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The adverse biological effects of ionizing radiation (IR) are commonly attributed to the 
generation of DNA double-strand breaks (DSBs). IR-induced DSBs are generated by 
clusters of ionizations, bear damaged terminal nucleotides, and frequently comprise 
base damages and single-strand breaks in the vicinity generating a unique DNA dam-
age-clustering effect that increases DSB “complexity.” The number of ionizations in clus-
ters of different radiation modalities increases with increasing linear energy transfer (LET), 
and is thought to determine the long-known LET-dependence of the relative biological 
effectiveness (RBE). Multiple ionizations may also lead to the formation of DSB clusters, 
comprising two or more DSBs that destabilize chromatin further and compromise overall 
processing. DSB complexity and DSB-cluster formation are increasingly considered in 
the development of mathematical models of radiation action, which are then “tested” 
by fitting available experimental data. Despite a plethora of such mathematical models 
the ultimate goal, i.e., the “a priori” prediction of the radiation effect, has not yet been 
achieved. The difficulty partly arises from unsurmountable difficulties in testing the funda-
mental assumptions of such mathematical models in defined biological model systems 
capable of providing conclusive answers. Recently, revolutionary advances in methods 
allowing the generation of enzymatic DSBs at random or in well-defined locations in the 
genome, generate unique testing opportunities for several key assumptions frequently 
fed into mathematical modeling – including the role of DSB clusters in the overall effect. 
Here, we review the problematic of DSB-cluster formation in radiation action and pres-
ent novel biological technologies that promise to revolutionize the way we address the 
biological consequences of such lesions. We describe new ways of exploiting the I-SceI 
endonuclease to generate DSB-clusters at random locations in the genome and describe 
the possible utility of Zn-finger nucleases and of TALENs in generating DSBs at defined 
genomic locations. Finally, we describe ways to harness the revolution of CRISPR/Cas9 
technology to advance our understanding of the biological effects of DSBs. Collectively, 
these approaches promise to improve the focus of mathematical modeling of radiation 
action by providing testing opportunities for key assumptions on the underlying biology. 
They are also likely to further strengthen interactions between experimental radiation 
biologists and mathematical modelers.
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iNTRODUCTiON

All living organisms are continuously exposed to background ion-
izing radiation (IR) deriving from space, solar activity, or emitted 
by certain minerals and soils. Although it is generally accepted 
that IR “per se” can be harmful, IR is nevertheless extensively used 
for diagnostic purposes and in cancer therapy. Therefore, it is of 
a great importance to investigate and rationalize the mechanisms 
of IR action on living organisms, as this will directly help to maxi-
mize human radiation protection and to optimize approaches to 
cancer treatment.

Ionizing radiation generates a broad spectrum of DNA dam-
ages, encompassing single-strand breaks (SSB), a variety of oxida-
tive base lesions, DNA–DNA crosslinks as well as DNA–Protein 
crosslinks, and double-strand breaks (DSBs) (1, 2). However, 
from the variety of lesions induced by IR, the DSB elicits most 
of the documented detrimental effects (3, 4), including genomic 
rearrangements, chromosome aberrations, cell death, genetic 
mutations, and cancer (5–8).

It has long been known that different IR modalities generate 
markedly different biological responses although they gener-
ate in principle the same basic lesions described above. Thus, 
α-particles, neutrons, or high-charge and energy particles 
(HZE ions) are significantly more effective in killing cells than 
high-energy electrons or protons, γ-rays, or X-rays (9, 10). This 
increased efficacy, typically described by the higher relative bio-
logical effectiveness (RBE), depends on the linear energy transfer 
(LET) of the radiation modality  –  which for charged particles 
is the energy absorbed per unit particle track-length, expressed 
as kiloelectron-volts/micrometer. Typically, RBE increases with 
increasing LET of radiation up to a maximum and declines 
subsequently (11–14).

In the recent years, charged particles such as carbon ions are 
increasingly considered as main modality for cancer radiotherapy 
and inflammation treatment in an effort to harness in a targeted 
manner their higher LET (15–18).

COMPLeXiTY OF iR iNDUCeD DSBs: 
THe ROLe OF LeT

Bacteria harness the severity of DSB as a lesion to protect 
themselves from foreign DNA. A family of enzymes, known 
as restriction endonucleases (RE), recognize and cut specific 
DNA sequences generating DSBs with blunt or staggered ends. 
During this process, nucleotides are not altered and the phos-
phodiester bond retains the 5′-phosphate and 3′-OH groups at 
each DNA strand. As a result, processing and removal of the 
DSB by simple ligation is in principle possible. RE-generated 
DSBs have been used to model IR-induced DSBs (see below) 
(19, 20) and found to have reparability that depends on the type 
of ends generated (21–23).

