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Hematopoietic cell transplantation (HCT) provides potentially curative therapy for high-risk
hematological malignancies, predominantly through alloreactivity mediated by donor immune
effectors directed at a recipient’s malignant cells; this is termed graft vs. leukemia (GVL) effect
(1). This beneficial effect has historically been associated with a similar donor immune attack on
normal recipient tissues, graft vs. host disease (GVHD) (2). At this time both of these entities,
GVL and GVHD are considered to be stochastically determined, i.e., prior to transplant one cannot
reliably determine which patient will develop one or both outcomes. The high complexity of the
system at hand which includes patients with different malignancies, varying human leukocyte
antigen (HLA) types, and different immune effectors involved in these processes has meant
that logic-based therapeutic choices which impact variables associated with GVL are studied by
determining the probability of the desired clinical outcomes in large populations of patients.
Such studies have allowed an incremental improvement in the clinical outcomes of recipients
of similarly HLA matched donor HCT. The introduction of high-resolution HLA matching and
HLA DPB1 matching were both such incremental changes which helped improve survival in
recipients fromHLAmatchedHSC donors (3–5). Despite these advances, the apparent randomness
in the potential for developing alloreactivity remains. This apparent randomness derives, in part
from these phenomena having their origin at a molecular level, with the recognition of minor
histocompatibility antigens (mHA) and tumor specific antigens (TSA) bound to HLA molecules
on the antigen presenting cells (APC), by unique T cell receptors (TCR) on T cell clones. This
recognition triggers T cell responses which effect the observed clinical outcomes.

To develop a deeper understanding of the alloreactive processes governing the relative
balance of GVHD and GVL one has to understand the antigenic landscape at hand in
a HCT recipient at the molecular level. Herein is presented a model which examines the
relative difference in the genetic potential for developing either GVL, using tumor specific
antigen (TSA) burden, or likelihood of developing GVHD, using minor histocompatibility
antigens (mHA). Historically haematopoietically restricted mHA (6–8), cancer testis antigens
(9), protein splice variants (10) and in some instances even retroviral elements (11) have
been implicated in producing GVL effects, with some of these elements also contributing to
GVHD. While haematopoietically restricted mHA have been implicated in the development of
GVHD and protection from relapse (12), HLA presentation is a prerequisite for this to occur
(13). Thus, far ∼60 haematopoietically restricted minor histocompatibility antigens have been
described with antigen presentation restricted to a limited spectrum of HLA allotypes, precluding
broad utility in patients (7). Thus, to optimize clinical outcomes, it is imperative to develop
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methodology which will allow personalized computation of the
probability of GVHD or GVL developing in unique HCT donor-
recipient pairs.

Hematological malignancies are driven by DNA mutations
which develop in normal cells over time as a result of exposure
to external mutagens and intrinsic processes, such as errors in
DNA replication (14). The mutational burden of adult cancers
ranges widely; for example, solid tumors may average from 33
to 66 somatic mutations which alter their protein structure and
function. Cancers such as, melanoma and lung cancer are on
an extreme end of this spectrum, possessing ∼200 mutations
per tumor, and thus are susceptible to immune therapy (15).
On the opposite end of this spectrum, hematologic malignancies
have some of the lowest mutational burdens, with leukemias
harboring ∼9.6 mutations per tumor (14, 16–20). Mutated
genes expressed in these tumors may be recognized as non-
self-proteins by the immune system, and targeted by the GVL
mechanism (21).

