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Abstract: Pharmaceutical eutectics are solid mixtures, where the crystals of active pharmaceutical
ingredients (APIs) are finely divided in the phase-separated microstructures. The size reduction
makes the eutectic formation a viable option to improve the dissolution rate of the poorly soluble APIs.
In the present study, ibuprofen, naproxen, and sorafenib were investigated in terms of their phase
behaviors with fatty alcohols, such as tetradecanol, octadecanol, and docosanol. Among the studied
APIs, only ibuprofen was able to form eutectics with the fatty alcohols, and this was in agreement with
the feasibility prediction based on the van ’t Hoff equation and solubility parameters. In vitro release
behavior was significantly improved for the ibuprofen/octadecanol eutectic mixture, although the
practical insolubility of octadecanol in water was the opposite of the outstanding hydrophilicity of
usual eutectic formers. The feasibility prediction and the choice of eutectic formers in the present
study will be useful in advancing the utility of the pharmaceutical eutectics.
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1. Introduction

About 70–90% of drug candidates and 40% of the marketed drugs are estimated to suffer the
problem of inadequate bioavailability caused by their poor aqueous solubilities [1,2]. These active
pharmaceutical ingredients (APIs) are categorized as classes 2 and 4 in the biopharmaceutical classification
system (BCS), and diverse approaches have been devised to solve their solubility problems [3–6].
First, intrinsic improvement of the solubility is pursued through the formation and selection of salts,
cocrystals, metastable polymorphs, and amorphous phases of the APIs [3–5,7]. The salt formation and
cocrystallization can be complementary to each other since the former requires ionizable groups and the
latter usually relies on strong hydrogen bonding [5,7]. Metastable polymorphs and amorphous phases
are relatively unstable high energy states that require additional stabilization strategies [4–6]. Second,
kinetic enhancement of the dissolution rate is the goal of the size diminution where the surface area in
contact with the physiological aqueous environments is enlarged [4,6]. Also, when the particle size is
about below 200 nm, an additional solubility increase becomes notable [8,9]. Top-down approaches
for the size reduction include milling and high-pressure homogenization, and bottom-up methods
precipitation, freeze drying, and phase separation [4,6,10–13]. During the process, avoiding the
aggregation of small particles is critical, which can arise from the high energy characteristics of their
surfaces [6,10].

The reduction of crystal size through phase separation is of special interest because the process is
thermodynamically driven, and the phase-separated drug crystals are encased and stabilized by the
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carrier excipients [13–15]. Especially, when the API and the carrier form a eutectic mixture at a specific
composition, a lamellar microstructure is generated the API and carrier nanocrystals sandwiching one
another [13,15,16]. The resulting enhancement of the drug dissolution has been long recognized in
pharmaceutics. Diverse systems have been studied, and the classic examples include sulfathiazole/urea,
griseofulvin/succinic acid, and fenofibrate/poly(ethylene glycol) [13,15,17–20]. While the effectiveness
of the eutectics is evident with the many successful examples, there are some issues to address to
fully utilize the process of eutectic formation. First, the characteristics of the effectual eutectic formers
(the eutectic-inducing carrier materials) have been investigated to predict the successful pairs of
API/eutectic former. The studies have been approached from both thermodynamic and molecular
viewpoints, and the theories need to be substantiated with more diverse cases [13,15,21,22]. Second,
the hydrophilicity of the eutectic formers and their aqueous solubilization have been considered as
contributing features in the previous studies [4,13,14]. Still, it is not obvious if it is a necessary condition
for the dissolution improvement of APIs. In addition, the biocompatibility of the eutectic formers is
another factor to consider carefully [23].