The approach to model DSBs using nucleases gained ground 
with the introduction of I-SceI homing endonuclease, whose 18-bp 
long recognition sequence (5′-TAGGGATAA/CAGGGTAAT-3′) 
is not present in the mammalian genome. The I-SceI recognition 
sequence can nevertheless be inserted into a mammalian genome 
according to a pre-conceived design using molecular biology 

approaches (24–27). I-SceI recognition sequences artificially 
introduced in a genome can be cut to generate DSBs by expressing 
constitutive or inducible forms of the endonuclease (28, 29). The 
biological consequences of these DSBs can then be analyzed using 
molecular biology approaches. The strength of the method lies in 
the fact that DSBs are generated at defined locations in the genome, 
and that combination with appropriately constructed reporters 
allows analysis of the underlying processing mechanisms.

When DSBs are induced by IR via oxidation reactions – either 
direct loss of an electron or attack from an ⋅OH produced from 
the radiolysis of water  –  they frequently comprise ends with a 
3′-damaged sugar in the form of phosphoglycolate and a 5′-OH 
groups (30–33). Such ends prevent direct DNA ligation and neces-
sitate end-processing during repair (34). Moreover, the adverse 
biological effects of X-rays or γ-rays are thought to derive from 
DSBs generated within ionization clusters (35, 36), and not by the 
coincidence of independently generated ionizations on opposite 
DNA strands. Indeed, track-structure calculations using compu-
tational approaches (37–39) show that secondary electrons, at the 
end of their tracks generate clusters of ionizations, i.e., multiple 
ionizations confined in a small volume.

Despite the generation of ionization clusters at the ends 
of low-energy electron tracks, X-rays and γ-rays still deposit 
50–70% of their energy in well-separated ionization events that 
generate a relatively even ionization pattern within the cell (35, 
36). Consequently, X-rays and γ-rays are considered low-LET 
forms of IR. On the other hand, charged particles (e.g., α-particles 
or carbon ions) are considered as high-LET forms of radiation 
because they ionize along their tracks at a higher rate than the 
electrons generated by X-rays (40).

This increased clustering of ionizations generates DNA damage 
that is more complex than that induced by low-LET radiations, in 
the sense that it comprises more DNA lesions within one or two 
turns of the DNA helix (33). It constitutes what is sometimes called 
clustered damage sites (CDS) or multiply damaged sites (MDS) 
(41, 42). While MDS are generated by low-LET radiation such as 
X-rays, they occur more frequently after exposure to high-LET 
radiations and are implicated in their enhanced biological effects.

Indeed, about 30% of DSBs contain additional lesions fol-
lowing exposure to low-energy electrons; notably, this fraction 
increases up to 70% at the same dose of α-particles. In addition, 
the ratio of the number of SSBs to DSBs decreases from 22.8 for 
60Co γ-rays to 3.4 for 50 MeV 12C-ions (39, 43). Since these shifts 
in the spectrum of lesions do not increase the yields of DSBs in a 
manner corresponding to the increased killing after exposure to 
high- versus low-LET radiation, it can be inferred that increased 
clustering of DNA damage is an important determinant of the 
biological effect (see also below) (44).

Complexity at a DSB may compromise repair through the 
simultaneous recruitment of multiple repair-pathway-factors 
(e.g., from one of the DSB repair pathways together with factors 
of BER) to close-by lesions in the DNA. Moreover, it may even 
generate a DSB indirectly when in a complexly damaged DNA, 
individual lesions in the two strands are processed independently 
(6, 43, 45, 46). There is evidence that this form of clustered DNA 
damage outnumbers direct DSBs after exposure to low-LET 
radiation by nearly 4:1. Similarly, delayed formation of DSBs can 
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occur from the chemical evolution in cells of thermally unstable 
lesions, which initially do not break the DNA, but which do so 
minutes after irradiation as they become chemically modified in 
the cellular milieu (47–52). DSB repair models considering DSB 
complexity have been also developed to describe radiation effects 
and DSB repair kinetics throughout the cell cycle (53).

It is thus evident that IR-induced DSBs are the products of 
ionization clusters that generate clustered DNA damage, which 
can present in different forms of complexity including modified 
ends, presence of other lesions in the vicinity of the break, as well 
lesions that generate DSBs only after enzymatic or chemical pro-
cessing. Since the size of ionization clusters that generate complex 
DSBs increases with increasing LET, it is plausible to consider this 
form of DNA damage complexity as a relevant determinant of the 
increased effectiveness of high-LET radiation.

HiGHeR ORDeR OF DNA DAMAGe 
COMPLeXiTY: DSB CLUSTeRS

An additional level of DSB complexity is generated by clusters of 
DSBs (33, 54). This form of DNA damage severely undermines 
local chromatin stability and thus overall processing in a chroma-
tin-location and composition-dependent manner. DSB clustering 
as a cause of irreversible radiation effects has been considered 
by several investigators [see Ref. (39) for a review]. Thus, Bryant 
and his group developed a non-ionic neutral filter elution assay 
to generate histone-depleted nuclear structures retaining higher 
order nuclear matrix organization, and used it to measure DNA 
fragment loss from two or more DSBs within a single-looped 
chromatin domain (55–57). They proposed that the spatial dis-
tribution of DSBs in higher order chromatin loops affects their 
reparability, and that misrepair involves DNA fragment-loss at 
such DSB clusters.

