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Abstract: This in-vitro study investigates the bonding interfaces reached by the conditioning of a
splint material additively manufactured by digital light processing (AM base) as well as the shear
bond strength (SBS) of resins bonded to these surfaces (repair material). Therefore, the AM base
was either stored in dry for 12 h or wet environment for 14 days to simulate ageing by intraoral
wear. The dry and wet group was bonded after physical and/or chemical conditioning to cylinders
made from polymethylmethacrylate or four novel polymers allowing splint modifications. Blasted
and methylmethacrylate (MMA)-conditioned Polymethylmethacrylate (PMMA) bonded to PMMA
acted as the gold standard. The surface profiles revealed highest differences of Ra towards the gold
standard in AM base conditioned with other than MMA after sandblasting. The adhesively bonded
repair materials of the wet AM base were further aged in wet environment for 14 days. The SBS
of the gold standard (25.2 MPa and 25.6 MPa) was only reached by PMMA bonded to blasted and
MMA-conditioned AM base after dry (22.7 MPa) and non-conditioned after wet storage (23 MPa).
Four repair materials failed to reach the threshold of 5 MPa after dry storage and three after wet
storage, respectively. Non-conditioned AM base revealed the highest risk for adhesive fractures
when using other resins than PMMA.

Keywords: mechanical properties; surface characteristics; additive manufacturing; failure mode;
light curing resin

1. Introduction

Intraoral splints are medical devices that facilitate the treatment of bruxism, cran-
iomandibular disorders [1–4], jaw pain, or support surgical approaches [5,6] (corrective
osteotomy of the jaws). In common dental practice, intraoral splints act most prevalently
as bite guards [7,8]. Polymethylmethacrylates (PMMA) are the gold standard of conven-
tional manufacturing [9], either in terms of autopolymerizing methacrylate monomer and
polymer in powder liquid technique partially combined with vacuum molded polyethylen
frameworks [10–13] or in terms of CAD/CAM-milled from industrial polymerized blanks.

Today, additive manufacturing allows a direct manufacturing of computer-aided
designed splints based on intra- or extraoral jaw scans [14–16]. Therefore, light-curing
resins containing (meth) acrylates as well as initiators for the photopolymerization and
fillers are provided for digital light processing (DLP) technology or stereolithography
(SLA) [17–20].

Clinically, intraoral splints must be modified occasionally in terms of material addi-
tion directly after manufacturing (in the dental lab) or after a period of intraoral service
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(chairside or in the dental lab). This measure is necessary to obtain further/other functional
areas on the occlusal surface or to repair minor destructions due to the bite forces and
other causes which may lead to appliance fractures [21]. In both cases, the gold standard
for PMMA-based intra-oral splints is the application of autopolymerizing PMMA in the
powder–liquid technique.

With introduction of novel, light-curing resins [22], it remains questionable which way
these medical devices can be manually additively securely fixed. Besides the conventional
approach of adding MMA/PMMA in the powder–liquid technique, several manufactures
offer “ready to use” or “fixation” resins for this objective. Furthermore, the conditioning of
the concerning surfaces can be facilitated by chemical (i.e., MMA application) or physical
(i.e., sandblasting) pretreatment [23,24].

However, the current literature lacks an insight into the adhesive bonding of such
modelling resins to additive manufactured resin splints, depending on their pretreatment
strategies and their status of clinical wear. This is crucial, because most of the splints are
worn by night and the attached material must securely integrated, to hinder unintentional
swallowing or even aspiration of fractured resin parts. Such an adverse event can be
regarded as critical because the resins are not radiopaque and thereby cannot be localized
or tracked in the patient’s body.

Therefore, an in-vitro study was set up to determine effects of surface conditioning as
well simulation of hydrothermal ageing in the oral cavity on the shear bond strength of
modelling resins to a 3D-printed splint material.

2. Materials and Methods
2.1. Specimen Preparation

The study design is shown in the flowchart (Figure 1). There are two “base mate-
rials” (simulating the splint) and five “cylinders” (simulating the repair material). The
conventional base group was made from polymethylmethacrylate (PMMA base) and the
experimental base group a light curing 3D printable resin (AM base) for digital light pro-
cessing (DLP). The base materials and cylinders were combined by adhesive bonding
as shown in the flowchart with and without wet ageing of the base material. In total
680 specimens (n = 20 per group) were produced. All materials are further described in
terms of their composition in Table S1 (Supplementary File 1: Tables S1–S5).

2.1.1. Base Material and Ageing

For the AM base group, a total of 640 bar-shape specimens (20 × 10 × 2 mm3) were
printed in with Rapidshape D 30 II (Rapid Shape Generative Production Systems GmbH,
Heimsheim, Germany) from a splint material for digital light processing (Freeprint splint®

2.0; DETAX GmbH& Co. KG, Ettlingen, Germany; LOT# 220405:04/21; see Supplementary
Table S1). The dimensions of 20 × 10 × 2 mm3 of the specimen are demanded from the ISO
standard 10477. The specimens were angulated 45◦ to the printing direction with a layer
thickness of 50 µm (print-job available as digital object with doi:10.5281/zenodo.4926348).
Postprocessing followed the respective instructions for use according to the materials’ man-
ufacturer. At first, the so-called pre- and main-cleaning process was performed by storing
the base materials in a tub filled with isopropanol 98%set in a running ultrasonic bath
(Ultrasonic Cleaner; Proclean 10.0M ECO, ulsonix® cleaning instruments, Zielona, Poland).