In the present study, we explored the eutectic formation of APIs with saturated fatty alcohols of
low toxicity [24]. Specifically, tetradecanol (TD, CH3(CH2)13OH), octadecanol (OD, CH3(CH2)17OH),
and docosanol (DC, CH3(CH2)21OH) were used. TD (myristyl alcohol) and OD (stearyl alcohol) are
common pharmaceutical excipients used in various formulations including oral [25,26]. They are also
permitted food additives [27]. DC (behenyl alcohol) is used for topical treatment with its antiviral
activity [28]. Also, TD, OD, and DC are practically insoluble in water [24]. The model APIs in this study
are ibuprofen (IBU), naproxen (NPX), and sorafenib (SOR), which are well-known for their limited
solubilities (Figure 1) [11,21,22]. In summary, the combinations of the fatty alcohols and APIs were
studied to understand the conditions to successfully form the eutectic structures. When successful,
we aimed for the optimal eutectic pairs for the improvement of the API release behavior.
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2. Materials and Methods

2.1. Materials

Three active pharmaceutical ingredients (APIs) were ibuprofen (IBU: 99%, Alfa Aesar, Tewksbury,
MA, USA), naproxen (NPX: ≥ 98%, Tokyo Chemical Industry, Tokyo, Japan), and sorafenib
(SOR:≥ 99%, Jinan Rouse Industry, Jinan, China). All fatty alcohols were purchased from Sigma-Aldrich
(St. Louis, MO, USA): 1-tetradecanol (TD, CH3(CH2)13OH: ≥ 95%), 1-octadecanol (OD, CH3(CH2)17OH:
99%), and 1-docosanol (DC, CH3(CH2)21OH: 98%).

To make a fed state simulated intestinal fluid (FeSSIF), FaSSIF/FeSSIF/FaSSGF powder was
purchased from Biorelevant (London, UK). Sodium chloride (NaCl, ≥ 99.5%), sodium hydroxide
(NaOH,≥ 97%), and acetic acid (≥ 99%) were from Sigma-Aldrich. Further, 1 M HCl (aq) and 1 M NaOH
(aq) were obtained from Samchun Chemical (Seoul, Korea) and Daejung Chemical (Gyeonggi, Korea),
respectively. Deionized water (DI water, resistivity > 18.2 MΩ·cm) was from a Direct-Q3 water
purification system (Millipore, Burlington, MA, USA).
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2.2. Thermal Analysis and Melt Crystallization

Phase behaviors of the mixtures of APIs (IBU, NPX, and SOR) and fatty alcohols (TD, OD, and DC)
were investigated using a differential scanning calorimeter (DSC: DSC3 STARe system, Mettler-Toledo,
Columbus, OH, USA). DSC was calibrated before experiments for temperature and enthalpy using
indium and zinc. Sample mixtures were lightly ground with an agate mortar and pestle, and 2–3 mg of
the powders were used for each DSC run (40 µL Al pan with a pinhole-punched lid under nitrogen gas
atmosphere, heating rate 10 ◦C/min). Each sample measurement was repeated in triplicate.

Melt crystallized samples for further characterization were prepared as follows. Each API and
fatty alcohol were separately ground for 2 min with an agate mortar and pestle, which was used to
prepare the API/fatty alcohol mixtures in the desired ratios. The mixtures were melted by heating on
Al foil using a hot plate (HS-180, Misung Scientific, Gyeonggi, Korea). The completely melted mixtures
were moved to a refrigerator (4 ◦C) and crystallized. After 24 h, the crystalline samples were lightly
ground for 2 min and used for further analyses.

Recrystallization behaviors of some melt crystallized mixtures were observed using an optical
microscope (OM: BX-51, Olympus, Tokyo, Japan) coupled with a hot stage (FP90, Mettler-Toledo,
Columbus, OH, USA). Typically, a melt crystallized sample between a glass slide and a cover glass was
heated to remelt completely. Then, the recrystallization process was monitored during cooling under
cross polarization equipped with the first-order retardation plate.

