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NG2 cells, also referred to as oligodendrocyte precursor cells (OPCs) or polydendrocytes,
represent a major resident glial cell population that is distinct from mature astrocytes,
oligodendrocytes, microglia, and neural stem cells and exist throughout the gray and
white matter of the developing and mature central nervous system (CNS). While their
most established fate is the oligodendrocyte, they retain lineage plasticity in an age- and
region-specific manner. During development, they contribute to 36% of protoplasmic
astrocytes in the ventral forebrain. Despite intense investigation on the neuronal fate
of NG2 cells, there is no definitive evidence that they contribute substantially to the
neuronal population. NG2 cells have attributes that suggest that they have functions other
than to generate oligodendrocytes, but their exact role in the neural network remains
unknown. Under pathological states, NG2 cells not only contribute to myelin repair, but
they become activated in response to a wide variety of insults and could play a primary
role in pathogenesis.
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INTRODUCTION
NG2 cells represent a resident glial progenitor cell population
that exists throughout the gray and white matter of the develop-
ing and mature mammalian central nervous system (CNS) and
are distinct from astrocytes, mature oligodendrocytes, microglia,
and neural stem cells (reviewed in Nishiyama et al., 2009; Hill
and Nishiyama, 2014). Their widespread existence in the CNS
began to be recognized in the 1990s by immunohistochemi-
cal labeling for NG2 and the alpha receptor for platelet-derived
growth factor (Pdgfra). Currently, NG2 cells are considered as
the fourth major glial cell type in the CNS, comprising 2–8%
of all the cells in the adult CNS (Dawson et al., 2003; Peters,
2004). These cells are often equated with oligodendrocyte precur-
sor cells (OPCs) because of their ability to generate myelinating
and non-myelinating oligodendrocytes. However, not all NG2
cells differentiate into oligodendrocytes, and oligodendrocytes are
not their only fate, as discussed below. Different names have
been used to refer to these cells. The term OPCs is used when
discussing their role in oligodendrocyte production, while the
terms “NG2 cells” and “NG2 glia” are used when discussing
their property that is not directly related to their OPC role,
even though NG2, which is also expressed on vascular peri-
cytes, is not an absolute marker for these cells. To avoid using
different names to refer to the same cells in different biologi-
cal contexts, the word “polydendrocytes” has been suggested as
a unified name for these cells, in keeping with the names of
other types of glia that are loosely associated with their mor-
phology. This perspective article will discuss recent findings and
unsolved questions related to the astrocyte and neuronal fate of
NG2 cells and their role in brain pathophysiology, primarily in
the rodent CNS.

THE FATE OF NG2 CELLS
NG2 cells expand their population by extensive self-renewal. After
their peak proliferation during the perinatal period, they retain
their proliferative ability throughout life (Figure 1).

OLIGODENDROCYTE FATE
The general consensus from a series of Cre-loxP-mediated genetic
fate mapping studies is that under normal physiological condi-
tions, NG2 cells in the adult CNS generate oligodendrocytes as
they continue to self renew (Figure 1) (Dimou et al., 2008; Rivers
et al., 2008; Kang et al., 2010; Zhu et al., 2011; Young et al., 2013).
It is unlikely, however, that every NG2 cell will differentiate into
an oligodendrocyte at some point during the life of the animal,
as their uniform distribution does not parallel the distribution of
oligodendrocytes (Dawson et al., 2000; Tomassy et al., 2014). It
remains to be explored whether all NG2 cells are equivalent in
their ability to generate oligodendrocytes or whether there is a
subpopulation that is fated to permanently remain as NG2 cells.

ASTROCYTE FATE AND LINEAGE PLASTICITY OF NG2 CELLS
During development, the fate of NG2 cells is not restricted to
oligodendrocytes. NG2 cells contribute to 40% of the proto-
plasmic astrocytes in the gray matter of the ventral forebrain
(Zhu et al., 2008, 2011; Huang et al., 2014). The magnitude
and the temporal and spatial distribution of protoplasmic astro-
cytes observed in these studies are quite distinct from the other
observations where a small number (1∼5%) of sporadically
distributed reporter+ astrocytes were seen from Olig2-creER
and Pdgfra-CreER fate mapping in adult (Dimou et al., 2008;
Tripathi et al., 2010). Two independently generated tamoxifen-
inducible NG2-creER transgenic mouse lines (BAC transgenic
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FIGURE 1 | A schematic showing the fate of NG2 cells

throughout development. The middle diagram depicts self-renewing
NG2 cells, with a chronological scale across the top. Black arrows
indicate the rate of proliferation, which is greatest perinatally. Blue
upward arrows indicate oligodendrocyte differentiation, peaking during

the third postnatal week. Purple downward arrows indicate
astrocyte differentiation, which occurs predominantly before birth and
gradually ceases shortly after birth. The thickness of the arrows
denotes the extent of differentiation. odified from Nishiyama
(2007).