After 3 min of pre-cleaning, the specimens were shifted to a tub with unused iso-
propanol 98% for another 3 min ultrasonic cleaning. Subsequently, the base materials
were dried with oil-free compressed air and post-exposed in a light curing unit (Otoflash
G171, NK- OPTIK, Baierbrunn, Germany) with two times 2000 xenon light flashes under a
nitrogen protected gas atmosphere. After the first 2000 flashes, the printed test specimen
bases were turned over once to ensure light curing from both sides.
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Al2O3-blasted, M = acrylate monomer) or not (NC) and bonded to cylinders made from different polymers. There after 
every group was either stored for 14 more days in 37 °C distilled water or stored 24 h in dry condition before shear bond 
testing. A total of 680 specimens was distributed to 34 experimental groups (n = 20 each). 
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NK- OPTIK, Baierbrunn, Germany) with two times 2000 xenon light flashes under a ni-
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For the PMMA base group, 40 specimens were made from polymethylmethacrylate 
(PMMA) in powder (10 g) to liquid (7 mL) technique (Palapress clear, LOT monomer 
K010108:05/22, powder K010048:11/21; Heraeus Kulzer GmbH, Hanau, Germany) apply-
ing a preform of same dimensions made from a vinyl-polysiloxane mold polymerized 
submerged in water within a pressure pot at 2 bar for 20 min and 55 °C. Ten test specimen 
with the dimensions required by ISO standard 10477 were first designed with the aid of 
CAD and additively manufactured (freeprint splint® 2.0 with Rapidshape D 30 II). These 
base specimens were arranged in two rows on a plastic shell and fixed at the edge with 
wax in order to be covered with liquid, autocuring vinyl-polysiloxane (Dubisil® 30, Dreve 
Dentamid GmbH, Unna, Germany; LOT# 901659:01/21, 002693:02/22). The molded part 

Figure 1. Flowchart of the specimen distribution over the experimental groups. PMMA-base and AM base were either
aged by a wet storage in 37 ◦C distilled water for 14 days or not (24 h dry storage at 23 ◦C), followed by conditioning
(B = Al2O3-blasted, M = acrylate monomer) or not (NC) and bonded to cylinders made from different polymers. There after
every group was either stored for 14 more days in 37 ◦C distilled water or stored 24 h in dry condition before shear bond
testing. A total of 680 specimens was distributed to 34 experimental groups (n = 20 each).

For the PMMA base group, 40 specimens were made from polymethylmethacrylate
(PMMA) in powder (10 g) to liquid (7 mL) technique (Palapress clear, LOT monomer
K010108:05/22, powder K010048:11/21; Heraeus Kulzer GmbH, Hanau, Germany) ap-
plying a preform of same dimensions made from a vinyl-polysiloxane mold polymerized
submerged in water within a pressure pot at 2 bar for 20 min and 55 ◦C. Ten test specimen
with the dimensions required by ISO standard 10477 were first designed with the aid of
CAD and additively manufactured (freeprint splint® 2.0 with Rapidshape D 30 II). These
base specimens were arranged in two rows on a plastic shell and fixed at the edge with wax
in order to be covered with liquid, autocuring vinyl-polysiloxane (Dubisil® 30, Dreve Den-
tamid GmbH, Unna, Germany; LOT# 901659:01/21, 002693:02/22). The molded part was
removed from the plastic tray as well as the test specimens. Thus, this negative molding
could be used for the fabrication of the gold standard PMMA bases for the control group.

The 680 bar like specimen acted as the “base” and half of the specimens in the PMMA
base were assigned to either “dry storage” (24 h at 23 ◦C in an airproof light-protected
bag (Whirl-Pak® black, HT83.1, Carl Roth GmbH & Co. KG, Karlsruhe, Germany) or “wet
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storage” (14 days at 37 ◦C in purified water protected from light, stored in an incubator
(B6030, Heraeus Instruments, Bad Grund, Germany).

In the AM base group n = 280 were assigned to “dry storage” and n = 360 to “wet
storage”. Both groups (PMMA and AM) with and without initial ageing were conditioned
as follows after ageing.

2.1.2. Base Material Surface Conditioning

The PMMA base material (n = 40) was blasted with 125µm Al2O3 (Cobra, Renfert
GmbH, Hilzingen, Germany) at 3 bar for 10 s. Thereafter the monomer was applied with a
microbrush for 30 s and let air dry for 30 s (Palapress liquid, Heraeus Kulzer GmbH).

The AM base material (n = 640) was conditioned as follows, experimental as well as
according to instructions of the specific manufacturers:

• AM base + BM (n = 40): The AM base material was blasted with 125µm Al2O3 (Cobra,
Renfert GmbH, Hilzingen, Germany) at 3 bar for 10 s. Thereafter the monomer was
applied with a microbrush for 30 s and left to air dry for 30 s (Palapress liquid, Heraeus
Kulzer GmbH).

• AM base + M (n = 40): The AM base material was conditioned with monomer (Pala-
press liquid, Heraeus Kulzer GmbH) applied with a microbrush for 30 s and left to air
dry for 30 s.

