire to empirically ground the com-

partmental model, we fit transition functions that can vary in time and incorporate covariates

and other information. The transition between S and I is determined by ξ(t), which describes

the number of individuals becoming confirmed COVID-19 cases. This differs from traditional

compartmental models. The standard expression for dI(t)/dt is βS(t)I(t) (sometimes divided by

the population size N) as described in the introduction. We found the traditional functional

form for dI(t)/dt fit the observed data very poorly, which motivated its replacement by ξ(t), a

time-varying function derived from the velocity model described above. Importantly, ξ(t) does

not depend on I(t), which is a departure from traditional compartmental models and is similar

to the approach of so-called curve-fitting models. This hybrid approach was motivated by a

desire to retain the benefits of compartmental models while exploiting the substantially better

empirical accuracy of curve-fitting models for the changing number of cases.

Traditional SIR compartmental models use a rate parameter, which we call ρ, that is the

inverse of the time an individual is expected to be infectious to model the movement of indi-

viduals out of the infectious compartment. We follow this approach, but split the R compart-

ment into R and D, because we have reliable data on COVID-19 deaths, but not on recoveries.

(Some states have reported recoveries, but in most instances this is limited to hospitalized

patients who have recovered.) Like a traditional SIR model, we let ρI(t) denote individuals exit-

ing the infectious compartment, which corresponds to the −ρI(t) term in dI(t)/dt. Since indi-

viduals do not enter compartment I until they test positive, in our model ρ−1 is the length of

time we expect an individual to remain infectious after testing positive. Using onset of symp-

toms as a proxy for testing positive, we sample ρ−1 independently for each run from a Gaussian

distribution with mean 10 and standard deviation 1, based on Wölfel et al. estimating the

probability of isolating virus dropping below 5% at 9.78 days after symptom onset [107]. The

death model, θ(t), indicates how many of these die, i.e., dD(t)/dt = θ(t), with the remainder of

the ρI(t) recovering, i.e., dR(t)/dt = ρI(t) − θ(t).

Fig 3. The SIRD model. Each of the four compartments quantifies the number of population members with that

disease status: S for susceptible, I for infectious, R for recovered and D for dead. The arrows indicate possible

transitions between disease states.

https://doi.org/10.1371/journal.pcbi.1008837.g003
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In addition to the SIRD forecasts of infections, deaths and recoveries, we estimate the effec-

tive reproductive number, Rt. This is the average number of new cases that each case will gen-

erate. We estimate this as

RðtÞ ¼ r
xðtÞ
IðtÞ

;

and report its ten-day moving average. We also include state-specific, time-varying estimates

of case doubling time, death doubling time and the proportion of cases resolving in subject

death.

A unique initial condition was constructed for each run of the compartmental model by

stepping the model through each day of the observed data and fixing the number of cases and

deaths to the observed values while using the recovery transition function to distribute cases

between compartments I and R. This combines the observed case data while attempting to

account for the uncertainty in the number of individuals in I and R using the randomness in

the recovery function. Using the observed case data and incorporating uncertainty reduces the

sensitivity of the model to the choice of initial conditions. This approach ignores any measure-

ment error in the case and death data, which is a substantial limitation considering the status

of COVID-19 case data in the US, as discussed above.

Predictive accuracy

We assessed the predictive accuracy by training the model on case and death data collected

through the end of August, September, October and November 2020, and forecasting the sub-

sequent 21 days. We quantified prediction error for each state on each day using the mean

absolute scaled error (MASE) of the posterior median number of new cases and deaths. MASE

is computed by dividing the mean absolute prediction error by the in-sample mean absolute

error (MAE) of a naive random walk forecast,

MASEðY;Y�; ŶÞ ¼

1

m

Xm

j¼1
jY�j � Ŷ jj

1

n � 1

Xn

i¼2
jYi � Yi� 1j

; ð9Þ

where Y = (Y1, . . ., Yn)0 is the training data outcome, Y� ¼ ðY�
1
; :::;Y�mÞ

0
is the observed out-

come in the evaluation set and Ŷ ¼ ðŶ �
1
; :::; Ŷ �mÞ

0
is the prediction for Y� to be evaluated [108].

MASE is scale invariant, which makes comparisons of predictive accuracy between states with

epidemics on different scales more meaningful. A MASE of 1 indicates that the predictions

were on average equally accurate to the mean accuracy of a random walk forecast in the train-

ing data. This is a somewhat conservative estimator of prediction error for COVID-19, because

cases and deaths have generally increased with time, which means the MAE of a random walk

forecast in the training data will be lower than the MAE of a random walk forecast in the sub-

sequent evaluation data.

Fig 4 depicts the median and interquartile range of MASE across states for cases and deaths

over a three-week forecast after each of the training periods. As expected, the median and

interquartile range of the MASE increased for both cases and deaths as forecasts extrapolated

farther from the training data, although this increase is only slight for deaths. The model pre-

dicted cases and deaths reasonably well in light of the conservativeness of the estimator, espe-

cially within the first week of extrapolation, with the median MASE mostly below 1. The

model forecasts deaths over this period particularly well, with only slightly diminished accu-

racy at 21 days. This is due at least in part to the lagged relationship between cases and deaths,
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which makes case data much more informative for a 3-week death forecast than for a 3-week

case forecast.

As an additional test of the death model’s predictive accuracy, we compared it with a state-

specific autoregressive (AR-1) model over the same 4 training and evaluation sets. The random

forest death model predicted deaths more accurately than the AR-1 model for 3 of these 4 sets.