Point mutations were first shown to induce a naturally
occurring T cell response in a patient with melanoma
(22). However, initial studies of cancer immunotherapy were
hampered by technological challenges encountered in deriving
patient specific TSA libraries. In the past decade, next generation
sequencing (NGS) or “deep” sequencing has allowed the
sequencing of thousands of small fragments of DNA in parallel,
such that an entire genome may be rapidly sequenced (23).
NGS has allowed cataloging of the entire library of potential
TSA in a variety of human malignancies. The full impact of
this knowledge of individualized genetic profiling of cancers was
first observed when utilizing programed death receptor PD-1
and programed death-ligand (PDL) receptor inhibitors. Check
point blockade allows unimpeded autologous TSA specific T
cell mediated killing, which is most significant in tumors with a
higher mutational burden, as there are theoretically more TSA
presented on MCH class I and class II molecules with a greater
mutational burden (14, 24, 25).

In contrast, the relatively low mutational burden of
hematologic malignancies does not meet the thereshold
necessary to effectively utilize immunotherapy and PD1/PDL1
blockade (26, 27). Common hematologic driver mutations
including NPM1 which are expressed in 30–35% of cases of
AML have been shown to be expressed by AML blasts and may
be targeted by TCR gene transfer (28). Several other specific
mutations including BCR-ABL, WT1, and PR1 have also been
shown to effect outcomes after HCT (29–31). Nevertheless,
such unique mutations are usually not adequate to generate
an intrinsic GVL response in the vast majority of patients.
Despite this relative dearth of tumor associated neo-antigens,
hematological malignancies have proven to be susceptible to the
GVL effect of an allograft, some times without GVHD developing
(32–34). One may therefore ask, is it possible to apply NGS to the
transplant setting in order to understand how one may uncouple
GVL from GVHD in the majority of patients? This goal has
been sought by many a group who have tried to better predict
GVHD and GVL by examining biomarkers (35), cytokines
(36, 37), mass spectrometry data (38), natural killer cell markers
(39). Modification of the conditioning and GVHD prophylaxis

regimens have also been attempted to accomplish the dissociation
of GVHD from GVL (40–43). However, while all of these factors
play important roles in the GVHD and GVL phenomenon, if
both at their core are centered on peptide presentation and
immune attack, it is not likely that we can always dissociate GVL
from GVHD.

A computational approach may be taken to develop a partial
understanding of the GVHD-GVL balance in HLA matched
HCT. As stated above, on average hematologic malignancies
contain ∼10 protein coding, exomic mutations which may be
immunogenic. For patients with these and other TSA resulting
from mutations, logically in each individual, the number of
tumor specific peptide antigens presented will then depend
on their HLA type, the specific mutations and the spectrum
of mutated peptides presented by those HLA molecules. As
an example, a study of over 600 patients with multiple
myeloma showed an average of 64 nonsynonymous mutations.
Neoantigen load was then predicted in silico by identifying
mutant peptides predicted to bind class I HLA molecules.
Predicted neoantigen were defined as any unique peptide: HLA
combination with mutant binding affinity IC50 less then 500 nM.
This revealed the average predicted neoantigens to be 23 in
number, with 9 expressed neoantigens. This outlines the fact
that not all neoantigens are either expressed or presented on
HLA (17). This number then gives an approximate estimate
of the isolated GVL inducing potential for multiple myeloma.
However, the average number of nonsynonymous mutations
in leukemia is typically much lower, as noted above. If we
were to extrapolate using the ratio of 64 nonsynonymous
mutations to its 9 expressed neoantigens, one could predict
that hypothetically hematologic malignancy on average would
be unlikely to express >10 neoantigens. In actual fact the
true number of TSA will vary with each individual based on
the number of nonsynonymous mutations present, type of
mutation (i.e., point vs. frame shift mutations) their antigenicity,
cleavage potential of the proteins harboring the mutations,
the HLA binding affinities of the mutant peptides and the
HLA type in an individual, among other factors. While, this
may underestimate of the expressed neoantigens burden of
hematologic malignancy, a study of antigen presentation of
multiple malignancy types including hematologic malignancies
and solid tumors indicated that there are ∼1.5 expressed
neoantigens per point mutation and 4 per frameshift mutation
(44), suggesting that the estimate presented here is not too far
from reality.