2.3. Characterization of Melt Crystallized API/Fatty Alcohol Mixtures

In vitro release behavior was studied in FeSSIF (pH 5.0, 37 ◦C) using a USP type II apparatus
(paddle) at 100 rpm (RC-3 dissolution tester, Minhua Pharmaceutical Machinery, Shanghai, China).
FeSSIF was prepared following the recipe provided by the supplier (Biorelevant, London, UK).
It contained sodium taurocholate (15 mM), lecithin (3.75 mM), sodium chloride (203 mM), sodium
hydroxide (101 mM), and acetic acid (144 mM). For each dissolution test, an appropriate amount of
powder mixture was added to a 500 mL FeSSIF solution to have IBU 2 mg/mL. The 3 mL aliquots of the
solution were withdrawn after 5, 10, 20, 30, 40, 60, 90, and 120 min, and the equal amount of the fresh
FeSSIF solution was immediately added to maintain the total volume constant. The UV absorbance of
each aliquot was measured at 264 nm (V730, Jasco, Tokyo, Japan) after filtering through a 0.20 µm PTFE
filter (Advantec, Tokyo, Japan), and it was converted to IBU concentration using a pre-constructed
calibration curve. All release experiments were independently repeated in triplicate.

X-ray diffraction (XRD) was performed on the melt crystallized samples using a D2 PHASER
diffractometer (Bruker AXS, Billerica, MA, USA). A 2θ range of 5 to 35◦ was scanned at 0.02◦ increment
(scanning rate 1◦/min) with CuKα radiation (λ = 1.5406 Å) at 30 kV and 10 mA. The operation was in
the θ-θmode, and a zero-background holder (Bruker AXS) was used for better sensitivity.

3. Results and Discussion

3.1. Melting Behaviors of API/Fatty Alcohol Mixtures

Nine melting diagrams of the combinatorial mixtures of the three APIs and the three fatty
alcohols were constructed based on DSC thermograms (Figure 2, Figures S1–S6). Figure 2 shows the
representative diagrams of APIs with OD, and those with TD and DC are qualitatively similar within
the same APIs (Figures S1–S3). IBU formed eutectic mixtures with all three fatty alcohols (Figure 2a and
Figure S1). The approximate eutectic compositions were IBU/TD = 3:7, IBU/OD = 5:5, and IBU/DC = 6:4,
and their eutectic temperatures were ca. 30, 49, and 59 ◦C, respectively. In contrast, NPX and SOR
formed no eutectic mixture with any fatty alcohol (Figure 2b,c and Figures S2 and S3).
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Analysis of the melting diagrams based on the van ’t Hoff equation revealed high compatibility
between IBU and the fatty alcohols in the liquid phases:

1
T f us

=
1

T f us,API∗
−

R
∆H f us,API∗

ln(γAPIxAPI), (1)

where xAPI, γAPI, and R are the mole fraction of an API, activity coefficient, and gas constant, respectively;
∆Hfus,API* and Tfus,API* are the molar enthalpy of fusion and melting point of the pure API; Tfus is
the melting point at xAPI [29]. The dotted lines in the melting diagrams in Figure 2 and Figures
S1–S3 represent ideal behavior in the API-rich regions, where the activity coefficient of API in the
liquid solution (γAPI) is unity. Only IBU/fatty alcohol cases showed negative deviations from the ideal
behavior indicating favorable interactions between the API and the fatty alcohols [30]. For example,
the γAPI value at xAPI = 0.8 was 0.97 with OD, and it became smaller with more OD (0.94 and 0.83
at xAPI = 0.7 and 0.6, respectively) showing larger deviations from the ideal behavior. In contrast,
NPX and SOR did not show similar negative deviations with any fatty alcohols.

An alternative approach with the van ’t Hoff equation has been provided in the form of an index
Ic [21]. A slightly modified equation for the Ic can be written as follows if the assumption of marginal
melting point depression in the original equation is lifted [29]:

Ic =
∆H f us,API∗

R

(
1

T f us, f a
−

1
T f us,API∗

)
, (2)

where Tfus,fa is the melting point of pure fatty acid, and the others are as previously defined for
Equation (1). Ic for IBU was ca 1.15, 0.51, and 0.13 with TD, OD, and DC, respectively. Ic for NPX was
3.62, 2.81, and 2.34 with TD, OD, and DC, respectively. Ic for SOR was 5.66, 4.68, and 4.10 with TD,
OD, and DC, respectively. (Note that the experimental data are in Supplementary Table S1). Since the
eutectic formation has been predicted when Ic < 2.5, the probability of eutectic formation was estimated
high for IBU, marginal for NPX, and limited for SOR [21].