Holley and Chatterjee also considered DSB clusters as a 
particularly consequential form of radiation damage particularly 
for high-LET radiations (58). In their calculations, they found 
fragmentation peaks at 85  bp and then again at multiples of 
1000 bp, which they interpreted as reflecting aspects of chromatin 
structure. Notably, such fragments could indeed be detected by 
pulsed-field gel electrophoresis in irradiated cells (59, 60) and 
have also been postulated using alternative modeling approaches 
(14, 39, 61, 62).

Atomic force microscopy imaging shows clustered DSBs and 
formation of short DNA fragments  –  even when irradiating 
“naked” DNA (63). Small (<30  bp) DNA fragments generated 
from clustered DSBs have also been propose to compromise Ku 
function (64). Further work shows that DNA–PK, a complex 
between the Ku and DNA–PKcs, is also inhibited by short 
(14–20 bp) DNA fragments (63).

The contribution of DSB clusters to the adverse effects of IR 
has been the focus of extensive mathematical modeling (39). 
Ostashevsky developed a model according to which DSB clus-
ters generate small DNA fragments, which can be lost from the 
chromatin context, thus compromising repair of the constituent 
DSBs (65, 66). A more specialized induction of DSB clusters 
within chromatin loops, similar to that considered by Bryant, 
has been used to develop alternative mathematical models 

(39, 61, 62, 67, 68). In addition, Scholz and his group (69–71) use 
an extension of the Giant LOop Binary LEsion (GLOBLE) model 
(72) and classify DNA lesions with respect to their distribution 
in giant chromatin loops as single DSBs or DSB clusters (~2 Mbp 
in size) (73–75). These assumptions generally allow successful 
fitting of cell survival data (76, 77), including fluctuations of 
radiosensitivity throughout the cell cycle (72).

Mathematical models to analyze DSB repair kinetics based 
on DSB complexity have been also recently developed (78). 
In the synapsis formation (SF) model, the rejoining of complex 
DSBs is not simulated as a first order event (break filling/join-
ing). Rather the rejoining of complex DSBs is assumed to be 
realized through SF, similar to a second-order reaction between 
DNA ends. This approach allows DNA ends to be clearly defined 
before the SF, which is essential for predicting higher number of 
chromosomal aberrations after high- as compared to low-LET 
radiation.

Notably, the generation of DSB clusters represents a form of 
chromothripsis, defined as chromosome shattering and subse-
quent incorrect rejoining that underpins carcinogenesis (79–82).

The satisfactory fitting of experimental data achieved under 
these assumptions points to the biological relevance of DSB 
clusters as a level of DNA damage complexity that likely explains 
the increased biological efficacy of high LET radiation.

MATHeMATiCAL MODeLiNG OF 
RADiATiON ACTiON wiLL BeNeFiT 
FROM MOLeCULAR BiOLOGY 
APPROACHeS DiReCTLY TeSTiNG 
THeiR BASiC ASSUMPTiONS

Collectively, the above outline shows how the physical clustering 
of ionizations generates DSBs of different complexity, as well 
as DSB-clusters, and places these forms of DNA damage to the 
center of responses elicited by radiation modalities of different 
LET. The recognition that discontinuities in the genome may 
be caused by DSBs of widely different complexity, immediately 
implies different biological consequences.

Information on the molecular underpinnings of the responses 
elicited by genomic breaks of different complexity is scarce despite 
the central contribution widely attributed to this parameter in the 
overall radiation effect. As a result, DNA damage complexity is 
typically only mathematically “modeled” in radiation response 
formalisms, without direct knowledge of the biological effects 
of each complexity level. As a consequence, quality of fitting is 
the only way for testing the validity of the basic assumptions on 
which these models rest. Yet, this approach is not satisfactory due 
to the large spectrum of DNA damages induced by IR and their 
dependence on LET that increases the number of parameters 
required for complete mathematical modeling.

Furthermore, IR-dependent DSB induction by nature precludes 
mechanistic molecular biology experiments on the molecular 
processing of individual lesions, as irradiated cells sustain DSBs 
in a stochastic manner at different numbers and severity that 
are randomly distributed throughout the genome. As a result, 
analysis of effects is only possible by theoretical modeling (39).
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FiGURe 1 | Background information on i-Scei based constructs. (A) 
Top: recognition sequence of I-SceI endonuclease. Note the generation of 3′ 
4-bp overhangs. Bottom: domain structure of an expression vector, 
pCMV3xnls-I-SceI, used frequently in transient transfection experiments to 
express I-SceI (85). Note the three NLS sites that ensure the nuclear 
localization of the expressed enzyme. (B) Schematic representation of the 
MSGneo2S12His neomycin reporter vector developed to specifically analyze 
repair of the I-SceI DSB by HRR (86). (C) Schematic representation of the 
DR-GFP vector developed to specifically analyze repair of the I-SceI DSB by 
HRR (87). The GFP signal allows analysis by flow cytometry 1–3 days after 
transfection. (D) Schematic representation of reporter constructs utilizing the 
Pem1 intron and the Ad2 exon elements, and specifically developed to 
analyze repair of the I-SceI-DSB by HRR and c-NHEJ, respectively (88).
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The above difficulties and shortcomings suggest that the 
field will benefit from molecular biology approaches allow-
ing induction and processing analysis for specific forms of 
DSBs generated at specific locations in the genome. With such 
model-DSBs, the probability associated with each form to be 
processed correctly or incorrectly by each of the available 
repair pathways can be estimated. This information may sub-
sequently be fed as a defined constant in mathematical models, 
reducing thus the number of free parameters and increasing 
the predictive power of the model. In the following sections, 
we describe such biological approaches and explain strengths 
and limitations.