This may hold true even if one considers other TSA sources
that may contribute to GVL, including those derived from
normally repressed proteins such as cancer testis antigens. These
are antigens normal expressed in “immunologically privileged
sites” such as, testicular or trophoblastic tissues, and are thus
immunogenic. When expressed, these will offer a potential GVL
target, which will not be dependent on TSA, and will add to
the TSA burden. However, there is variability introduced at the
response end of this cascade, since some of these mutations may
lead to too strong a TCR affinity and down regulation by central
tolerance, while others with a more optimal affinity being allowed
to escape central tolerance while still allowing allowreactivity
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FIGURE 1 | Comparative representation of the TSA and GVL potential of hematologic malignancy and GVHD drawn to scale. (A) representation of the average

mutational burden of hematologic malignancy (9 SNPs) (B) A representation of the TSA, the potential peptide presentation of hematologic malignancy mutations in

HLA class l; GVL Burden (drawn with x10 magnification to make visible) (C) representation of the potential DRP minor histocompatibility antigen proteins loaded onto

HLA class l; GVHD burden (D) representation of the average SNP burden between DRP resulting from nonsynonymous polymorphisms.

(45). All in all, it is unlikely that most hematological malignancies
have a very large abundance of TSA to drive an isolated
GVL phenomenon.

With an estimate of the TSA in hematological malignancies
established, one may next attempt to determine how likely it
is to unravel GVL from GVHD. NGS also offers a perspective
into the genetic background of GVHD alloreactivity. Exome
sequencing in both hematopoietic stem cell as well as solid
organ transplant recipients has demonstrated a vast library of
potential mHA which provide an alternative set of targets for
donor T cells. Whole exome sequencing (WES) of transplant
donors and recipients was performed in a group of HLA
matched donors and recipients, and demonstrated an average
of >6,000 non-synonymous single nucleotide polymorphisms
(SNP) per HLA matched donor-recipient pair (DRP) (46).
These polymorphisms when translated into peptide sequences
in silico, yielded an average of 2,254 peptides/DRP with the
potential to bind HLA-A, -B and -C molecules with intermediate
to high affinity (IC50 of <50 nM, NetMHCpan ver2.0) (47)
and represented an alloreactivity potential for a given HSCT
DRP. The SNPs when compared to the mutations used to
estimate TSA, are much larger in number, indicating that
mHA may provide the dominant antigen background in
terms of generating alloreactivity following HCT. Similar data
regarding the extent of genomic variation between transplant
donors and recipients have been reported by other groups
investigating genomic variation in transplant recipients, in
both solid organ transplants (48) and in HCT (49–53), as
well as in models predicting GVL specific libraries (54).
This abundance of SNPs across the exome in unique HCT
donor-recipient pairs is an eye-opening finding compared to
the average 10 mutations per hematologic neoplasm. This
relative antigen abundance of potential mHA compared to
the potential TSA estimate is graphically depicted to scale
in Figure 1.

While the sheer number of mHA alone vastly outnumbers
the potential TSA in hematologic malignancy, these numbers do
not tell the whole story. Whether the potential mHA result in a
T cell proliferation depends on several factors, such as peptide
cleavage potential, antigen binding affinity, and critically, T cell
clones bearing receptors that might recognize the mHA-HLA
complexes. Crucially, the T cell receptor affinity for HLA-mHA
or HLA-TSA complexes also needs to be adequate to ensure T
cell engagement and activation. Mathematical modeling of T cell
expansion in response to these HLA-antigen complexes has given
important insights into the quantitative principles at hand in
these processes. First, the expansion of donor T cells recognizing
specific antigens will be proportional to the amount of antigen
available, i.e., the expression level of the antigen bearing protein
will determine the extent of T cell expansion. Secondly, this T
cell expansion is likely governed by the affinity of the antigen
to the HLA molecule, and the affinity of the T cell receptors for
antigen-HLA complex. This is an exponential relationship, with
T cell growth increasing non-linearly in response to changing
affinity. An important clue to this is provided by the T cell clonal
frequency distribution which follows Power Law when these are
plotted out for T cell clones present in normal individuals (55).

