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Rare variant phasing and haplotypic expression
from RNA sequencing with phASER
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Haplotype phasing of genetic variants is important for clinical interpretation of the genome,

population genetic analysis and functional genomic analysis of allelic activity. Here we

present phASER, an accurate approach for phasing variants that are overlapped by

sequencing reads, including those from RNA sequencing (RNA-seq), which often span

multiple exons due to splicing. Using diverse RNA-seq data we demonstrate that this provides

more accurate phasing of rare variants compared with population-based phasing and allows

phasing of variants in the same gene up to hundreds of kilobases away that cannot be

obtained from DNA sequencing (DNA-seq) reads. We show that in the context of medical

genetic studies this improves the resolution of compound heterozygotes. Additionally,

phASER provides measures of haplotypic expression that increase power and accuracy in

studies of allelic expression. In summary, phasing using RNA-seq and phASER is accurate and

improves studies where rare variant haplotypes or allelic expression is needed.
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T
he phasing of rare and de novo variants is crucial for
identifying putative causal variants in medical genetics, for
example by distinguishing compound heterozygotes from

two variants on the same allele. Existing methods to phase
variants include phasing by transmission1, only available in
familial studies, population based phasing2,3, which is ineffective
for rare and de novo variants, phasing by sequencing long
genomic fragments4,5, which requires specialized and costly
technology, and phasing using expression data by inferring
haplotype through allelic imbalance6, which only applies to loci
with well-detected allelic expression7. An alternative approach
termed ‘read backed phasing’ uses readily available short read
DNA-seq8–10; however it is limited by the relatively short
distances which can be spanned by the reads. Our approach,
called phasing and allele specific expression from RNA-seq
(phASER), extends the idea of read backed phasing to RNA-seq
reads, which due to splicing enables phasing of variants over long
genomic distances. Data from both DNA-seq and RNA-seq
libraries can be integrated by phASER to produce high confidence
phasing of proximal variants, primarily within the same gene, and
when available population phasing can also be leveraged to
produce full chromosome-length haplotypes (Fig. 1a).

In this work we thoroughly benchmark phASER, showing that
our method for haplotype assembly is accurate by comparison to
other commonly used read backed phasing methods using gold
standard datasets. We show that through enhanced quality
control measures RNA-seq can be used to accurately phase
variants over much larger distances than DNA-seq, and that the
addition of RNA-seq significantly increases the number of rare
variants that can be phased. To demonstrate this we apply
phASER to genetic studies and show that the inclusion of
RNA-seq improves the resolution of compound heterozygotes,
and propose an example workflow for the incorporation of
expression and phase information in medical genetic studies.
Finally, we show that haplotypic expression generated by phASER
improves allelic expression studies by increasing power and
accuracy.

Results
Haplotype assembly and phasing accuracy. Assembling haplo-
types from observations of alleles on the same read is a necessary
step of read backed phasing, and has been accomplished using
various approaches8–10. Our approach in phASER employs a two
step method, first defining edges between the alleles of each pair
of variants observed on the same sequencing fragments, and
second, determining the most likely phase within a set of
connected variants given the edges defined in the first step
(Supplementary Fig. 1). During the first step the phase with the
most supporting reads is chosen, and a binomial test is performed
to determine if the number of reads supporting alternative phases
is greater than would be expected from sequencing noise,
allowing for filtering of low confidence phasing (Supplementary
Figs. 1a, 2a). For the second step, phASER counts the number of
edges that support each possible haplotype configuration
(2n variants), and selects the configuration with the most
support. To prevent an exponential increase in haplotype
search space while maintaining accuracy phASER splits large
haplotypes into sub-blocks at points spanned by the fewest edges
(Supplementary Figs S1c, 2c). Phasing is performed chromosome
wide, with no restriction on the distance between variants,
which allows phasing at the longer genomic distances spanned by
RNA-seq reads.