eNDONUCLeASe-iNDUCeD DSBs: THe 
SiMPLeST FORM

Almost a decade ago, a fundamentally new approach for analyz-
ing the effects of DSBs in living cells was introduced using rare 
cutting homing endonucleases. The most widely used member 
of this family of enzymes is the Saccharomyces cerevisiae I-SceI 
endonuclease. As already mentioned, I-SceI recognizes a unique 
18-bp long DNA sequence (Figure  1A), which is absent from 
the human and mouse genomes. Thus, in order for I-SceI to 
generate a DSB in these genomes, its recognition sequence must 
first be inserted using molecular biology approaches. Subsequent 
expression of I-SceI will generate a DSB, specifically at the site 
of integration of the recognition sequence, which can be prese-
lected or random (83, 84). Expression of I-SceI must be transient 
and can be mediated by transient transfection of constitutively 
expressing vectors, or by the proper activation of an inducible 
enzyme.

In the most typical application of this model system, the I-SceI 
recognition sequence is combined in a construct including a 
reporter gene [e.g., neomycin or in recent reporter assays, green 
fluorescence protein (GFP)] and located to interrupt its expres-
sion. Restoration of reporter expression serves as readout for the 
operation of a particular repair pathway in the processing of the 
DSB. These reporter constructs are in their majority integrated 
in the genome and are appropriately designed to evaluate repair 
efficiency through homologous recombination repair (HRR), 
classical non-homologous end joining (c-NHEJ), alternative end 
joining (alt-EJ), or single-strand annealing (SSA). Thus, analysis 
of DSB processing by a specific DSB repair pathway requires the 
construction of the appropriate vector and its integration into the 
genome.

In initial studies, I-SceI was utilized to induce a DSB between 
two inactive neomycin (neo) direct repeat genes integrated into the 
genome of CHO cells, processing of which by homologous recom-
bination generated a functional neo gene (86, 89) (Figure 1B). 
In these constructs, the fist neo allele is inactivated by the I-SceI 
recognition sequence. The second neo allele is promoterless or 
truncated and may carry silent single-base substitutions that cre-
ate restriction sites useful in product characterization through 
restriction fragment length polymorphism analysis. In the native 
state of this construct, neo is not expressed, and cells are sensitive 
to neomycin. However, after I-SceI-mediated DSB induction, 

gene conversion may generate a functional neo gene and thus also 
neomycin-resistant clones. Such events are considered to reflect 
successful processing of the DSB by HRR.

More recently, DR-GFP reporter systems based on two directly 
repeated copies of the gene encoding GFP have been developed 
in the laboratory of Dr. Jasin (87) (Figure 1C) and find in dif-
ferent forms wide application in the field. In this system, gene 
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FiGURe 2 | Outline of reporter constructs developed in the laboratory 
of Dr. J. Stark (90) to analyze efficiency of i-Scei-DSB-processing by 
different DSB repair pathways in human cells. (A) DR-GFP construct for 
analyzing HRR. (B) EJ5-GFP for analyzing c-NHEJ (C) SA-GFP construct for 
analyzing single-strand annealing (SSA) and (D) EJ2-GFP construct for 
analyzing alt-EJ.
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conversion events result in expression of GFP, which can be 
quantitated by flow cytometry. The two mutated GFP genes 
are oriented as direct repeats and are separated by a puromycin 
N-acetyltransferase gene, which allows selection for cells carrying 
the construct. Distinct advantage of this version of the assay is 
that results are typically available 1–3 days after transfection of 
the I-SceI expression plasmid. Analysis of neomycin resistance, 
on the other hand, requires 1–2 weeks.

The DR-GFP reporter system has been successfully adapted to 
human cells, resulting in generation of U2OS–DR-GFP cells (90) 
(Figure 2A). Similar to the previously described system, one of 
the GFP genes in DR-GFP, SceGFP, is mutated by the insertion of 
the I-SceI recognition site, while the second, internal GFP frag-
ment, iGFP, located 821 bp downstream from SceGFP, has lost its 
active promotor element.