T cell frequency ∝ Antigen expression× emHA−HLA affinity × TCR affinity

Based on the above model, an alloreactive donor cytotoxic T
cell response was simulated. To do this the array of mHA in
each patient was considered as an operator matrix modifying a
hypothetical cytotoxic T cell clonal vector matrix. Utilizing the
basic assumption that T cell expansion will be governed by the
binding affinity of the variant peptide to HLA, and for model
estimation of antigen driven T cell proliferation, assuming unit
affinity of the TCR for each mHA-HLA complex (since this was
not known for this particular set of antigens), each responding T
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FIGURE 2 | The vector operator model of minor histocompatibility antigen presentation to T cell receptors in an individual. TCRi- i
th T cell receptor; mHAi-HLA- i

th

minor histocompatibility antigen-HLA complex; NtTCx- Number of T cell at time t; Pexp- polymorphic protein expression; K- Growth constant; N0- Starting T cell count;

afmHA- Affinity of mHA*TCR affinity; r- Growth rate; m- cumulative mHA-HLA burden, alloreactivity operator; T- Total simulated T cell vector.

cell clone’s proliferation was determined by the logistic equation
of growth (Figure 2). Assuming uniform growth conditions, r
values in the logistic equation, these simulations, showed that
the simulated organ-specific alloreactive T cell clonal growth
had marked variability, with orders of magnitude of difference
between different HLA matched DRPs (N = 78). This was
because of the differences in the unique polymorphic peptide
sequences and their binding to the many different HLA types.
In this study higher total and organ-specific T cell counts were
associated with the incidence of moderate to severe GVHD (56).
T cell growth in these simulations exhibited a sigmoid, logistic
dynamic over time similar to immune reconstitution kinetics
exhibited by allograft recipients (57). This model predicted the
emergence of a limited number of dominant T cell clones
responding to highly expressed and high affinity mHA—HLA
class I complexes unique to each individual depending on their
HLA type. On the other hand, there was a large number of low
frequency clones responding to poorly expressed protein-derived
mHA, weakly bound to the corresponding HLA. When the
model was adjusted to incorporate competition with dominant
higher affinity clones, it demonstrated chaotic dynamics with
suppression of the lower affinity clones in early time points,
identifying this as a possible contributor to the stochasticity
observed in the clinical setting. Further, once variability in
TCR affinity for the mHA-HLA complexes is accounted for in
this model, then the even greater variability and randomness
in T cell responses may be observed between different donor-
recipient pairs. Change in the term for growth rate, r in
the model will have profound impact on the variability seen
and GVHD risk. When evaluated for HLA class II molecule
presentation, these alloreactive mHA libraries further expanded

several-fold given the longer peptide sequences which may
bind HLA class II molecules, increasing the mathematical
complexity at hand. Nevertheless, this work demonstrates that
these antigen arrays are susceptible to mathematical modeling
and thus of potential use in estimating the likelihood of GVHD
occurring in HLAmatched (or mismatched) SCTDRP (58). Such
estimates will potentially serve to personalize GVHD prophylaxis
regimens to allow optimal GVL effect in future trials, while
suppressing GVHD.