• AM base + B (n = 320): The AM base material was blasted with 125µm Al2O3 (Cobra,
Renfert GmbH, Hilzingen, Germany) at 3 bar for 10 s. Eighty out of these 320 were
further conditioned with:

+PS (n = 40): Primostick (PS202; LOT 201202:03/23, Primotec Joachim Mosch e.K, Bad
Homburg, Germany) was applied for 30 s with a microbrush and light cured for 2 min
(Elipar TriLight, 3M ESPE AG, Seefeld, Germany).
+FB (n = 40, only “wet storage”): freeform bond liquid (freeform, LOT 200710:07/19;
Detax GmbH & Co KG, Ettlingen, Germany) was applied for 30 s with a microbrush
and let air dry for 30 s.

• AM base + PS (n = 40): Primostick (PS202; LOT 201202:03/23, Primotec Joachim
Mosch e.K, Bad Homburg, Germany) was applied for 30 s with a microbrush and light
cured for 2 min (Elipar TriLight, 3M ESPE AG, Seefeld, Germany).

• AM base + FB (n = 40 only “wet storage”): freeform® bond liquid (freeform® bond,
LOT 200710:07/19; Detax GmbH & Co KG, Ettlingen, Germany) was applied to
untreated AM base specimens for 30 s with a microbrush and left to air dry for 30 s.
FB is provided by the manufacturer for adaptations to splints after a period of clinical
application, only.

• AM base + NC (n = 200). The AM base material was connected “as printed” to the
cylinders without any further surface treatment or conditioning.

2.2. Surface Characterization of the Bonding Interface

Three specimens from each base material group (surface conditioned and NC) were
topographically evaluated to determine Ra (arithmetic average of filtered roughness profile)
values. Therefore, contact profilometry was performed (Perthometer S6, Mahr GmbH,
Göttingen, Germany) with 121 profile lines on a square of 9 mm2 applying a Gaussian
filter of 0.6 mm analyzed with the attached software (Mountains Map V7.3, Digital Surf,
Besançon, France). To avoid bias of measurements at the specimens’ marginal area, profiles
1–20 and 101–121 were excluded from statistical analysis.

For qualitative insights, one specimen per group was evaluated by SEM (LEO 1430
(Carl Zeiss AG, Oberkochen, Germany) after gold-palladium (SCD005, Bal-Tec GmbH,
Schalksmühle, Germany) sputtering in 100×, 1000×, 2500×, and 5000× magnification.

2.3. Bonding of the Cylinder Specimens to the Base Materials

The base materials were set into the six slots of a brass mounting device (Figure 2).
Each slot was covered with a fitting plate of 2.5 mm in height containing a cylindric hollow
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pattern (cylinder) of 5 mm in diameter in its centre. Mounts and plates were made from
brass. Each specimen was noted with its base group and cylinder material on its rear side
after bonding.
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Figure 2. Schematic drawing of the device to facilitate the bonding of the repair material (A) within
a cylinder to the base polymer (C) with help of a fitting plate (B). Fitting plate was laid on top of
the base material and assembled in the slots of the brass mount. Thereafter the repair material was
applied to the cylindric hollow in B. In case of light curing resin materials, it was performed initially
with a handheld lamp on each specimen and the brass mount was put into the light oven afterwards.
For PMMA, the brass mount was put into the pressure pot.

The PMMA base specimens were only bonded to auto curing PMMA mixing 10 g
of powder to 7 mL of liquid (Palapress clear, LOT monomer K010108:05/22, powder
K010048:11/21; Heraeus Kulzer GmbH) and polymerized submerged in water within a
pressure pot at 2 bar for 20 min and 55 ◦C. This group of 40 specimens will be noted as the
“gold standard” since it is the conventional method used in daily practice up to now.

The AM base materials were assigned as shown in the flowchart (Figure 1) to be
bonded to cylinders of:

• palapress mixing 10 g of powder to 7 mL of liquid (Palapress clear, LOT monomer
K010108:05/22, powder K010048:11/21; Heraeus Kulzer GmbH) and polymerized
submerged in water within a pressure pot at 2 bar for 20 min and 55 ◦C.

• primosplint directly applied from the rods (Material primosplint; primotec® Joachim
Mosch e.K, Bad Homburg, Germany; LOT# 193138:08/21) to the cylinder with help
of a Heidemann specular. Thereafter the material was light-cured for 1 min with
direct application within the mold (Elipar TriLight, 3M ESPE AG) and 10 min with-
out molding in a light oven (Speed Labolight, Hager & Werken GmbH & Co KG,
Duisburg, Germany).

• freeprint splint was drawn up into a light-protected syringe (5 mL, BD Luer-Lok Tip
REF 309649; Becton-Dickinson and Comp, Franklin Lakes, NJ, USA) from the bottle
(Material Freeprint splint® 2.0; DETAX GmbH & Co. KG, Ettlingen, Germany; LOT#
220405:04/21) and applied into the cylinder. Thereafter the material was light-cured
for 1 min with direct light application within the mold (Elipar TriLight, 3M ESPE AG)
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and 10 min without molding in a light oven (Speed Labolight, Hager & Werken GmbH
& Co KG, Duisburg, Germany).

• freeform fixgel was directly applied from the cartridge with the delivered mixing
tip (Material Freeform fixgel®, DETAX GmbH& Co. KG, Ettlingen, Germany; LOT#
210801: 08/20) into the cylinder. Thereafter the material was light-cured for 1 min with
direct light application within the mold (Elipar TriLight, 3M ESPE AG) and 10 min
without molding in a light oven (Speed Labolight, Hager & Werken GmbH & Co KG,
Duisburg, Germany).