All reporter systems described above are designed to determine 
the activity of HRR in the processing of a single DSB induced by 
I-SceI endonuclease. In addition to the above systems, a set of 
GFP-based fluorescent reporter constructs has been generated 
by Gorbunova et  al. (88, 91) (Figure  1D), allowing analysis of 
NHEJ and HRR. These constructs are also based on artificially 
engineered GFP genes containing I-SceI recognition sites for the 
induction of a DSB. In their native state, the integrated constructs 
do not express GFP as a result of an N-terminal truncation 

and mutations in the duplicated gene (in the case of the HRR 
construct), or by the integration within the GFP gene of an exon 
(Ad) flanked by the Pem1 intron elements (in case of the NHEJ 
construct). Here again, successful repair of the I-SceI-induced 
DSB by NHEJ or HRR will restore the GFP gene, an event that is 
quantitated by flow cytometry.

Green fluorescence protein-based reporter substrates are now 
also available to specifically assess c-NHEJ, SSA, or alt-EJ (29, 90, 
92, 93). Most of these constructs rely on the principles described 
above, but include elements allowing analysis of a specific DSB 
repair pathway (Figures 2A–D).

As already mentioned, use of I-SceI as DSB inducer requires 
integration of its recognition sequence in the genome of human, 
mouse, or hamster cells. During the last few years, alternative 
approaches have been developed using endonucleases for which 
recognition sequences are present in the genome. One of these 
systems utilizes the I-PpoI endonuclease, a member of a His–Cys 
box family of homing endonucleases isolated from the myxomy-
cetous Physarum polycephalum (94), to induce multiple DSBs in 
the human genome (95–97).

I-PpoI is a relatively small enzyme (18–20 kDa), operating as a 
homodimer, which in its natural host functions to cleave the highly 
conserved 15-bp ribosomal DNA homing sites (Figure  3A) to 
generate target intron transposition or “homing” (98). Expression 
of I-PpoI in human cells causes cleavage of approximately 10% of 
the identified I-PpoI genomic target sites (200–300 per genome) 
(95), generating 20–30 DSBs per cell, equivalent to the number 
of DSBs introduced by 1 Gy of X-rays. For increased versatility, 
a system has been developed using an I-PpoI fused to a mutant 
estrogen receptor hormone-binding domain. The fusion protein 
stays constitutively in the cytoplasm unable to generate DSBs. 
Translocation into the nucleus can be mediated by incubation 
with 4-hydroxytamoxifen (4-OHT) (99–101), allowing thus the 
regulated induction of DSBs.

This system allows characterization of several features of the 
DSB response in human cells and has certain advantages over 
I-SceI-based systems. First, I-PpoI sites are present at well-known 
locations in the genome, which obviates their artificial introduc-
tion. Second, evolutionary conservation of the endogenous 
I-PpoI sites permits DSBs to be introduced and assays to be 
performed in virtually any eukaryotic cell line. Third, as I-PpoI 
induces multiple DSBs in the genome, full activation of the DNA 
damage response ensues, which allows analyses that go beyond 
repair pathway utilization.

An elegant assay along similar lines has also been proposed 
by Aymard et al. (103). These investigators developed a cellular 
system harboring a stable integration of a gene expressing the 
rare-cutting AsiSI restriction nuclease, which targets an 8-bp 
double-stranded DNA sequence (Figure 3A) and cleaves between 
the T and C to generate a 2-bases, 3′ overhanging ends (25, 104, 
105). The genome-integrated AsiSI endonuclease in this model 
system is also fused to a modified estrogen-receptor ligand-
binding domain. Thus, treatment of cells with 4-OHT triggers 
nuclear localization of the AsiSI enzyme and the rapid induction 
of approximately 150 sequence-specific DSBs dispersed across 
the genome (25, 104). This system provides a unique opportunity 
to simultaneously study, at a molecular level, repair events that 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FiGURe 3 | (A) Recognition sequences of I-PpoI (top) and AsiSI (bottom) 
endonucleases (see text for details). Note that both endonucleases generate 
3′ overhangs. (B) The inducible system of AsiSI endonuclease developed in 
the laboratory of Dr. Legube (102). The DIvA cell line expresses a form of the 
AsiSI endonuclease fused to estrogen receptor (ER) and the auxin-inducible 
degron (AID). The enzyme sequesters under normal conditions in the 
cytoplasm unable to reach the nucleus and thus to induce DSBs. 
Administration of tamoxifen (4-OHT) causes efficient translocation of the 
enzyme to the cell nucleus and the induction of DSBs (top part of the 
schematic). In this system, the endonuclease activity of AsiSI can be rapidly 
turned off by removing 4-OHT and administering auxin that activates the 
degron element and causes ubiquitin-mediated degradation of the enzyme 
(bottom part of the schematic).
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transpire at many different DSBs located within various known 
chromatin locations (103).

Furthermore, as the AsiSI cleavage-sites are known, it is pos-
sible to use chromatin immunoprecipitation (ChIP) to directly 
monitor recruitment of repair factors onto damaged chromatin 
(103). Using this approach, it could be demonstrated that DSBs 
induced across the genome are not repaired by the same DSB 
repair pathway, and that transcriptionally active, H3K36me3 
enriched, chromatin is preferentially repaired by homologous 
recombination, thereby pointing out a critical role of pre-
existing chromatin state as determinant of DSB repair pathway 
selection (103).

