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Background Pre-treatment FDG-PET/CT scans were analyzed with machine learning to predict progression of lung
malignancies and overall survival (OS).

Methods A retrospective review across three institutions identified patients with a pre-procedure FDG-PET/CT and
an associated malignancy diagnosis. Lesions were manually and automatically segmented, and convolutional neural
networks (CNNs) were trained using FDG-PET/CT inputs to predict malignancy progression. Performance was eval-
uated using area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Image
features were extracted from CNNs and by radiomics feature extraction, and random survival forests (RSF) were con-
structed to predict OS. Concordance index (C-index) and integrated brier score (IBS) were used to evaluate OS
prediction.

Findings 1168 nodules (n=965 patients) were identified. 792 nodules had progression and 376 were progression-
free. The most common malignancies were adenocarcinoma (n=740) and squamous cell carcinoma (n=179). For
progression risk, the PET+CT ensemble model with manual segmentation (accuracy=0.790, AUC=0.876) per-
formed similarly to the CT only (accuracy=0.723, AUC=0.888) and better compared to the PET only (accu-
racy=0.664, AUC=0.669) models. For OS prediction with deep learning features, the PET+CT+clinical RSF
ensemble model (C-index=0.737) performed similarly to the CT only (C-index=0.730) and better than the PET only
(C-index=0.595), and clinical only (C-index=0.595) models. RSF models constructed with radiomics features had
comparable performance to those with CNN features.

Interpretation CNNs trained using pre-treatment FDG-PET/CT and extracted performed well in predicting lung
malignancy progression and OS. OS prediction performance with CNN features was comparable to a radiomics
approach. The prognostic models could inform treatment options and improve patient care.
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Research in context

Evidence before this study

We searched PubMed for articles published from data-
base inception to June 1, 2021, with the search terms
(“lung nodule” OR “lung malignancy”) AND (“artificial
intelligence” OR “machine learning”) AND “FDG-PET/
CT,” with no language restrictions, and found 89 publi-
cations. Nine focused entirely on methodological con-
siderations of machine learning, and four did not
mention machine learning. Of the clinically relevant
articles, forty-six focused on a type of cancer not involv-
ing the lungs or an unrelated disease. Twenty-six used
machine learning and FDG-PET/CT scans to detect, clas-
sify, and diagnose lung malignancies. Four used
machine learning and radiology to make a treatment
decision or a treatment outcome prediction. This search
indicated that, despite an abundance of studies using
machine learning with radiology to detect and diagnose
lung cancer, there is a scarcity of studies related to its
use as a tool for prognostication. Moreover, the studies
aimed at prognostication with machine learning have
mostly relied on handcrafted features rather than deep
learning. Additionally, they have considered either PET
or CT individually without investigating their additive
values in ensemble models.

Added value of this study

We used machine learning based on pre-treatment
FDG-PET/CT scans to predict progression of lung malig-
nancies and overall survival in a multicenter and multi-
national cohort. A deep learning model was used to
automatically identify and extract important prognostic
features. Models were generated based on PET features
alone, CT features alone, and clinical features alone, and
ensemble models were created to evaluate the additive
prognostic value of each input. Radiomics features were
also extracted and used to construct models for com-
parison. The study demonstrated that deep learning
models trained using pre-treatment FDG-PET/CT data
perform well in predicting lung malignancy progression.
Features extracted from the deep learning models pre-
dict overall survival well and is comparable to perfor-
mance features derived from a radiomics approach.
Furthermore, overall survival models based on CT per-
form better than those based on PET, and the addition
of PET to CT only insignificantly improves performance.
As such, there is unclear added value of PET for progno-
sis of lung cancer with machine learning based on CT.
After prospective validation, this model could help
inform treatment options and improve patient care.
Implications of all the available evidence

Efficient and accurate prognostication of patients with
lung malignancies is important for informing treatment
options. With rapid advances in computing power and
algorithm development, there is an opportunity to use
machine learning to assist physician decision making.
While future work is needed, the available evidence
suggests that machine learning models based on FDG-
PET/CT can predict lung malignancy progression and
overall survival with high accuracy. It remains unclear
whether PET provides additional prognostic information
beyond CT in lung cancer.
Introduction
Despite advances in prevention and treatment in the
past decade, lung cancer remains the leading cause of
cancer death worldwide.1�3 In the United States, overall
survival (OS) remains low even with improvements in
understanding of disease etiology and treatment
options.1 There is only 15% five-year survivorship follow-
ing diagnoses,4 likely given that approximately 62-70%
of individuals with lung cancer are diagnosed at an
advanced stage.2,3 However, the majority of early stage
lung cancers are treatable. For instance, in non-small
cell lung carcinomas (NSCLC), the five-year survival
rate at diagnosis is up to 92% for stage IA, compared to
a survival rate of 10% for stage IV.5 Treatment options
are typically based on cancer subtype and prognosis, the
latter of which is highly variable and challenging to pre-
dict. Prognosis may depend on a variety of factors, such
stage of disease, molecular composition, histopatholog-
ical characteristics, patient age, sex, and baseline func-
tional status, and the existence of comorbidities.1