• freeform plast was directly applied from the box (Material Freeform plast®, DETAX
GmbH& Co. KG, Ettlingen, Germany; LOT# 210601: 06/20) to the cylinder with help
of a Heidemann specular. Thereafter the material was light-cured for 1 min with a
direct light application within the mold (Elipar TriLight, 3M ESPE AG) and 10 min
without molding in a light oven (Speed Labolight, Hager & Werken GmbH & Co KG,
Duisburg, Germany).

2.4. Artificial Ageing and Measurement of the Bonded Specimens

The specimens fabricated with dry storage base materials were assigned to further
dry storage for 24 h as described above, and the base materials derived from “wet storage”
were incubated for further 14 days, also as described above. Prior to shear bond testing,
the bonding area of each specimen was determined by macroscopy-based measurements
(M400, Wild, Herrburg, Switzerland) in 20× magnification applying the software Datinf
Measure (Version 2.0; DatInf GmbH, Tübingen, Germany) in mm2 with three decimals as
mean out of three repeated measurements.

2.5. Shear Bond Test and Fracture Mode Analysis

Fracture load (F, in Newton) was evaluated by a universal testing machine (Z010/TN2A,
Zwick GmbH & Co. KG, Ulm, Germany) with the connected software (testXpert, Version
12, Zwick GmbH & Co. KG). The cross-head speed was set to 1 mm per minute from
a starting distance of 0.5 mm to the cylinder, fixed in a 90◦ position to the piston (see
Supplementary File 2, Figure S1). The shear bond strength (SBS, in MPa) was calculated
as follows:

SBS =
F
A

(1)

Equation (1) gives the calculation of shear bond strength (SBS) in MPa where F is the
determined fracture load in Newton and A is the measured bonding area in mm2. In case
of failure prior to the shear bond testing, the value is noted 0 and the specimen excluded
from further statistical comparison of SBS.

The mode of fracture was determined visually with the macroscope (M400) in 20×
magnification to decide if the fracture appeared adhesively (within the bonding surface),
cohesively (within the specimen) or mixed (both present):

• Cohesive fracture: the fracture ran completely in the resin of the 3D printed base material.
• Adhesive fracture: the fracture ran between both materials (base material and re-

pair material).
• Mixed fracture: the fracture contained both fracture modes. There were adhesively

fractured areas and areas within the same specimen that were cohesively fractured.

2.6. Statistical Methods

The collected data were entered into a table and analyzed using the software package
JMP, Version 154 (SAS Comp., Cary, NC, USA).

2.6.1. Surface Roughness of Base Materials

Ra values were calculated as mean of 80 lines (lines #21-100 out of 121) per specimen
to overcome the mismatch between circular bonding interface and the square of surface
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investigation. The mean and standard deviation will be given for each surface after dry
and after wet storage.

The distributions are compared statistically as applying the non-parametric Wilcoxon
test with one-way ChiSquare approximation was used (alpha = 0.05).

2.6.2. Shear Bond Strength

The calculated shear bond values of each group (maximum n = 20 specimens) are
described by mean, median, and standard deviation. The distribution of each group was
tested for normality applying the Shapiro–Wilk test (alpha = 0.05). In case of normal
distribution, the AM groups were compared to the PMMA-based “gold standard” with
Dunnets test. Furthermore, a non-parametric comparison was performed with Wilcoxon
for each pair rank sum test. Both tests were performed applying alpha = 0.05. A mean
value of 5 MPa was set as the minimum threshold for clinical relevance, as given in the
standard ISO 10477 [25].

2.6.3. Failure Mode

The failure modes were described by relative frequencies for each group. Additionally,
the mean SBS values within each group of specimens were calculated per failure mode.

3. Results
3.1. Surface Characteristics of the Base Bonding Interfaces
3.1.1. Surface Roughness of Base Materials

The initial average surface roughness (Ra) of the bonding interfaces following condi-
tioning is given in Table 1.

Table 1. Surface roughness of the bonding interfaces at the base material in dry and wet condition.
Statistical comparison by Wilcoxon Rank sum test and one-way chi-square approximation. (“n.a.”
indicates groups that are not existent due to the study protocol).

Base Material and
Conditioning

Dry Storage
Ra

(n Profile Lines 1,
Mean, SD)

Wet Storage
Ra

(n Profile Lines 1,
Mean, SD)

p-Value

PMMA base + BM 240, 3.37, 0.5 240, 3.69, 0.89 <0.0001

AM base + B 240, 4.89, 1.5 240, 6.23, 1.07 <0.0001

AM base + B-FB 0, n.a., n.a. 240, 0.77, 0.79 n.a.

AM base + BM 240, 5.23, 1.33 240, 5.89, 0.89 <0.0001

AM base + B-PS 240, 1.74, 1.08 240, 1.68, 2.17 <0.0001

AM base + FB 0, n.a., n.a. 240, 0.6, 0.7 n.a.

AM base + M 240, 0.93, 0.18 240, 0.5, 0.2 <0.0001

AM base + NC 240, 0.75, 0.39 240, 0.68, 0.31 <0.0001

AM base + PS 240, 1.13, 0.79 240, 0.26, 0.23 <0.0001
1 80 profiles from three specimens in each group.