and knock-in) indicate that astrocyte generation from NG2 cells
is most robust prenatally and tapers off during the first postnatal
week (Figure 1) (Zhu et al., 2011; Huang et al., 2014), consis-
tent with the chronology of astrocyte development. This suggests
that the astrocyte fate of NG2 cells is a physiological develop-
mental function and not due to radial glial expression of NG2
as suggested in Richardson et al. (2011). None of the other fate
mapping studies had attempted to induce Cre prenatally. The rea-
son why NG2 cells lose their astrogliogenic ability shortly after
birth could be due to a density-dependent mechanism that regu-
lates astrocyte production (Nakatsuji and Miller, 2001; Zhu et al.,
2012).

Are NG2 cells that do not generate astrocytes during early
development permanently committed to generating oligoden-
drocytes? The following observation suggests that under normal
conditions, they are restricted to the oligodendrocyte lineage,
but that they retain the ability to become astrocytes under cer-
tain conditions. When the oligodendrocyte transcription factor
Olig2 that is required for NG2 cell specification (Rowitch, 2004;
Richardson et al., 2006), was deleted in all NG2 cells, there was a
complete fate switch from oligodendrocytes to astrocytes in the
neocortex but not in the ventral forebrain, resulting in severe
hypomyelination (Zhu et al., 2012). When Olig2 was deleted in
early postnatal NG2 cells, only 50% of the Olig2-deleted neocor-
tical NG2 cells switched their fate to astrocytes (Zhu et al., 2012).

In the adult, deletion of Olig2 did not convert them into astro-
cytes, even in response to a stab wound (Komitova et al., 2011),
nor was there increased astrocyte generation from NG2 cells in
Olig2-creER heterozygous mice (Dimou et al., 2008), although
the former study had used an inefficient Cre reporter. Thus, lin-
eage restriction of NG2 cells appears to occur gradually during the
first few postnatal weeks. Even after oligodendrocyte specification
has occurred during embryogenesis, NG2 cells in certain regions
retain some degree of context-dependent lineage plasticity, which
is gradually lost in later postnatal life.

NEURONAL FATE OF NG2 CELLS
The neuronal fate of NG2 cells has been one of the most
highly debated topics, and Cre-loxP-mediated genetic fate map-
ping studies have produced inconsistent findings. For example,
two studies using Pdgfra-CreER or PLP (proteolipid protein)-
CreER transgenic mouse lines observed reporter+ neurons in the
piriform cortex (Rivers et al., 2008; Guo et al., 2010), while a sub-
sequent study using an independent line of Pdgfra-CreER mice
did not find any evidence for a neuronal fate (Kang et al., 2010).
Earlier studies using NG2- and Olig2-Cre driver mice showed no
evidence for neurogenesis (Dimou et al., 2008; Zhu et al., 2008;
Komitova et al., 2009; Zhu et al., 2011), while a recent study using
the same NG2-creER mice showed a few reporter+ neurons in
the hypothalamus (Robins et al., 2013). What is the significance
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of detecting reporter+ neurons in these fate mapping studies?
Is the extent of neurogenesis from NG2 cells sufficiently large
to bring about a physiological effect in the neural network? The
findings must be interpreted in proper context without overem-
phasizing observations where sporadic reporter+ neurons are
found.