With these data in mind, when the relative number of
tumor specific antigens and minor histocompatibility antigens
are examined it becomes obvious that the relatively small
number of TSA compared with mHA, may in most individuals
result in outcompeting of tumor specific targets, by normal
tissue targets setting up the field for GVL occurring in the
company of GVHD (Figure 1). Thus, polymorphic normal
recipient antigens (mHA) expressed in the malignant clones
will be more likely to be presented to the donor T cells and
contribute to a relapse-free-state, than TSA. The mathematics
are further complicated by the possibility that the TSA compete
not only with the mHA for presentation, but also with the non-
polymorphic/non-antigenic peptides in the recipient’s tissues,
which will far outnumber both these sets of peptides, since
these will also be loaded onto the HLA molecules and presented
to the donor helper and cytotoxic T cells. The mathematics
dealing with this problem were introduced in the paper by
Salman et al. It is also imperative that the immunogenic antigens
have peptides with an affinity to both HLA class I and HLA
class II molecules and be expressed in a particular malignancy
in an individual for those to be effective at provoking an
immune response.
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FIGURE 3 | T cell clonal proliferation will depend on affinity and abundance of antigen at the time of initial exponential expansion. The donor graft has a T cell clonal

repertoire with the potential to react to many different antigens. Once infused into the recipient the T cell clones expand in proportion to the relative antigen affinity and

abundance as can be seen in two different scenarios emerging from the same donor cell infusion. Other factors which will influence this growth are cytokines, degree

of tissue injury and pharmacotherapy for GVHD prophylaxis.
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All is not lost in the mathematical medley of chaos and
combinatorics. It is clear that the quantitatively driven T cell
responses depend on relative antigen abundance and HLA
affinity. Traditionally HSCT is done with patients in remission,
and as immunosuppression is withdrawn, they may develop
chronic GVHD, which confers protection from relapse, and in
a few patients GRFS might be observed. This likely depends
on both the extent of T cell clonal diversity emerging after
transplantation, as well as the balance of antigen expression.
It is therefore critical to understand the notion of relative
antigen abundance (Figure 3), such that to elicit an effective
immune response an antigen has to be present in an adequate
quantity. Such relative antigen abundance of TSA and mHA
may be modulated by vaccination using TSA, as has been
reported in melanoma patients (59). This may increase the
likelihood of GVL developing in a GVHD-free state in patients
with hematological malignancies. It is important to recognize
the logistic growth kinetics of T cell clones with an early
exponential growth phase, and the importance of timing in
vaccine administration before the onset of this growth. Another
approach already in practice is to use hypomethylating agents
to alter the expression of immunogenic cancer testis antigens
(9). This therapy provides an extensive library of alternative
immune targets for the donor T cells to focus on and has
been successfully combined with donor lymphocyte infusions
to treat post allograft relapse (60). It is to be recognized that
this model only partially encompasses the complexity of normal
and post-transplant immune responses and does not give a
complete explanation for the GVHD-GVL dissociation observed
in patients who experience GRFS, That state represents a
complex interplay of the factors described here with conditioning
regimens and GVHD prophylaxis, and of course tumor growth
kinetics. Antigen presentation triggered by tissue injury and
cytokine release are critical factors in these calculations, as are

pharmacological suppression of T cell growth, and elimination of
T cell clones.

In conclusion, mathematical modeling of immune
reconstitution, guided by NGS, along with an in-depth
analysis of the relative expansion of donor T cell clones in
response to the differentially expressed TSA and normal
recipient antigens in individual patients, may allow a deeper
understanding of the apparently stochastic nature of clinical
outcomes observed at a population level. Mathematical modeling
of T cell responses has revealed the chaotic dynamics of post-
transplant immune responses, when multiple antigens with
different HLA binding affinities and tissue expression levels
are studied (58, 61, 62). Thus, stochasticity is built into the
system, however, the probability windows for GVHD-GVL
determination, may be narrowed by a using tools such as NGS
of normal and malignant recipient, as well as donor exomes,
and mathematical simulation of alloreactive T cell responses
to mHA and TSA. These strategies can be used to identify the
optimal TSA which would yield a T cell response, and these
may then be used to derive tumor specific vaccines, altering
the relative antigen abundance at crucial early times following
SCT. Thus, in-depth genomic analysis may eventually allow us
to truly develop precision medicine tools for optimizing patient
outcomes following SCT.
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