The details of this evaluation may be found in S2 Table.

Results & discussion

Infections and deaths were projected through April 1, 2021, for all 50 states. Fig 5 depicts

median predicted cumulative confirmed cases as well as active confirmed infections and daily

death counts for New York, Colorado, and West Virginia. These three states were selected as

examples, because they are diverse in their population size, geography, political alignment,

demographics, and in the progression of their COVID-19 epidemics. The equivalent figures

for all 50 states are included in S2 Appendix.

New York, especially New York City with its large, dense population, was the epicenter of a

large, early COVID-19 outbreak in the United States with over 300,000 confirmed cases by late

April. Initial exponential case growth was slowly curbed by public interventions, leading to a

consistent decrease in case velocity and peaks in active cases and deaths in mid April. Case

growth being well past its peak translates into a plateaued cumulative case curve, which began

to increase again in late 2020.

Colorado, in contrast, has had many fewer cases than New York with approximately

350,000 cases by the end of 2020. Rather than exhibiting a sharp peak followed by low case

growth, Colorado cases exhibit a steady climb punctuated by waves of faster and slower

growth. Its interval estimates are relatively wider than New York, because there is more uncer-

tainty in the estimated trajectory. Colorado also exhibits more relative variation in its daily

death counts than New York because of the smaller number.

West Virginia approaching 100,000 cases through the end of 2020 illustrates the estimated

trajectories of a relatively rural state with slow case growth for the first few months of the pan-

demic, now showing signs of exponential growth. With cases growing more rapidly, there is

correspondingly more relative uncertainty in its trajectory.

The figures include 95% credible intervals around the median indicating that 95% of simu-

lation results fell within this region. These intervals are not true credible intervals in the

Fig 4. Predictive accuracy. The median and interquartile range (IQR) of MASE across all 50 states on each day of the 21-day prediction periods for new confirmed cases

(a) and deaths (b). A MASE of 1 indicates equivalent accuracy to a one-day random walk forecast in the training data.

https://doi.org/10.1371/journal.pcbi.1008837.g004
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Fig 5. Predicted cumulative cases, active infections, deaths, and effective Rt. Projected cumulative case count, active confirmed infections, and daily deaths through

April 1, 2021, for New York, Colorado, and West Virginia. The grey dots indicate observed data, which are not available for active infections and Rt.

https://doi.org/10.1371/journal.pcbi.1008837.g005
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Bayesian sense, because random forest is not a probability model. Nevertheless, they represent

a reasonable account of model uncertainty, as they incorporate credible intervals from the

Bayesian case model, uncertainty around the duration of illness, and interval estimates for the

random forest predictions.

These forecasts extrapolate foward the trajectory of the pandemic at the end of 2020, but its

future depends upon the ongoing societal and political response to the pandemic, and will be

altered by future events. For example, aggressive lockdowns have been used to blunt case tra-

jectories as in many other countries. Similarly vaccinations and newly developed treatments

will substantially impact the number of new cases or deaths.

Despite the strengths of the current approach, it is not without limitations. The projections

produced here assume states continue upon their current trajectories. Changes in policy inter-

ventions, for example, may result in substantial deviation from this. Projecting outcomes

under different or changing intervention scenarios is the subject of ongoing work.

Considering COVID-19 cases and death over large areas can obscure variation on a smaller

scale. It is possible for a generally positive trajectory at the state-level to mask a burgeoning

outbreak in some locale within the state until that outbreak contributes sufficiently many cases

to influence the state-wide trajectory. A more granular approach that models COVID-19 at a

finer resolution may be able to identify such an outbreak earlier.

There is substantial interest in estimating the proportion of the population that has or will

have recovered from COVID-19 in the hopes that these individuals have acquired at least tem-

porary immunity to the virus and can be the vanguard to economic recovery. Since we focus

on modeling confirmed cases and deaths, our model does not predict the true number of

recovered individuals. It is well known that, especially in the U.S., confirmed cases are a sub-

stantial undercount for the true number of COVID-19 infections. As a result, estimating the

number of recovered individuals requires additional information beyond predictions of con-

firmed cases and deaths. Attempts to quantify recovery using serology testing are underway in

the U.S. and elsewhere.

Without the addition of covariates, the time series velocity model may not predict future

case spikes, which may result from a return to pre-social distancing behavior or a change in

governmental intervention. It does, however, accommodate these types of events quite well.

The increasing velocity associated with a spike in cases corresponds to exponential growth at

an increasing exponential rate. This rapidly causes an explosion of cases that pushes case

growth beyond whatever level a particular population deems tolerable. In every case there has

been a subsequent return to a velocity that corresponds to a tolerable level of case growth. By

targeting this velocity, our model forecasts reasonable long-term case trajectories without

needing to predict the occurrence of case spikes, which are quite difficult to anticipate

precisely.

Finally, one could consider more elegant methods for incorporating lagged case and death

counts into a death model than simply inserting them as covariates into random forest. How-

ever, many approaches to lag estimation are only good retrospectively and thus are insufficient

for the current task.

This modeling framework suggests a number of avenues for future work. The most salient

of these is the simulation of various scenarios that model policy or public health responses to

the pandemic including the effects of vaccinations. Forecasting COVID-19 cases and deaths

under alternate scenarios may provide useful information for decision makers. Future meth-

odological improvements could include integrating all the components of the model within a

single Bayesian model by substituting Bayesian additive regression trees (BART) for the ran-

dom forest death model. This would provide a posterior distribution for all parameters and

forecasts.
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