The following example illustrates one of the caveats of the Cre-
loxP technology that spurious transient activation of Cre in an
unrelated cell could lead to reporter expression in that cell in the
absence of lineage progression. In NG2-cre:zeg mice generated by
crossing constitutively active NG2-cre mice (Zhu et al., 2008) to
the zeg reporter mice (Novak et al., 2000), a significant number
of reporter+ neurons appeared in the neocortex after P45 but
not at P14 (Figures 2A,B). To determine whether reporter+ neu-
rons arose as a result of lineage progression from NG2 cells or
due to direct Cre expression in neurons, the zeg reporter plas-
mid was in utero electroporated directly into neuronal precursors
of NG2-cre single transgenic mice at E13.5, and the appearance
of reporter+ neurons was examined (Figure 2C). The plasmid
would be retained in neurons that are undergoing their last cell
division and lost from glial cells as they undergo multiple divi-
sions (Bai et al., 2003). The expression of the reporter in neurons
would suggest direct Cre activation in neurons. A DsRed plas-
mid was co-electroporated to mark the transfected cells. When
the electroporated mice were sacrificed at P70, all the DsRed+
neurons also expressed EGFP (Figures 2D–F), and no NG2 cells
expressed EGFP or DsRed. This suggests that there was tran-
sient Cre (and possibly NG2) expression in neurons, and that
the duration of Cre expression was sufficient for Cre-mediated
recombination to allow EGFP expression from the zeg plasmid
but not sufficiently long-lasting to be detected by Cre immuno-
histochemistry or in situ hybridization. It is possible that certain
physiological conditions cause a spike in NG2 transcription,
which is too transient to be detected in NG2-DsRed transgenic
mice (Zhu et al., 2008). Furthermore, no transitional forms
between NG2 cells and neurons could be observed, unlike the case
for NG2 cells transitioning into astrocytes (Zhu et al., 2012) or
oligodendrocytes (Figure 2G).

In the new NG2 cell fate mapping study using the NG2creER
knockin mice crossed to ROSA-tdTomato reporter, Huang et al.
(2014) observed reporter+ neurons with electrophysiological and
morphological properties of neurons in the non-neuronogenic
regions of the forebrain. By contrast, very few reporter+ neu-
rons were found when the same mice were crossed to the less
efficient RSOA-YFP reporter. Since these neurons appeared with-
out evidence of proliferation, it is unlikely that they arose from
NG2 cells, as previously reported (Clarke et al., 2012), but rather
by some form of Cre-dependent DNA recombination that had
occurred in neuronal cells. The Huang study also highlights
the different outcomes of studies using Cre reporter lines with
different efficiencies. Development of a novel, Cre-independent
method is needed to resolve the question of the neuronal fate of
NG2 cells.

RELATIONSHIP OF NG2 CELLS TO NEURAL STEM CELLS
The adult SVZ consists of a heterogeneous population includ-
ing GFAP+ neural stem cells (type B cells), transit-amplifying

cells (type C cells), and neuroblasts that migrate to the olfactory
bulb via the rostral migratory stream (type A cells) (Gonzalez-
Perez and Alvarez-Buylla, 2011). Many early studies were focused
on testing the then attractive hypothesis that NG2 cells corre-
sponded to multipotential neural stem cells in the SVZ (Nunes
et al., 2003; Aguirre and Gallo, 2004), based on the observa-
tion that they could be induced to differentiate into astrocytes
and neurons under certain culture conditions (Roy et al., 1999;
Kondo and Raff, 2000). However, further examination of NG2
cells and the SVZ revealed that NG2 cells comprise a minority
of cells, located mostly at the periphery of the SVZ, and are dis-
tinct from the Dlx2-expressing type C cells or neuroblasts that
express Doublecortin (Komitova et al., 2009; Platel et al., 2009;
Richardson et al., 2011). These studies also showed that NG2 cells
are distinct from GFAP+ neural stem cells (type B cells) (Rivers
et al., 2008; Komitova et al., 2009; Chojnacki et al., 2011), in con-
trast to an earlier study that showed expression of Pdgfra on type
B cells (Jackson et al., 2006). Neural stem cells do generate NG2
cells, but this fate of neural stem cells seems to be a minor fate
compared with their neurogenic fate and is highly region-specific.
Interestingly, a recent real-time imaging study of the fate of sin-
gle cells unequivocally demonstrated that neural stem cell clones
that generate NG2 cells do not generate neurons and are primar-
ily found in the dorsal SVZ, while those that generate neurons are
more enriched in the lateral SVZ and do not generate NG2 cells
(Ortega et al., 2013). Thus, there appears to be an early segrega-
tion of neuronal and oligodendrocyte lineages in the SVZ. Under
normal conditions, only SVZ type C cells, but not NG2 cells, pro-
liferate in response to epidermal growth factor (EGF) (Doetsch
et al., 2002; Hill et al., 2013). However, under pathological con-
ditions such as EGF overexpression or demyelination, EGF can
redirect SVZ type C cells to become NG2 cells (Aguirre et al.,
2007; Ivkovic et al., 2008; Jablonska et al., 2010; Galvez-Contreras
et al., 2013). These observations can be explained if EGF recep-
tor becomes upregulated on a small population of cells that are in
transit from SVZ type C cells to becoming NG2 cells.