Compatibility between APIs and fatty alcohols was also estimated by translating their molecular
structures into the solubility parameters using a group contribution method [31]. Solubility parameters
have been used to predict the miscibility of the various compounds, such as solvents, polymers,
and APIs [32,33]. The values of the solubility parameters (δ) for the fatty alcohols in this study are
TD 18.87, OD 18.61, and DC 18.44 MPa1/2. Those for the APIs are IBU 20.95, NPX 23.41, and SOR
29.22 MPa1/2. The proximity between the δ values of fatty alcohols and IBU (∆δ / 2.5 MPa1/2) is
qualitatively consistent with the experimental results of the melting diagrams and their analysis.
The differences of solubility parameters (∆δ) were over about 4.5 MPa1/2 between NPX and fatty
alcohols, and 10.3 MPa1/2 between SOR and fatty alcohols.
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More quantitative analysis could be performed using a simple and useful criterion developed
for the prediction of miscibility at temperature T (K) using solubility parameters (δsolute and δsolvent in
MPa1/2) and molar volume (Vsolute in cm3/mol) [34]:

4.80
√

T ≥
√

Vsolute |δsolvent − δsolute|. (3)

If T = 300 (and 350) K is taken for simplicity since the melting temperatures of the fatty alcohols
are 313, 334, and 347 K for TD, OD, and DC, respectively, the δsolvent (δfatty alcohol) criteria for the APIs
(Vsolute = 200.3, 192.3, and 319.5 cm3/mol for IBU, NPX, and SOR, respectively) in the present study
become as follows [35]: 15.08 (14.60) ≤ δfatty alcohol (MPa1/2) ≤ 26.82 (27.30) for IBU; 17.41 (16.93) ≤
δfatty alcohol (MPa1/2) ≤ 29.41 (29.89) for NPX; 24.57 (24.20) ≤ δfatty alcohol (MPa1/2) ≤ 33.87 (34.24) for SOR.
The results predict the compatibility of the APIs with the current fatty alcohols (δfatty alcohol ~ 18 MPa1/2)
in the order IBU (high) > NPX (borderline) >> SOR (no). The advantage of the solubility parameter
approach is no use of experimental data from the melting point diagram construction. The general
utility of this approach is currently under investigation with structurally more diverse excipients.

Overall, the analysis of the melting behaviors of the nine API-fatty alcohol mixtures revealed that
the alcohol-type excipients (TD, OD, and DC) exhibited eutectic behavior only with IBU among the APIs
in the present study. The high compatibility of IBU was confirmed by the analyses of both van ’t Hoff

equation (γ < 1) and solubility parameters (∆δ / 2.5 MPa1/2). From now on, further structure-property
characterization will be limited to the eutectic-forming IBU cases.

3.2. Crystallization Behaviors of IBU/Fatty Alcohol Mixtures

The crystallization behaviors of IBU/fatty alcohol mixtures were studied after melting at 90 ◦C
(< 1 min) using OM coupled with a hot stage under cross polarization. Representative compositions for
IBU/OD and IBU/DC are shown in Figure 3 and Supplementary Figure S7, respectively. IBU/TD case
was omitted because the solid structure was thermally unstable its eutectic temperature 30 ◦C being
too close to room temperature.
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Figure 3. OM micrographs of IBU/OD mixtures at the compositions of IBU/OD (a) 5:5 (eutectic mixture)
and (b) 2:8. Cooling crystallization behaviors were shown under cross polarization. All scale bars are
100 µm.