3.1.2. Qualitative Surface Evaluation of Bonding Interface

Representative insights into the optical surface configuration in 1000× SEM magnifi-
cation as well as 3D roughness profiles are given for the blasted and MMA-conditioned
PMMA-base (Figure 3), the non-conditioned AM base (Figure 4), the sandblasted AM
base (Figure 5), and the MMA-conditioned AM base (Figure 6). Further illustrations are
provided in Figures S1–S7 within Supplementary File 2.
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3.2. Shear Bond Strength

Six specimens failed prior to SBS testing; namely, two from AM base + M/palapress
(wet storage), one from AM base + NC/palapress (wet storage), and three from the
AM base + NC/freeform fixgel (dry storage). Thus, 674 specimens were successfully
tested. The test for normality revealed a normal distribution for all groups; expect of AM
base + PS/primosplint after dry storage. In this group, the test for normality revealed a
non-normal distribution. The data is given in Appendix A and depicted in Figure 7 for dry
storage and in Figure 8 for wet storage.
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Figure 7. Box-plot of the shear bond strength values within the experimental groups after dry storage.
The gold standard (PMMA) is plotted on the left (marked red). The boxplots with median values are
supported by mean diamonds with 95% confidence intervals. The dashed horizontal line gives the
threshold of 5 MPa defined by the standard (ISO 10477).

Dunnet’s test revealed no statistical significance between the gold standard (PMMA
base + BM/Palapress) for AM base + BM/Palapress after dry storage and for AM base + NC/
Palapress after wet storage (see Table S2, Supplementary File 2). The results of the multiple
non-parametric comparison are given in Table S3 (dry storage) and Table S4 (wet storage) in
Supplementary File 2. Four conditionings underwent with their mean value the threshold
of 5 MPa.

3.3. Failure Modes

In summary, 66 adhesive, 196 cohesive, and 35 mixed failure modes were observed in
the 24 h dry group (23%, 65.3%, 11.7%) and in the 14 d wet group (17.9%, 59.7%, 22.4%),
respectively. The distribution of failure modes within the experimental groups are given in
Figures 9 and 10.
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Figure 8. Boxplot of the shear bond strength values within the experimental groups after wet storage.
The gold standard (PMMA) is plotted on the left (marked red). The boxplots with median values are
supported by mean diamonds with 95% confidence intervals. The dashed horizontal line gives the
threshold of 5 MPa defined by the standard (ISO 10477).
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Figure 9. Distribution of failure modes of the repair materials (x-axis) against AM base splint material
depending on the conditioning (right y-axis) after dry storage. Rectangles without pie charts were
not performed in dry storage condition due to protocol.
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Figure 10. Distribution of failure modes of the repair materials (x-axis) against AM base splint
material depending on the conditioning (right y-axis) after wet storage. Rectangles without pie charts
were not performed in wet storage condition due to protocol.

The gold standard group (PMMA) has only cohesive fractures in the dry storage
group (Mean SBS = 25.18 MPa) and in the wet storage group (Mean SBS = 23.57 MPa).
Within die AM base group only cohesive fractures in both storage groups occurred in the
specimen combined group AM base+BM/Palapress with n = 20 cohesive fractures for dry
storage (Mean SBS = 22.7 MPa) and with n = 20 for the wet storage (Mean SBS = 19.18 MPa).
Eventhough, only cohesive fractures were observed in the group AM-base+B/Palapress
with n = 20 for dry storage (Mean SBS = 17.56) and wet storage (Mean SBS = 16.08 MPa) as
well as in the s group AM base+NC/Palapress dry storage (n = 20; Mean SBS = 21.41 MPa)
and wet storage (n = 19, Mean SBS = 22.97 MPa). In group AM base+B/primosplint wet
storage revealed the highest mixed failure modes with n = 19 (Mean SBS = 7.39 MPa).
The most adhesive fractures occurred in the group AM base+NC/freeform plast with dry
storage n= 15 (Mean SBS = 3.75 MPa) and wet storage n= 19 (Mean SBS = 3.4 MPa). The
SBS and failure mode data are given in Table S5 within Supplementary File 2.

4. Discussion
4.1. General Observations

The study revealed a gross variation of surface roughness in the AM base materials
as well as within the shear bond strength of the repair materials bonded to the AM base.
N-Thereby, the surface roughness Ra cannot be identified as a predictor for SBS against
AM base, since low Ra values (as in non-conditioned AM base+NC) can reveal high SBS
values (repair material = Palapress) and lowest SBS values (repair material = primosplint),
too. This contradicts the rational of surface area enlargement by sandblasting [26], which
is reported to enhance adhesive bonding of resins [27]. The additional presence of MMA
enhances the effect, as also reported by Vallittu et al. [28]. Even if dry and wet storage
surface characteristics revealed statistically significant differences, it has to be pointed out
that a relevant difference could only be observed in AM base+PS.
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Thus, chemical bonding seems to outweigh the physical properties (such as mechanical
treatment with sandblasting) of the bonding interface. All the more, because in dry
condition aluminum oxide blasting seems to enhance SBS values, except for Palapress.