As a gold standard we compared phASER used with high
coverage RNA-seq data generated from a lymphoblastoid cell line
(LCL)11 to Illumina’s NA12878 Platinum Genome, sequenced at
� 200 and phased by transmission using parental data

(http://www.illumina.com/platinumgenomes/), and found that
with default settings phASER identified the correct phasing for
98% of the variants phased. Unlike population based phasing,
read backed phasing across sequencing assays performed well for
low frequency variants (Fig. 1b). Finally, we benchmarked
haplotype assembly in phASER against HapCUT9 and the
GATK Read Backed Phasing tool, which are designed for
DNA-seq reads, using both simulated and experimental WGS
data, as well as WES data. We found phASER to be similar
in accuracy, runtime and haplotype length to HapCUT,
while having additional features required for RNA-seq based
phasing (Supplementary Fig. 3). Both phASER and HapCUT
were dramatically more accurate than the GATK tool
(Supplementary Fig. 3a).

Contribution of RNA-seq to variant phasing. To evaluate the
increase in phasing distance facilitated by RNA-seq reads, we
compared phASER results between WES, WGS and two read
lengths of paired-end (PE) RNA-seq (75 bp and 250 bp) from 4
Genotype-Tissue Expression (GTEx) individuals where matched
libraries were available12. As expected, long read RNA-seq yielded
the greatest proportion of distantly phased variants, with an
average of 4,300 equal to 5.8% of variants phased greater than
5 kb, while at this distance WES and WGS phased 0 and 7
variants respectively (Fig. 1c). At large distances the performance
of RNA-seq phasing decreased as a result of read mapping errors;
however this could be easily addressed by filtering reads based on
alignment score (Supplementary Fig. 4a). Using RNA-seq reads
phasing remained accurate over a range of read lengths
(Supplementary Fig. 4b), but longer read lengths greatly
increased both the distance and number of variants that could
be phased (Supplementary Fig. 4c).

When population phased data are available, haplotype blocks
are phased relative to each other, producing a single genome wide
phase through a method we call phase anchoring. Phase
anchoring uses the population phase of each variant in a block
weighted by their allele frequencies to assign a genome wide
phase, since common variants are more likely to have correct
population phasing (Supplementary Fig. 2b). A similar approach
is used by methods that integrate read backed phasing with
population phasing10; however including it in our method allows
this strategy to be used with RNA-seq reads and prevents the
need to perform population phasing each time new sequencing
data for a sample is available. Using our approach with RNA-seq
from accessible tissues enabled genome wide phasing of up to
15.4% of rare coding variants (MAFr1% in GTEx), and 21.3%
when tissues were combined, while WES yielded 19% and � 5
WGS yielded 11.1% (Fig. 1d). When used in combination, the
addition of combined RNA-seq data enabled a � 1.5 increase in
phasing for WES and a � 2.4 increase in phasing for WGS. When
considering all rare variants, WGS performed better, and the
contribution of RNA-seq to WES was more significant (Fig. 1e).

Application of phASER to genetic studies. We next sought to
benchmark phASER when used with RNA-seq data in the context
of genetic studies. First we used GTEx data to demonstrate the
number of coding variants that could be phased as a function of
the number of tissues for which RNA sequencing data is available.
We began with whole blood, and progressively added libraries
from up to 14 other distinct tissues. With joint phasing using 14
tissues, almost 50% of all heterozygous coding variants could be
phased with at least one other variant (Supplementary Fig. 5a).
When used individually, the total proportion of coding variants
that could be phased for a given tissue was 15–27%
(Supplementary Fig. 5b), and was dependent on transcriptome
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diversity13 (Supplementary Fig. 5c), but not total read depth
(Supplementary Fig. 5d).