As with the I-SceI and I-PpoI systems, the AsiSI system does 
not allow analysis of DSB repair kinetics because the enzyme 
remains present in the nucleus for prolonged periods of time 
and can cut repeatedly. To reduce this limitation, the same group 
added an auxin-inducible degron (AID) to AsiSI-ER fusion 
nuclease, thus allowing fast and efficient degradation upon 
auxin addition (102, 106) (Figure 3B). A similar improvement 
has also been successfully introduced in the I-SceI system and 
was coupled with an extension allowing parallel analysis of HRR 
and alt-EJ (29).

Zn-F NUCLeASeS AND TALeNs: TOOLS 
FOR SiTe-SPeCiFiC DSB GeNeRATiON

Before the discovery of the CRISPR/Cas9 system that rapidly 
overtakes all previous systems (see below), significant effort and 
investment in resources was placed in two families of site-specific 
nucleases: the zinc-finger nucleases (ZFNs) and the transcription 
activator-like effector nucleases (TALENs). Both families of engi-
neered proteins have a chimeric design with a common nuclease 
domain and a DNA-binding domain (Figure 4). In both families, 
DSB formation is mainly catalyzed by FOK1 endonuclease (107, 
108) that generates, depending on the design, cohesive, or blunt 
DNA ends without sequence specificity (Figure 4). Yet, the con-
cepts underlying the DNA-binding characteristics of ZFNs and 
TALENs are distinct and responsible for their inherent strengths 
and limitations. Their versatility arises from the ability to custom-
ize through molecular biology approaches their DNA-binding 
domains in ways that allow the recognition of virtually any DNA 
sequence.

The Cys2–His2 zinc-finger domain is among the most com-
mon types of DNA-binding motifs in eukaryotes operating in a 
widely different array of DNA sequences. It actually represents 
the second most frequently encoded protein domain in the 
human genome. The ZFN technology harnesses this biological 
evolution. An individual zinc-finger consists of approximately 30 
amino acids in a conserved ββa (beta-sheet, beta-sheet, and alpha-
helix) motif configuration. Each zinc-finger domain contacts 3 or 
4 bp in the major groove of the DNA (108). In this technology, 
different zinc-finger motifs are combined to generate ZFNs that 
recognize the desired sequence 9 bp left and right from the target 
region (Figure  4A). The two components of the ZFN cut the 
corresponding DNA strands using FOK1, which is attached to 
the C-terminus of the ZFN modules (Figure 4A). Moreover, the 
cleavage domain requires the 5′ edge of each binding site to be 
separated by a 5–7 bp spacer region (Figure 4A).

Despite distinct strengths, the construction of ZFNs is com-
plex requiring extensive know-how; it is very time consuming 
and shows limited flexibility in terms of engineering proteins 
recognizing any DNA sequence. As a result, their utilization, even 
before the advent of the CRIPSR/Cas9 system, had given way to 
the much more flexible TALENS.

TALENs contain TALE repeats of about 33–35 amino acids 
that recognize a single base pair via two hypervariable residues 
(repeat-variable di-residues, RVDs) (108). Combined TALE 
repeats can recognize a specific DNA target site of about 17 bp 
in length (Figure  4B). As a result of this unique property, 
TALENs can be easily and flexibly engineered to recognize DNA 
sequences of arbitrarily chosen lengths and compositions. For 
the application of TALENs discussed here, the number and loca-
tion of the induced DSBs will depend on the frequency and the 
location in the genome of the selected sequence used to design 
the nuclease (109, 110). Thus, sequences can be selected and 
TALENs designed inducing in the genome a single DSB or mul-
tiple DSBs in variable configurations, depending on the specific 
question addressed.

The TALEN technology is powerful and flexible, and engineer-
ing of a site specific TALEN can be accelerated by “off-the-shelf ” 
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FiGURe 4 | (A) Schematic representation of ZFNs showing the DNA binding 
and the FOK1 nuclease domains. Two zinc fingers bind left and right the site 
of DSB generation and localize the activity of FOK1 in a DNA molecule. The 
DNA binding domains are frequently designed to recognize a 9 bp target 
sequence. The FOK1 nuclease cuts the DNA strand 5–7 bp 3′ of the target 
site. Depending on the design of the target sites, expression of a ZNF 
nuclease will result in the formation of cohesive or blunt DNA ends. (B) 
Schematic representation of TALENs showing the DNA binding and the 
FOK1 nuclease domains. Targeting sites and spacer regions are indicated. 
Here again, cohesive or blunt ends are generated at the DSB depending on 
the selection of the recognition sites left and right the DSB.