Figure 3 shows the clear differences between the IBU/OD crystallization behaviors at the eutectic
and non-eutectic compositions. Figure 3a (IBU/OD = 5:5 eutectic mixture) shows the abrupt appearance
of the birefringence at 40–41 ◦C in the entire domain demonstrating sweeping crystallization with
the supercooling about 8–9 ◦C (eutectic temperature 49 ◦C). In contrast, Figure 3b (IBU/OD = 2:8)
displays the initial nucleation of OD crystals (47 ◦C) followed by its growth and eutectic crystallization
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(45 ◦C). As a result, the eutectic mixture displays subtle fibrillar features within relatively homogeneous
domains, and the non-eutectic mixture shows easily discernable microstructures. (The gross color
difference in the birefringence at the eutectic composition is probably in part due to the local thickness
variations of the sample sandwiched between the glass slide and the cover glass [36].) The crystallization
behaviors are in accordance with the experimentally determined melting diagram of IBU/OD and
the fact that a lamellar structure develops during the solidification at the eutectic composition to
minimize the distance of molecular diffusion during the phase separation [13,15,16]. Note that in the
IBU/OD = 2:8 example, 3/4 OD should crystallize as separate domains and 1/4 OD forms a eutectic
structure with the same amount (mole) of IBU since the eutectic composition is IBU/OD = 1:1.

Similarly, Supplementary Figure S7a (IBU/DC = 6:4 eutectic mixture) shows the sudden and
extensive crystallization at 52–54 ◦C with the supercooling about 5–7 ◦C (eutectic temperature 59 ◦C).
Also, Supplementary Figure S7b (IBU/DC = 2:8) shows the initial DC nucleation (65 and 62 ◦C)
followed by the crystal growth (60 ◦C). Here, 5/6 DC should crystallize as separate domains and 1/6 DC
forms a eutectic structure with a 50% larger amount (mole) of IBU since the eutectic composition is
IBU/DC = 3:2.

Overall, the observed crystallization behavior conforms to the experimentally determined melting
diagrams and the classic behavior of binary eutectic mixtures. The implications of the phase-separated
structures at the eutectic compositions were evaluated in terms of the IBU release behavior as described
in the following section.

3.3. In Vitro Release Behaviors of IBU/Fatty Alcohol Mixtures

The IBU release behaviors from the IBU/OD and IBU/DC eutectic mixtures are shown in Figure 4
and Supplementary Figure S8, respectively. Again, IBU/TD was omitted due to its thermal instability
caused by its eutectic point (30 ◦C) close to room temperature. Dissolution media was FeSSIF, and three
different samples were tested for each eutectic mixture. The eutectic mixtures were the melt crystallized
samples after mixing IBU and fatty alcohols at the eutectic compositions. The physical mixtures were
simple combinations of individually melt crystallized components (IBU and fatty alcohols) at the
eutectic compositions. Neat IBU with the same thermal history served as a negative control.
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Figure 4. (a) Dissolution profiles (FeSSIF, n = 3) of the IBU/OD eutectic mixture (5:5) in comparison of
physical mixture and neat IBU. (b) Microstructure analysis using peak broadening of X-ray diffraction
peaks. Crystallite size was calculated using (2 0 0), (2 1 0), and (2 1 −1) diffraction peaks with the use of
Scherrer equation, and the full width at half maximum (FWHM) was shown as normalized against the
narrowest peaks (neat IBU).

The highest dissolution rate was observed from the IBU/OD eutectic mixtures (Figure 4a).
Especially, the initial dissolution rate (< 5 min) was dramatically enhanced. After 5 min, the released
portion of IBU from the IBU/OD eutectic mixture was about 63%, compared to 38% for the negative
control (IBU only) and 47% for the simple physical mixture at the eutectic composition. After 30 min,
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ca. 83% IBU was released from the eutectic mixture, whereas about 59% and 71% were released from
the negative control and the physical mixture, respectively.

The dramatic increase of the initial release rate was attributed to the micro- and nano-structures
intrinsic to the melt crystallized eutectics. The OM results (Figure 3a) without showing easily
discernable microcrystalline domains suggested the reduced IBU domain size due to the lamellar
structure formation. Further nanostructure analysis was performed via XRD assisted by the Scherrer
equation [11,37]:

L =
Kλ
β cosθ

(4)

where crystallite size L is calculated as a function of the full width at half maximum (FWHM, β) of the
diffraction peak at angle 2θwith the X-ray wavelength λ (1.5406 Å) and a constant K (0.9). Note that
the crystallite size obtained from the XRD analysis is not a particle size, but rather the average size of
the single crystalline sections within a larger entity [11,37].