We next applied phASER to assess its ability to identify cases of
compound heterozygosity for damaging variants using WES and

RNA-seq data from 345 1,000 Genomes individuals14,15. First we
assessed the accuracy of compound heterozygote calls using
population phasing compared with WESþRNA read backed
phasing. As expected, protein-truncating and splice variants that
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Figure 1 | Read backed haplotype phasing that incorporates RNA-seq using phASER. (a) phASER produces accurate variant phasing through the use of

combined DNA and RNA read backed phasing integrated with population phasing. Due to splicing, RNA-seq reads often span exons and UTRs, allowing

read backed phasing over long ranges, while high coverage exome and whole genome sequencing can phase close proximity variants. For each group of

read connected variants a local haplotype is produced by testing all possible phase configurations, and selecting the configuration with the most support

(Supplementary Fig. 1). Local haplotype blocks can be phased relative to one another when population data is available by anchoring the phase to common

variants, where the population phase is likely correct. (b) Concordance of read backed phasing across sequencing assays and population phasing with

phasing by transmission using the Illumina NA12878 Platinum Genome as a function of variant minor allele frequency. Concordance is defined per variant

as the percentage of variant—variant phase events that are correct as compared with the known transmission phase. (c) Percentage of phased variants that

can be phased at greater than or equal to increasing genomic distances using WES, WGS, paired-end 75 and 250 RNA-seq data in two tissues (whole blood

and LCLs) of four GTEx individuals. Solid lines represent the means, and dotted lines the standard error. (d,e) Contribution of read backed phasing at rare

coding (MAFr1%) variants (d) and all rare variants (e) across sequencing assays and GTEx RNA-seq tissue types for four individuals. Values shown are

the mean percentage of rare variants within an individual that can be assigned a genome wide phase using phase anchoring. Error bars show the standard

error. The fold increase in the number of rare variants that can be phased using DNA-seq with the addition of combined RNA-seq libraries is indicated.
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are usually rare were enriched in cases where population phasing
was incorrect, with cases involving stop gain variants being � 2.9
more likely to be phased incorrectly than others (Supplementary
Fig. 6). Next, to demonstrate the advantage of using RNA-seq
data over WES alone for phasing, we identified instances of
compound heterozygosity involving at least one rare (MAFo1%)
variant with predicted loss of function (LoF) or damaging protein
effects16. Including RNA-seq data from only one tissue (LCLs)14

increased the number of compound heterozygotes that could be
identified in the most severe class (LoF�Damaging) by � 1.3
over WES alone, and ranged between 1.19 and � 1.15 for other
combinations, demonstrating the added benefit of phasing over
larger distances (Fig. 2a).

Finally, we used paired WES and fibroblast RNA-seq from
20 patients with congenital diaphragmatic hernia17 to illustrate
phASER’s application to a typical medical genetics workflow to
prioritize putatively causal variants and benchmark the advantage
of including RNA-seq reads for phasing. Assuming that causative
variants would be rare, recessive, damaging and expressed in the
tissue of disease relevance, phase information generated with
phASER from WES and RNA-seq reads could prioritize a median
of 25 alleles involved in cases of compound heterozygosity per
individual (trans), while assigning a lower priority to a median of
44 alleles, where the alleles were on the same haplotype (cis)
(Fig. 2b). The inclusion of RNA-seq boosted the number of cases
that could be identified by � 2.6 for trans and � 1.4 for cis
interactions.

Application of phASER to allelic expression studies. Outside
of medical genetics, variant phasing is important for allelic
expression (AE) analysis, which aims to quantify the relative
expression of one allele versus another7, and has emerged as a
powerful method to study diverse biological processes including
cis-regulatory variation14, parent of origin imprinting18, and
protein-truncating variants19. AE is typically measured at single
heterozygous variants; however the unit of interest is often a gene

or transcript, which may contain many variants. Integrating read
counts across phased variants can greatly improve the power to
detect AE, but simply adding up allele counts can lead to double
counting of reads (if variants are covered by the same read), and
both false positives and negatives as a result of incorrect phasing.
To address this limitation, when used with RNA-seq data,
phASER quantifies and reports the expression of phased
haplotypes by reporting the number of unique reads that map
to each. To benchmark the impact of this utility we generated
haplotypic counts at genes with known expression quantitative
trait loci14 for 345 Geuvadis samples using either single variants
with population based phasing alone, or phased haplotype blocks
generated by phASER (Supplementary Fig. 7). By improving
phase and preventing double counting phASER reduced false
positives at 56.2% of genes tested, while uncovering false
negatives at 7.3% (Fig. 2c).