Interestingly, the value of the gold standard PMMA sandblasted, and MMA condi-
tioned repaired with PMMA was only reached by AM base in combination with Palapress
(PMMA) as a repair material in non-conditioned or blasted and MMA conditioned surface.
In addition to that, it is controversial that the tested bonding agents PS (primostick and FB
(freeform bond) show inconsistent performance, not outperforming the MMA application.

These observations support the findings of Perea-Lowery and Vallittu [29], who in-
vestigated the bonding properties of conventional polyethylene and a 3D printed splint
material to PMMA and applied a comparable ageing to the specimens. There were signifi-
cant differences according to ageing but not for surface treatment. For 3D printed splint
material the MMA group reached higher SBS values than the NC group, both in the range
of this present study [29].

Comparing the SBS values of the present study with other investigations according
to ISO 10477 most comparable is Ping Li et al. [30]. They investigated the effect of surface
treatment (sandblasting and MMA) and artificial aging (thermal cycling in distilled water)
on the SBS values of a 3D printed denture base resin (Freeprint) bonded to its polymerized
base. In the non aged group, they found mean SBS values from 13.56 to 17.32 MPa whereas
the aged group ranged between 6.67 and 16.73 MPa [30].

This range of shear bond strength was also reported by Younis et al. for veneering
composite bonded to polyetheretherketone (PEEK) 5.38 MPa–10.04 MPa [31].

4.2. Specifics of Light Curing Material

The observation revealed that light curing repair materials were found to under-
perform with <10 MPa and even <5 MPa in mean SBS values. This was also found by
Alkurt et al. [32], reporting a difference of about 50% in SBS values compared to autopoly-
merizing resins. As for freeform® fixgel/- plast and primosplint the IFU indicates the
application of a bonding agent (freeform® bond for freeform® fixgel and plast, primostick®

for primosplint) which contains MMA (see Table S1 in Supplementary File 1).
This was found to be superior to a non-conditioned (+NC) bonding interface repaired

with primosplint (in dry and wet storage). The AM base group repaired with primosplint
showed that the surface treatment by blasting and application of the bonding agent (with
MMA) lead to higher SBS values then “blasted only” in the dry storage group. Within this
group (AM base+B+PS/primosplint; dry storage) the number of cohesive failure modes
increased compared to non-conditioned (+NC) and blasted (+B) bonding interface. This
effect can be also detected in the AM base group repaired with freeform® plast (wet storage).
In this group the combination of blasting and bonding agent leads to higher SBS values
and more cohesive fractures than in the non-treatment (+NC), blasted (+B), and bonding
agent only (+FB) group. This effect was also described by Qaw et al., whereas specimens
blasted with aluminumoxide and the application of bonding agents lead to higher SBS
values between repair resin and denture base material [33].

With regard to the before mentioned and underlined by Curtis et al., reporting superior
SBS values when using a bonding agent [34], it can be stated again, that the chemical
bonding outweighs the physical surface treatment.

However, the inferior SBS values led to a further investigation of light transmission
through repair materials filled into the cylinder for bonding. Therefore, a radiometer
(Bluephase meter II, Ivoclar Vivadent AG, Schaan, Liechtenstein) detected the light intensity
absorbed at the bonding interface and emitted by the handheld curing device (Elipar Tri
Light, 3M Espe) for initial bonding (see Table 2) in these groups. Even with regard of
the light curing post-processing in the light oven, this initial light intensity might have
an impact on both, the bonding and mechanical properties, as reported for bulk fill resin
composites [35].
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Table 2. Measurement of the light transmission through light-curing materials.

Light Curing Repair Material (Resin)
2.5 mm of Thickness

Light Intensity on the Bonding
Interface mW/cm2 (Mean)

no material in cylinder (air) 780

freeform fixgel in brass cylinder
without cylinder

125
560

freeform plast in brass cylinder
without cylinder

113
510

Primosplint in brass cylinder
without cylinder

116
480

freeprint splint in brass cylinder
without cylinder

158
510

As shown in Table 2, the brass cylinder restrains about 77% of light. This has to be
further stressed by the fact that the initial power of this halogen-based polymerization
device emits about 50% of the averaged power of current hand held devices, emitting up
to 3000 mW/cm2 [36].

Therewith, the impact of light quantity on the shear bond strength of these repair
materials should be further investigated. This aspect is crucial for medical device safety,
especially when it comes to chair-side adaptations which call for a hand-held clinical device
but offers no light oven.

4.3. Methodical Aspects and Limitations of the Study Design

Aside from the variety of materials and surface conditions the study has some me-
thodical limitations as well as restrictions in clinical comparability.

The present study was conducted in accordance with the DIN EN ISO 10477 standard
for polymer-based crown and bridge materials in dentistry. At the time of this study and
publication, there was no corresponding ISO standard regarding the bond strength of repair
materials/resins to additively manufactured splints. There are no defined test methods for
testing the bond strength of polymers to conventionally manufactured splints in the DIN
EN ISO standard 2795-2:2013 for “orthodontic resins and copolymers”.

Moreover, clinical aspects should also be taken into account when selecting and
performing the test procedures. Occlusal splints are mainly used for therapy of cran-
iomandibular disorders (TMD) and are exposed to shear and compression forces as well as
two-body wear. Clinically, forces that most often lead to failure of the adhesive bonding
between two materials are shear forces [22]. According to Sarac et al. and Qaw et al.,
measuring the bonding the shear test is regarded as an acceptable method, because it
measures the force directly on the bonding interface as masticatory forces exert a force
against this bonding site [24,33].