FiGURe 5 | (A) Schematic representation of the CRISPR/Cas9 system in  
S. Pyogenes (see text for details). Cas9 generates blunt ends by cutting 3 bp 
downstream the PAM region of the target DNA molecule. (B) Schematic 
representation of Cas9 activation with a chimeric gRNA combining crRNA 
and tracrRNA (see A; see also text for more details). Cas9 nuclease harbors 
two nuclease domains: HNH and RuvC-like; mutation of one or both of these 
nuclease domains results in Cas9 enzymes with “nickase” properties, or with 
null nuclease activity. The latter form of Cas9 can be tethered to other 
proteins for gain-of-function DNA sequence-specific operations.
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components that are combined to generate a functional protein 
within 1–2  weeks. Although the second generation of TALEN 
technology further improves on the distinct advantages of the 
approach, the work required to generate and test a single site 
specific TALEN nuclease is still considerable (111). As a result, 
this technology is also rapidly losing ground to CRIPR/Cas9 
technology.

THe CRiSPR/Cas9 SYSTeM: GReAT 
veRSATiLiTY, SHORT LeARNiNG CURve

The CRISPR/Cas9 system with all its applications and potential 
is arguably the most rapidly expanding and evolving field in 
modern biology (Figure 5). From the initial discovery of the 
system as part of bacteria immunity to its modification for 
sequence specific genome editing, the technology has gone 
through a series of revolutionary developments that have been 
extensively reviewed (112–114). Relevant for the present out-
line is the potential of the system to generate a DSB anywhere 
in the genome by targeting at the specific location the Cas9 

nuclease. Cas9 cuts the DNA as shown in Figure 5 to generate 
blunt DNA ends, guided by a partially complementary RNA 
molecule (gRNA). In its current stage of development, gRNA 
carries in addition to the sequence required for the proper 
targeting of Cas9 to the DNA molecule also a sequence for its 
activation.

Originally, Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR) were found in the genome of Escherichia coli, 
but their function remained unknown until recently, when it was 
shown that these genetic elements are essential for the develop-
ment of resistance against bacteriophages (115). Moreover, the 
CRISPR-associated protein 9 (Cas9) was described as a RNA-
guided DNA endonuclease associated with the CRISPR-adaptive 
“immune” system in Streptococcus pyogenes (115, 116).

Three types of CRISPR systems have been identified thus 
far; from these forms type II is the most widely studied and the 
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FiGURe 6 | (A) Organization of the HPRT gene in the Chinese hamster  
C. griseous (Cg) near exons 7 and 8. Possible recognition sites of gRNAs 
allowing the generation of DSBs at different locations within exons and 
introns are indicated. (B) Exon 3 of the HPRT gene in H. sapiens (Hs). 
Possible recognition sites for gRNAs allowing the generation of single DSBs 
or DSB clusters within exons and introns are indicated. (C) Constructs 
carrying different combinations of I-SceI sites engineered at different 
distances to model DSB clusters of increasing complexity. The schematic 
shows I-SceI constructs that would generate upon integration in the genome 
of a cell, single DSBs, DSB pairs, DSB quadruplets or a cluster of six DSBs. 
The distances shown are arbitrary and chosen only for illustration purposes.
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most relevant to the present outline. In type II CRISPR system, 
invading DNA is nucleolytically processed into small fragments 
(approximately 20  bp) that are incorporated into the CRISPR 
locus. This locus is transcribed, and transcripts are then pro-
cessed to generate small CRISPR-RNAs (crRNA), which together 
with a trans-activating-CRISPR-RNA (tracrRNA) guide Cas9 to 
digest invading DNA upon repeat encounter (Figure 5A).

An important element of Cas9 activation is the Protospacer 
Adjacent Motif (PAM) at the target DNA sequence, which is 
essential for interactions between Cas9 and DNA (Figure 5A). 
Early work revealed that all three components (Cas9 protein, 
mature crRNA and tracrRNA) are required for efficient recruit-
ment to and digestion of the target DNA sequence. A major 
development in the field was the recognition that crRNA and 
tracrRNA can be combined to generate a single guide RNA 
(gRNA) that enables all operations required for the targeted func-
tion of Cas9 (Figure 5B). This development greatly simplified the 
evolution of a large array of applications and forms the basis of 
the applications described here.

The number of applications utilizing CRISPR/Cas9-related 
genome editing/manipulation approaches is increasing expo-
nentially with time. The technology is also very powerful for 
studies on the effects of single DSBs and DSB clusters in the mam-
malian genome (117, 118). Thus, existing CRISPR/Cas9 systems 
(116, 119) can be combined with appropriately designed gRNAs 
with the aim of inducing single DSBs or DSB clusters of different 
complexity within exons or introns of selected genes and study 
consequences in cell survival, genome integrity, DSB-response, 
or gene function. Figures 6A,B show as an example possible site 
selections for DSB induction within the HPRT gene, since it has 
been extensively used in the past to study IR-induced mutation 
induction (120, 121). Here, single DSBs and DSB clusters are 
induced at selected locations throughout the gene and at various 
constellations by combining different gRNAs (Figure 6).