Discussion
In summary, phASER provides scalable and high confidence
variant phasing, incorporating RNA-seq and DNA-seq data with
population phasing, allowing phasing over longer distances than
previous read based methods. We have demonstrated that this
method has direct applications in medical genetics, where
improved resolution of compound heterozygotes can lead to
changes in their interpretation. Furthermore, phASER improves
the accuracy of haplotypic expression when integrating allelic
counts across variants by reducing false positives. Our approach
will complement the existing repertoire of phasing methods3 and
makes use of a readily available experimental data type that has
become trivial to produce, allowing for phasing of rare and
distant variants at high accuracy. As RNA-seq experiments
become commonplace in medical and population scale studies,
phASER will become a valuable tool for rare variant phasing.

Methods
Implementation of read backed phasing in phASER. phASER is written in
Python and requires the following libraries: IntervalTree, pyVCF, SciPy, NumPy.
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Figure 2 | Application of RNA-seq based haplotype phasing to studies of functional variants and allelic expression analysis. (a) Instances of compound

heterozygosity involving rare (MAFo0.01) loss of function (L), probably damaging (D) or possibly damaging (P) coding variants called using phase data

generated by phASER with either RNA-seq reads, exome-seq reads, or both for 345 1,000 Genomes European individuals with Geuvadis LCL RNA-seq data.

The fold increases in the number of compound heterozygotes resolved when RNA-seq data is included are indicated. (b) Example application of phASER to

prioritize rare (alternative AFo0.01 in 1,000 Genomes) recessive alleles in a medical genetics study that includes both WES and RNA-seq in a tissue of

clinical relevance17. Boxplots show the number of heterozygous alleles per individual after these successive filtering steps were applied: CADD phred

scoreZ15, expressed in fibroblast RNA-seq data, phased with read backed phasing, involved in either trans or cis interactions with another deleterious

variant (CADDZ15) using RNA and exome data (RNAþWES) or exome alone (WES). The fold increases from including RNA-seq data are indicated.

(c) The difference in percentage of individuals with significant allelic imbalance (binomial test, FDRo0.05) for each gene with a known heterozygous cis

expression quantitative trait loci (eQTL) calculated by either summing all single variant read counts across haplotypes using population phasing, or by

summing phASER haplotype blocks phased relative to each other with phase anchoring (Supplementary Fig. 7). Genes where an increase in the percentage

of individuals with significant allelic imbalance is observed when summing single variant counts are coloured red, representing false positives, while those

with a decrease, representing false negatives, are coloured blue. The bar plot above indicates the percentage of the 1,118 genes where allelic expression was

measured that fall into each category.
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In addition it requires Samtools and Bedtools to be installed. Aligned reads
(BAM format) are mapped to heterozygous variants, and for each heterozygous
variant a hashed set of all overlapping reads is produced, which allows for quick
comparison of overlapping reads between variants. Connections between variants
are established whenever a read (or read mate) overlaps more than one variant. For
each pair of connected variants, edges between alleles are defined by determining
the phase that has the most read support, and a test is performed to determine if
there is significant evidence of a conflicting phase (see below) (Supplementary
Fig. 1a). Those edges that fail, based on a user defined significance threshold
(by default nominal Po0.01) are removed. It should be noted that this test
addresses instances where due to sequencing error individual bases on a read have
been misread, and it does not address errors with read mapping, which can happen
at sites with genetic variation. For a discussion of methods to address allelic read
mapping issues please see Castel et al.7. Haplotype blocks are generated by starting
with a single unphased variant and recursively adding all other variants with read
connections. Block construction is completed when no further variants can be
added. Once all haplotype blocks have been generated, phasing of the variants is
determined using the previously defined allele edges. If the allele edges within a
haplotype block resolve into two distinct groups, where each group contains only
one allele of a given variant, the haplotype is considered to be conflict free and the
phase is reported (Supplementary Fig. 1b). In instances where two haplotypes
cannot be immediately resolved, the haplotypic configuration with the most edges
supporting it is identified. This is accomplished by testing all possible haplotype
configurations (2n), however runtime is prevented from exponentially increasing
by splitting haplotypes into sub-blocks at positions spanned by the fewest number
of edges (Supplementary Fig. 1c–d). These sub-blocks are then phased relative to
one another to produce a single haplotype phase (Supplementary Fig. 1e). The
maximum number of variants within a sub-block is user defined, and is 15 by
default. Our simulations show that when using this approach accuracy remains
high, while runtime is drastically reduced (Supplementary Fig. 2c). Read variant
mapping, edge definition and haplotype assembly can all by parallelized for an
increase in speed (Supplementary Fig. 3b).