First, it must be mentioned that the dry storage group should simulate the dental lab
situation of a fabricated splint being additionally modified by acrylic resin, prior to patient
delivery. This storage time impairs the transferability of the findings to an immediate
in-lab intervention (e.g., within 1–2 h) after post-processing of the splint. This aspect is
not relevant for the wet storage group, which should simulate the situation of an already
worn splint that may require corrections. However, herewith it remains unclear how the
performance might be after 3 months or longer clinical performance. With respect to the
ageing, it must be pointed out that the dry stored specimen was not further aged in wet
conditions while the wet stored were further aged in wet conditions. This limits the insight
into how the shear bond strength is changing when directly adapted splints are worn by
the patient, as reported by Takahashi et al. [37]. This must be further investigated since UV
polymerized materials seem to be more susceptible to water absorption than PMMA [38].

Moreover, the ageing did not cover temperature changes. This can lead to higher
SBS values, but nocturnal bite guards are more likely to age in a wet environment of
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body temperature without variations of the environmental temperature [39]. This wet
environment was simulated by distilled water isothermally at 37 ◦C in this study, and not
by an artificial saliva, which was also reported to be equivalent Schulte et al. The authors
postulate that artificial aging does not correspond to clinical aging, but no statistically
significant differences between salvia and deionized water are to be expected [40].

Additionally, the chemical wear in relation to salvia is depending on various factors
such as chemical composition, that with the use of salvia is the chemical wear is difficult to
predict [41].

Within the AM base+FB (n = 40 only “wet storage”) the bonding agent freeform®

bond was only applied and investigated in the wet storage group in combination with the
repair materials freeform® fixgel and freeform® plast because due to the manufacturer’s
recommendations (DETAX GmbH & Co. KG) and instructions for use, the application
of freeform® bond is only essential on already completed and older samples, that were
already worn. Therefore, the bonding agent freeform bond was only investigated in the
wet storage group in which the repair material was freeform® fixgel and freeform® plast.
Thus, materials are coordinated with each other and included in the freeform® kit.

Preliminary tests revealed a difficulty to remove the fitting plate with the cylindric
hollow (as shown in Figure 2B) when PMMA was used as a repair material. Thus, in these
groups the rim of the cylindric hollow was insulate with a thin film of petrolatum (Vaseline
Weiss, Bombastus- Werke AG, Freital, Germany; LOT# 10511009-6-0:01/21) using a micro-
brush. With regard to contamination of the bonding surface by residues of petrolatum jelly,
the fitting plate brass fitting plate was cleaned on both sides with an alcohol-soaked paper
towel before being placed on the base material. However, this necessity may have led to
the three failing specimens prior to testing in the AM base+M/palapress (wet storage)
group and theAM base+NC/palapress (wet storage) group. Thus, contamination of the
bonding surface must be pointed out as a crucial aspect in daily practice.

Also, the clinical comparability is limited by the amount of repair material used
(49 mm3), which is not the typical amount adapted to a surface of 20 mm2. This is
especially crucial for the light curing resins discussed above. Danesh et al. described that
with material layer depths of primosplint® more than 9 mm not every tested specimen
(cylinders with a diameter of 6 mm) was cured [42].

With regard to the gold standard, it can be critiqued that current PMMA-based splints
are fabricated from industrial polymerized blanks and not by powder–liquid technique
retaining a higher amount of MMA monomer [43–45]. In both cases (PMMA blanks and
autopolymerizing PMMA), the surface treatment with sandblasting and MMA application
can be regarded as the best in practice to ensure bonding of further autopolymerizing
PMMA [46].

The selection of only one resin and one technology for additive manufacturing limits
the possibility to convey data to other resins and 3D printing by SLA. The DLP fabrication
is superior to SLA when it comes to time investment [47] and dimensional accuracy [48].

The chemical compositions of the 3D printing material depend on the AM technology
and even when the same AM technology is used, the materials may differ in their post-
processing techniques due to different manufacturers [49] or due to different devices [50].

Between SLA and DLP the main difference is the light source [51]. The DLP technology
is similar to SLA technology and is classified in the same AM category by the American
Section of the International Association for Testing Materials [52].

Nevertheless, a broader number of materials would have been tested with a compa-
rable number of specimens, if the design of experiments would have been applied. In
contrast to classical power calculation, such a statistical approach enables higher efficiency
in output and is conductive to sustainability of biomaterial research.

This extends to the applied surface modifications of the bonding interface, e.g., by
oxygen or nitrogen plasma. However, the surface modifications under evaluation are
general available in dental labs and offices, worldwide. Therewith, the treatments are
universally applicable, even in chair-side setting. Sophisticated approaches such as plasma
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or laser treatments may also carry an unrealistic efficiency due to disproportional cost-
benefit ratio with regard to potential gains in adhesive bonding.

Surface roughness was investigated by contact profilometry as described in Section 2.2.
The surface of the base material has been conditioned circularly at the position where
the cylinders are attached to the base material. For this purpose, a fitting plate with
a cylindric hollow was clamped onto the base of the specimen. The surface treatment
was then carried out through the hollow of the fitting plate. Therewith, the needle of
the profilometry testing machine measured partially outside the treated surface within a
square of 3 × 3 mm2. In order to omit these measurements 20-line pairs on both sides were
excluded from evaluation.