Figure 4b shows the crystallite size of the melt crystallized IBU/OD mixtures at various
compositions. The analysis was based on the {2 0 0}, {2 1 0}, and {2 1 −1} diffraction peaks of IBU,
which did not overlap with the diffraction peaks of OD (Supplementary Figure S9a) [38]. The crystallite
size was the smallest (average 26.3 nm) for the melt crystallized eutectic mixture (IBU/OD = 5:5). That for
the neat IBU with the same thermal history was ca. 42% bigger (average 37.3 nm), which corresponds
to the 29% decrease of the surface area if spherical shapes are assumed for simplicity. All the other
IBU/OD compositions displayed a larger IBU crystallite size than the eutectic mixture. The relatively
small crystallite size at the lowest IBU content (IBU/OD = 2:8) was probably due to the fact that the
crystallization space was already populated with OD crystals making the subsequent IBU crystal
growth within the minor eutectic phase hindered. Note that the FWHM was shown as normalized
against the narrowest peaks (neat IBU).

Analogous release results for IBU/DC are shown in Figure 5a. The initial dissolution rate was
enhanced to release 51% IBU at 5 min for the eutectic mixture (IBU/DC = 6:4) compared to 38% for the
negative control (IBU only). The physical mixture was comparable to the eutectic mixture with a 50%
IBU release after 5 min. The release after 30 min was also comparable between the eutectic mixture
and the physical mixture as 67% and 73%, respectively.
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Figure 5. (a) Dissolution profiles (FeSSIF, n = 3) of the IBU/DC eutectic mixture (6:4) in comparison of
physical mixture and neat IBU. (b) Microstructure analysis using peak broadening of X-ray diffraction
peaks. Crystallite size was calculated using (2 0 0), (2 1 0), and (2 1 −1) diffraction peaks with the use of
Scherrer equation, and the FWHM was shown as normalized against the narrowest peaks (neat IBU).

Figure 5b shows the crystallite size of the melt crystallized IBU/DC mixtures. The analysis was
again based on the {2 0 0}, {2 1 0}, and {2 1 −1} diffraction peaks of IBU (Supplementary Figure S9b).
The crystallite size was average 27.7 nm for the melt crystallized eutectic mixture (IBU/DC = 6:4).
Most other IBU/DC compositions displayed a larger IBU crystallite size. The small crystallite size at the
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lowest IBU content (IBU/DC = 2:8) was again (as was in IBU/OD) probably because of the hindered IBU
crystal growth. The FWHM values were shown as normalized against the narrowest peaks (neat IBU).

Overall, the most successful enhancement of IBU release was achieved through the IBU/OD
eutectic mixture. While TD and DC also showed the behavior of binary eutectic mixtures with IBU,
these eutectic formers proved not as ideal as OD. IBU/TD suffered from thermal instability because the
initially low melting point of TD (40 ◦C) contributed to the eutectic point (30 ◦C) near room temperature.
The release enhancement of IBU/DC was not as much as IBU/OD probably because DC with higher
hydrophobicity (DC, CH3(CH2)21OH vs. OD, CH3(CH2)17OH) counteracted the IBU release from the
lamellar structures by partially functioning as a barrier.

4. Conclusions

In summary, some API/fatty alcohol mixtures were studied to identify successful pairs for eutectic
formation. IBU, NPX, and SOR of limited aqueous solubility were chosen as model APIs, and TD,
OD, and DC were the fatty alcohol excipients. Only IBU formed eutectic mixtures with the fatty
alcohols, and this could be explained by its high compatibility. Also, the high compatibility of IBU
with fatty alcohols could be predicted by the approaches based on van ’t Hoff equation and solubility
parameters. Among the successful eutectic mixtures, IBU/OD proved optimal for the enhancement of
IBU release (over 60% increase compared to neat IBU based on 5 min dissolution). The improvement is
intriguing especially because the fatty alcohols are practically insoluble in water. The conventional
eutectic formers for the dissolution enhancement have been mostly hydrophilic. We believe the current
study helps to expand the possible choices of eutectic formers when multiple properties need to be
optimized [13,39]. More diverse cases of pharmaceutically acceptable excipients are currently under
investigation to further advance the utility of the eutectic formation.
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