Statistical test for conflicting phasing between two variants. For each SNP
pair covered by at least one read a test is performed that determines if the number
of reads supporting alternative phasing (any phase other than the configuration
chosen by phASER) could be observed by chance from sequencing noise alone. In
this test, significance indicates more conflicting reads than would be expected from
noise alone, and thus suggests that there may be an error in the phase selected by
phASER. A conservative approach is to filter out any variant connections with a
nominal P value of o0.01 (Supplementary Fig. 2a). Less stringent P value
thresholds can be used to retain more blocks, with the caveat that some may have
incorrect phasing. Filtered connections will not be used during the haplotype block
construction process.

The test is based on a uniform error model in which a true allele nucleotide can
be substituted randomly to any other nucleotide. All pairwise substitutions in this
model are assumed to be equally probable. We denote this pairwise substitution
probability with e. Let us assume a pair of SNPs a1|a2 and b1|b2 with a haplotype
structure a1b1| a2b2. Let a1: b1 denote a read spanning alleles a1 and b1. Reads
supporting the true haplotype in this case are a1:b1, and a2:b2, and any other
configurations correspond to conflicting evidence. Let us only consider reads
generated from the first haplotype. The probability of observing a read supporting
the correct haplotype structures, ps, is (1� 3e)2þ e2, where the first term
corresponds to the probability of observing a1:b1 (the case in which either of the
sites being affected by noise in the read), and the second term is the probability of
observing a2:b2 (the case in which both sites were altered by noise in the read and
happened to have the other second allele). Binomial distribution is used to evaluate
the probability of observing equal or less supporting reads for two given SNP sites:

p x � ns n; ejð Þ ¼ binomialcdf ns; n; psð Þ;
where ns and n are the number of reads supporting the chosen haplotype structure
and total number of reads respectively. The pair-wise substitution rate e is
calculated from over all SNP sites as:

e ¼ 0:5

P
mismatches

P
total coverage

;

where mismatches correspond to all cases that a nucleotide other than the
reference or the alternative allele where observed at the site. Only variants where
450% of the reads come from the reference and alternative alleles are used to
calculate the substitution rate to avoid inflation of noise estimates as a result of
genotyping error.

Genome wide phasing using phase anchoring. When population phased data
are available phASER will attempt to determine the genome wide phase for each
haplotype block using phase anchoring. Phase anchoring operates on the
assumption that common variants are more likely to be phased correctly using
population data, so for each variant within a haplotype the genome wide phase
determined by population phasing is weighted by the variant allele frequency. The
genome wide phase across all variants with the most support after weighting is
selected for each haplotype block.