4.4. Outlook on Clinical Applicability

Digital dentistry and additive manufacturing allow not only the production of intrao-
ral splints or dentures. There is also the possibility to produce digital wax-ups in order to
preview the clinical outcome of restorations like veneers, crowns, and fixed dental pros-
theses in the anterior. Even if digital wax- up’s, which were milled or 3D printed, seem to
outperform conventional produced wax-ups, there might be also the necessity of chair-side
individualization by adding (light-curing) resin [53]. Moreover, a digitally fabricated splint
can protect surgical areas that were treated with stem cells in guided bone regeneration
within periimplantitis or jaw augmentation; and might need adjustment during healing
process [54]. The secure addition (bonding) of resins to 3D printed appliances may also
enable the later integration of sensors, in order to measure biting forces in occlusal splints
or insertion torque of implants in drill guides [55,56].

5. Conclusions

The study revealed that the bonding interface of 3D printed resins has no impact on
the shear bond strength of repair materials. 3D printed resins repaired with PMMA in
powder–liquid mixing technique revealed an equivalent shear bond strength as bonded to
conventional PMMA.

For the splint material fabricated in DLP, the sandblasting and application of MMA
monomer is recommended after initial fabrication in the lab, and no further surface treat-
ment is necessary when a splint was worn.

The use of light curing resin to repair or adapt an additively manufactures splint seems
to carry a high risk of failure due to the low shear bond strength values. Sandblasting and
adhesives are indicated, if worn splints will be modified by light curing resin. Even so,
there might be an impact of the light amount for curing that needs further investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14143935/s1, Supplementary File 1: Table S1 Composition of materials, Table S2 Re-
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Appendix A

Table A1. SBS values of the tested specimens. (n.a. indicated groups not tested due to the study protocol).

Base Material
and Conditioning
/Repair Material

Dry Storage
SBS (n, Mean, SD)

Wet Storage
SBS (n, Mean, SD)

SBS Difference
Dry and Wet
Storage (%)

Lower/Upper
95% –CI

Dry Storage

Lower/Upper
95% –CI

Wet Storage

PMMA base +
BM/Palapress 20, 25.18, 2.59 20, 23.57, 2 −6.42 23.76/

26.607
22.067/
25.072

AM base + B/freeform
plast 20, 6.87, 2.89 20, 8.85, 1.96 28.9 5.444/

8.29
7.351/
10.356

AM base + FB/freeform
plast n.a. 20, 7.71, 2.24 n.a. n.a. 6.207/

9.212

AM base + B-FB/freeform
plast n.a. 20, 15.32, 4.39 n.a. n.a. 13.813/

16.818

AM base+B/freeprint
splint 20, 15.76, 3.94 20, 8.37, 1.43 −46.9 14.334/

17.181
6.871/
9.876

AM base+FB/freeform
fixgel n.a. 20, 14.31, 3.6 n.a. n.a. 12.812/

15.817

AM base+B/freeform
fixgel 20, 8.65, 4.78 20, 14.12, 3.21 +63.3 7.222/

10.068
12.615/
15.62

AM base+B-FB/freeform
fixgel n.a. 20, 10.93, 3.26 n.a. n.a. 9.425/

12.43

AM base+PS/primosplint 20, 5.72, 3.4 20, 7.25,1.61 +26.7 * 4.3/
7.147

5.747/
8.752

AM base+B/primosplint 20, 4.01, 2.42 20, 7.22, 1.7 +80.2 2.583/
5.43

5.715/
8.72

AM
base+B-PS/primosplint 20, 6.73, 2.79 20, 6.2, 2.23 −7.9 * 5.306/

8.153
4.698/
7.703

AM base+M/Palapress 20, 19.56, 4.19 18 **, 12.19, 5.51 −37.7 18.138/
20.985

10.609/
13.776

AM base+B/Palapress 20, 17.56, 3.02 20, 16.08, 6.91 −8.4 * 16.134/
18.98

14.582/
17.587

AM base+BM/Palapress 20, 22.7, 2.47 20, 19.18, 4.72 −15.5 21.275/
24.122

17.674/
20.679
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Table A1. Cont.

Base Material
and Conditioning
/Repair Material

Dry Storage
SBS (n, Mean, SD)

Wet Storage
SBS (n, Mean, SD)

SBS Difference
Dry and Wet
Storage (%)

Lower/Upper
95% –CI

Dry Storage

Lower/Upper
95% –CI

Wet Storage

AM base+NC/freeform
fixgel 17 **, 4.93, 2.49 20, 8.11, 2.36 +64.3 3.39/

6.477
6.607/
9.612

AM base+NC/freeform
plast 20, 4.45, 2.7 20, 3.48, 0.82 −21.8 * 3.028/

5.875
1.981/
4.986

AM base+NC/freeprint
splint 20, 13.99, 3.31 20, 5.56, 2.83 −60.2 12.562/

15.409
4.059/
7.064

AM base+NC/Palapress 20, 21.41, 4.06 19 **, 22.97, 5.42 +7.3 * 19.989/
22.836

21.43/
24.513

AM
base+NC/primosplint 20, 3.92, 1.97 20, 2.96, 1.46 −24.4 * 2.498/

5.345
1.462/
4.467

* indicates no statistical significant difference between dry and wet storage by students t-test. ** only the number of specimens were listed
that were successfully tested with the shear bond strength.
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