THE ROLE OF NG2 CELLS IN THE NORMAL CNS
Why has the mammalian brain evolved to maintain such a uni-
formly distributed glial cell type? Recent studies have revealed
that new oligodendrocytes and myelin continue to be produced
in the mature CNS (Zhu et al., 2011; Young et al., 2013) and a
significant amount of activity-dependent myelin plasticity occurs
in the adult (Zatorre et al., 2012; Hill and Nishiyama, 2014).
NG2 cells also generate non-myelinating perineuronal oligoden-
drocytes whose somata lie apposed to neuronal somata (Penfield,
1924). Although the role of the perineuronal oligodendrocytes
is not clear, they can produce myelin in response to demyelina-
tion (Ludwin, 1979) and could be providing neurotrophic and
metabolic support for neurons (Taniike et al., 2002; Fünfschilling
et al., 2012; Lee et al., 2012).

NG2 cells are evenly distributed to cover the entire mature
CNS parenchyma (Dawson et al., 2000). In vivo imaging in
2–3-month-old neocortex revealed non-overlapping territories
occupied by adjacent NG2 cells, and their processes appeared to
be contact-inhibited (Hughes et al., 2013). Another study using
fixed hippocampi from 3–4-week-old rats showed that NG2 cells
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FIGURE 2 | Lineage-dependent and independent reporter expression in

Cre-loxP fate mapping. (A,B) Double labeling for GFP and the neuronal
marker NeuN in the neocortex of NG2cre:zeg mice at P14 (A) and P70 (B).
NeuN+ GFP+ cells with mature neuronal morphology (arrows) are seen as
well as NeuN- GFP+ NG2 cells (arrowheads) in P70 but not in P14 cortex.
(C–F) Transfection of zeg reporter plasmid into neuronal precursor cells in
NG2cre single transgenic mice. (C) Scheme showing co-transfection of
DsRed and zeg plasmid DNA into the lateral ventricles of E13.5 NG2cre
single transgenic mice by in utero electroporation and positioning the
electrodes to target the dorsal pallium. (D–F) GFP expression in
electroporated neurons at P70. All the GFP+ cells were neurons that had

been electroporated (DsRed+), and no GFP+ glial cells were detected. This
experiment demonstrates that Cre is activated directly in neocortical neurons
of NG2cre mice at some point between P14 and P70, leading to GFP
expression in neurons. Unlike the case for oligodendrocytes shown in G,
there were no GFP+ cells that appeared to be in transition from NG2 cells to
neurons. (G) Corpus callosum from P70 NG2creER:YFP mice 14 days after
Cre induction with 4-hydroxytamoxifen. A cell that appears to be transitioning
from an NG2 cell (NG2+ YFP+) into an NG2- oligodendrocyte (NG2- YFP+)
with weak NG2 immunoreactivity in the processes (arrowheads) is seen next
to a typical NG2 cell that robustly expresses NG2 (arrow). Inset shows single
labeling of the cell marked by arrowhead for NG2.

were tiled but shared approximately 5% of the volume with adja-
cent NG2 cells (Xu et al., 2013). It is not clear whether the extent
of overlap between processes of neighboring NG2 cells changes as
the brain matures. Regardless, the uniform distribution of NG2
cells would suggest a yet uncovered homeostatic role in the CNS.

NG2 cells interact uniquely with neurons in that they depolar-
ize in response to receiving direct synaptic input from neuronal
axons (Bergles et al., 2000). However, the extent of depolar-
izations is not sufficient to elicit repetitive action potentials,
and thus NG2 cells are still considered as non-excitable glial
cells. While the physiological consequences and significance of
neuron-NG2 cell synapses remain unknown, and the nature of
neuron-NG2 cell communication changes with age and differ-
entiation (Maldonado and Angulo, 2014), it is likely that local
increases in intracellular calcium play an important role in medi-
ating downstream cellular effects (Bergles et al., 2000; Ge et al.,
2006; Hamilton et al., 2010; Haberlandt et al., 2011).