For each haplotype block:
a (phase support for configuration 1)¼S(MAF of variants supporting

configuration 1)
b (phase support for configuration 2)¼S(MAF of variants supporting

configuration 2)
if a4b genome wide phase¼ configuration 1
if aob genome wide phase¼ configuration 2
Anchor Phase Confidence¼max(a, b)/(aþb)

phASER settings. The following settings were used unless otherwise noted. For all
libraries: alignment score quantile cutoff of 0.05, BASEQ of 10, and conflicting
configuration threshold of 0.01, indels ignored, and maximum block size of 15. For
RNA-seq libraries: no maximum insert size, MAPQ of 255 (indicates unique in
STAR). For exome-seq libraries: 500 bp maximum insert size, MAPQ of 40. For
whole genome sequencing libraries: 1,000 bp maximum insert size, MAPQ of 40.
All variants in HLA genes were filtered.

Code availability. Source code and complete documentation for phASER and its
associated tools are available through GitHub (https://github.com/secastel/phaser).
In addition to the phASER core software we provide two scripts: one which given
an input VCF that has been phased using phASER will identify all interactions
between alleles (phASER Annotate), and retrieve information such as allele
frequency and predicted variant effect if supplied with the appropriate files, and
second, a script which will use haplotypic counts produced by phASER in
combination with population phasing to produce gene level haplotypic read counts
for use in allelic expression studies (phASER Gene AE).

Benchmarking. Benchmarking was run on CentOS 6.5 with Java version 1.6 and
Python 2.7 on an Intel Xeon CPU E7- 8830 @ 2.13 GHz, with GATK v3.4,
HapCUT v0.7, and phASER v0.5. The GATK tool was run with default settings, with
the exception of: min_mapping_quality_score¼ 40, maxPhaseSites¼ 15, min_base_
quality_score¼ 10. HapCUT was run with the following settings: maxIS¼ 500
(WES), 1,000 (WGS), 1e6 (PE 75 RNA), mbq¼ 10, mmq¼ 40 (WES and WGS),
mmq¼ 255 (PE 75 RNA). phASER was run with default settings (see phASER
settings). Simulated PE 75 WGS data was produced with ART Chocolate Cherry Cake
03-19-2015 (ref. 20) from a NA12878 1,000 Genomes Phase 3 population phased
reference. WES and WGS libraries used were those listed above.

Data processing. For analyses involving 1,000 Genomes individuals, phase 3
genotypes and population phasing where were used with hg19 aligned exome-seq
data, both downloaded from the 1,000 Genomes website (http://www.1000genomes.
org). Raw (FASTQ) RNA sequencing data from 1,000 Genomes individual derived
LCLs was downloaded from the European Nucleotide Archive (ERP001942), and
aligned with STAR to hg19. For comparison of phase statistics between sequencing
assays the following GTEx individuals were used: S32W, T5JC, T6MN, WFON. Both
short and long read RNA-seq was obtained for whole blood and LCLs, and aligned
using STAR to hg19. WES reads were aligned using Bowtie 2 to hg19. GTEx data is
available through dbGaP for authorized users (phs000424.v6.p1). For rare variant
phasing comparison, RNA-seq from whole blood, fibroblasts, sun exposed skin, and
adipose were used, alongside WES and WGS libraries, from GTEx individuals X4EO,
XUW1, U8XE, XOTO. GTEx individual ZAB4 was used for comparison of number
phased variants versus number of RNA-seq tissues used. For comparison to
transmission phasing the following data from the 1,000 Genomes individual
NA12878 was used: exome-seq downloaded from 1,000 Genomes website, whole
genome sequencing data (NCBI SRA ERS179577), RNA-seq from a LCL (NCBI
GEO GSM1372331), transmission phased genotypes (Illumina Platinum Genome,
http://www.illumina.com/platinumgenomes/). Whole genome sequencing libraries
were down sampled to 5x to increase speed of analyses and ensure comparable read
depths across sequencing assays.

Data availability. Data used in this study was retrieved from the 1,000 Genomes
website (http://www.1000genomes.org), the European Nucleotide Archive
(ERP001942), dbGaP (phs000424.v6.p1), NCBI Sequence Read Archive
(ERS179577), NCBI Gene Expression Omnibus (GSM1372331), and Illumina
Platinum Genome, http://www.illumina.com/platinumgenomes/).
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