The CRISPR/Cas9 technology is extremely powerful and 
promises to revolutionize the field by virtue of its ability to gen-
erate DSBs with great ease at any location of a known genome. 
In addition, mutated forms of Cas9 can be introduced in which 
one or both endonuclease domains are inactivated, thus gen-
erating enzymes with “nickase” or “null” activity (Figure  5B). 
Combination of Cas9 “nickase” with other systems of DSB 
generation, including the I-SceI system described below, will 
allow testing of the biological consequences of a single-strand 
break in the vicinity of a DSB (complex DSB). Finally, fusions 
between a non-functional Cas9 enzyme and protein domains 
generating additional forms of DNA damage will further expand 
the spectrum of experiments investigating DSB complexity as a 
parameter in biological responses (Figure 5B). As with the I-SceI, 
I-PpoI, and the AsiSI systems, Cas9 will also generate repeated 
DSBs in the genome and its prolonged presence in the cell nucleus 
precludes analysis of DSB repair kinetics.

The fact that the generation of each DSB using the CRISPR/
Cas9 technology requires individual gRNAs restricts somewhat 
its application for generating multiple DSBs, which at times may 
be a desirable outcome (see next session). This is because the 
generation of multiple single DSBs or DSB clusters at different 
genomic locations will require a number of gRNAs. This problem 

may be partly overcome by designing gRNAs, which recognize 
sequences in the genome that are repeated several times – exclud-
ing of course highly repeated DNA sequences. For example, 
many proteins contain common functional domains, encoded by 
similar if not identical DNA sequences, which could be targeted 
at once using a single gRNA molecule. An alternative solution 
for this limitation is offered by the model system described in the 
following section.

i-Scei-BASeD MODeLS OF DSB 
CLUSTeRiNG

We conclude this overview by outlining a recently introduced 
I-SceI-based model system, complementary to the system out-
lined in the previous section using the CRISPR/Cas9 technology 
that allows direct analysis of assumptions regarding the biological 
effects of multiple single DSBs and DSB clusters (54). The model 
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system utilizes transposon technology (122) to generate clonal 
cell lines with multiple genomic integrations of constructs car-
rying I-SceI restriction sites at arrangements selected depending 
on the specific question addressed (Figure 6C). Cleavage of these 
sites by transient or conditional expression of I-SceI to generate 
single DSBs or DSB clusters at different numbers (typically 1–15) 
and constellations allow analysis of the biological consequences 
at different endpoints. First results obtained using this model 
system (54) indicate that DSB clusters compromise c-NHEJ and 
possibly HRR, leaving alt-EJ as last resort in DSB processing.

Application of the same technology to mutant cell lines with 
defects in different aspects of DSB repair will allow extensive 
analysis of the DSB repair pathways handling this form of 
 damage (4, 123, 124).

CONCLUDiNG ReMARKS

It is evident from the above outline that numerous novel tech-
nologies are available that promise to revive and revolutionize 
the ways we address fundamental questions of radiation damage 
and the associated radiation responses. These technologies allow 
the testing in well-defined systems of key hypotheses of math-
ematical models of radiation action, and the generation of data 
that may help to reduce their free variables. Such systems will 
be particularly useful in the analysis and characterization of the 
role of single DSBs and DSB cluster formation in the biological 
responses of high LET radiation.

The system utilizing the I-SceI meganuclease to generate single 
DSBs and DSB clusters at random locations in the genome will 
extend the successful application this enzyme saw during the past 
15  years to new questions relevant to DNA damage response. 
Zn-finger nucleases and TALENs will perhaps remain useful in 
addressing related questions at specific settings. Certainly, the 
most promising technology is the one utilizing the CRISPR/
Cas9 system to introduce DSBs at pre-selected locations in the 
unmodified genome, with a pre-defined constellation.

One aspect with all systems of enzymatic DSB generation 
that needs to be considered in comparisons with the effects of 

IR concerns the specifics of DSB induction. Thus, IR by virtue of 
its well defined and typically short exposure times induces DSBs 
through non-recurring, distinct energy deposition events; DSBs 
induced in this way are subsequently processed and terminally 
removed from the genome. Nucleases, on the other hand, through 
their prolonged presence after expression or activation in the cell 
nucleus, will generate cycles in which initial DSB induction and 
subsequent processing will be followed by additional cutting and 
processing cycles, which will in principle continue until repeat 
processing mutates the nuclease recognition sequence, or until 
enzyme expression or activity subside. Since both “solutions” 
require a relatively long window of time, which is also likely to 
be different for each individual DSB, they generate a condition 
of chronic assault to the DNA generating “chronic” DSBs. Such 
chronic DSBs may induce responses with facets not present 
to those generated by the single events of IR, and which may 
engage distinct processing mechanisms that change the ultimate 
outcome. Additional problems may arise from off-target effects, 
variable on-target cutting frequencies, and the induction of a 
single form of DSB these systems allow.

Despite these inherent limitations, the approaches described 
above promise to enrich our knowledge of the biological responses 
to DSBs, to improve the focus on this form of DNA damage, and 
to enhance the power and utility of mathematical modeling by 
generating first principles that can be used as starting points. Last 
but not least, they are likely to strengthen interactions between 
experimental radiation biologists and mathematical modelers.
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