THE ROLE OF NG2 CELLS IN PATHOLOGY
REPAIR OF DEMYELINATING LESIONS
It is well established that NG2 cells proliferate and differenti-
ate into myelinating oligodendrocytes and repair demyelinated
lesions (Di Bello et al., 1999; Watanabe et al., 2002; Tripathi
et al., 2010). It still remains to be shown whether replenishment

of the NG2 cell population can be a cause for remyelination
failure under certain conditions. While repeated acutely demyeli-
nated lesions undergo successful remyelination (Penderis et al.,
2003), other studies suggest that NG2 cells can become depleted
after acute demyelination (Keirstead et al., 1998) and their repop-
ulation may not occur fast enough to meet the demands of
chronic ongoing demyelination (Mason et al., 2004). Recruitment
of new NG2 cells could occur by proliferation of local NG2 cells
and/or migration and differentiation of cells from the SVZ (Nait-
Oumesmar et al., 1999; Picard-Riera et al., 2002; Etxeberria et al.,
2010; Tepavcevic et al., 2011). However, evidence is not yet strong
that these SVZ-derived cells are capable of fully differentiating
into remyelinating cells to the extent that local NG2 cells are.

ACTIVATION OF NG2 CELLS IN OTHER TYPES OF LESIONS
NG2 cells undergo increased proliferation and dramatic morpho-
logical changes in response to a wide variety of acute CNS insults
besides demyelination, including spinal cord injury (McTigue
et al., 2001; Jones et al., 2002), ischemia (Zhang et al., 2013),
excitotoxic injury (Bu et al., 2001; Wennström et al., 2004), and
viral infection (Levine et al., 1998). The time course of their
“activation” and their “reactive morphology” or the extent of
proliferation varies depending on the nature of the insult, but
the functional significance for these diverse morphological and
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proliferative changes is not known. For example, it is not known
whether the shorter, thicker processes reflect increased uptake of
extracellular fluid/ions or increased phagocytic activity. Nor is it
known whether the increased number of thin, elongated process
after viral infection reflect a search for something or deregulated
cytoskeleton. In vivo imaging has revealed that NG2 cell processes
are highly dynamic (Hughes et al., 2013; Hill et al., under revi-
sion), but it is not known what they are seeking besides axons to
myelinate.

In most cases of acute injury, NG2 cell responses occur early,
within 24 h (Watanabe et al., 2002; Horky et al., 2006; Simon et al.,
2011), which is similar to or slightly lags behind the time course
of microglial response and a few days before reactive astroglio-
sis becomes apparent. Some forms of insult such as excitotoxic
injury seem to elicit a greater microglial response than NG2
cell response. NG2 cells exhibit a close spatial relation to astro-
cyte processes and microglial somata (Nishiyama et al., 2002;
Hamilton et al., 2010; Xu et al., 2013), and the latter becomes
more pronounced in response to injury (Nishiyama et al., 1997;
Bu et al., 2001; Wu et al., 2010). Future studies can be directed to
studying how the three types of reactive glia signal to each other
to achieve a concerted response specifically tailored to each type
of injury.

NG2 CELLS IN PATHOGENESIS
The inherent ability of NG2 cells to remain in cell cycle through
life also makes them susceptible to neoplastic transformation.
Although the cell of origin of glioblastoma multiforme contin-
ues to be debated, cell fate mapping of neural stem cells or NG2
cells with deletions in p53 and NF1 genes revealed that neoplas-
tic changes begin to occur in NG2 cells and not in neural stem
cells (Liu et al., 2011). Intriguingly, early proliferative foci arise in
perineuronal locations in gray matter rather than in white matter
tracts where glioma cells are known to expand and disseminate,
suggesting a proliferative paracrine signal imparted by neurons.

Several recent studies have shown that metabolic defects in
oligodendrocytes can precede neurodegeneration in amyotrophic
lateral sclerosis (ALS) (Lee et al., 2012; Kang et al., 2013; Philips
et al., 2013), strongly suggesting a pathogenic role for oligoden-
drocytes. In addition, a direct pathogenic role for NG2 cells has
been shown at the neurovascular interface. In a cerebral hypop-
erfusion model, metalloproteinase-9 (MMP-9) is secreted from
NG2 cells in the vicinity of vascular endothelial cells, leading to
degradation of the endothelial tight junction protein ZO-1 and
breakdown of the blood-brain barrier (Seo et al., 2013). These
findings highlight the importance of the oligovascular niche in
normal and pathological conditions that could be an important
topic of future investigations (Maki et al., 2013; Miyamoto et al.,
2014).
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