Computed tomography (CT) and fluorodeoxyglucose
positron emission tomography (FDG-PET) are two
imaging modalities that are commonly used for lung
cancer diagnosis and staging. Their combined use
(FDG-PET/CT) provides both anatomical and metabolic
information that is important for determining an accu-
rate prognosis and informing treatment options.6

Patients that are identified as having a low progression
or mortality risk based on FDG-PET/CT may be candi-
dates for invasive procedures with curative intent, while
those that are higher risk may be amendable to chemo-
therapy, radiation, targeted therapy, or immunotherapy
with palliative intent. Advanced thoracic surgery techni-
ques, such as video-assisted thoracoscopic surgery, are
www.thelancet.com Vol 82 Month , 2022
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highly effective, with five-year survivorship for early
stage patients up to 80%.7 Those with early stage cancer
but with lower risk of progression may alternatively be
treated with radiotherapy or microwave ablation, espe-
cially if the existence of comorbidities would increase
the likelihood of post-surgical complications.2 Finally,
high risk patients may be started with palliative drug
therapy and early palliative care, which can significantly
extend survival time.8

Although FDG-PET/CT is important for prognosis in
lung malignancy, manual interpretation of imaging is
imperfect and inefficient, with low inter-reader agree-
ment.9 Recent developments in artificial intelligence (AI)
and machine learning (ML) have demonstrated potential
for improved accuracy in the characterization of lung
malignancies with FDG-PET/CT.10�12 The majority of
existing AI studies have focused on diagnosis and staging,
and those aimed at prognostication have mostly relied on
handcrafted features rather than deep learning.10,11 Most
studies have also considered the prognostic utilities of CT
and PET individually without investigating their additive
value. The purpose of this study was to use deep learning
with pre-treatment FDG-PET/CT to predict progression of
lung malignancies and OS.
Methods

Patient cohort
A retrospective review between 2010 and 2019 was per-
formed across two major institutions in the United
States (Rhode Island Hospital [RIH] and the Hospital of
the University of Pennsylvania [HUP]) and one in the
People’s Republic of China (Xiangya Second Hospital
[XSH]). Patients who had a histologically diagnosed
lung malignancy by biopsy or surgery and had under-
gone an FDG-PET/CT scan up to six months prior to
biopsy or resection were identified. Demographic and
clinical information such as age, sex, race, and cancer
type were recorded. Overall survival time and the occur-
rence of progression were also determined. Progression
was defined as local-regional recurrence or metastasis
following treatment. A detailed flow diagram of the
patient selection process is shown in Figure 1. The data-
set collected for this study is not publicly available due
to patient privacy concerns but can be available from the
corresponding authors if there is a reasonable request
and approval from affiliated ethics board.
Manual and automatic tumor segmentation
PET and CT scans were exported in Digital Imaging and
Communications in Medicine (DICOM) format in their
original resolutions. The FDG-PET/CT scan protocols
are detailed in Appendix A. Nodules were manually seg-
mented on both CT and PET modalities by an experi-
enced radiologist (Y.L.) with seven years of experience.
www.thelancet.com Vol 82 Month , 2022
For automatic tumor segmentation of PET and CT
scans, lesions were randomly split 7:2:1 among training,
validation and test sets. All lesions from the same
patient were grouped together to prevent information
leak between datasets. Patients represented in the train-
ing set were distributed 47.5% RIH, 41.6% HUP, and
10.9% from XSH, while patients in the validation set
were distributed 47.7% RIH, 41.8% HUP, and 10.4%
XSH. Patients represented in the test set consisted of
42.6% RIH, 42.6% HUP, and 14.7% XSH. Automatic
segmentation of CT and PET modalities were then per-
formed using the out-of-the-box nnU-Net segmentation
tool with the default nnU-Net parameters. Automated
lesion segmentation performance on the training, vali-
dation, and test sets were evaluated on AUC, accuracy,
sensitivity, and specificity. A repeat manual segmenta-
tion of the test set was also performed by a second expe-
rienced radiologist (J.W.) with five years of experience.
Image pre-processing
The window width for CT images was 1500 Hounsfield
units; a window level of -400 Hounsfield units was
used to disregard non-pulmonary regions. No window-
ing was applied to the PET images. Lesion volumes
were then computed for PET and CT images indepen-
dently. For each lesion on PET, maximum standardized
uptake value (maxSUV) was also extracted. For both CT
and PET lesions, image slices were cropped to include a
fixed range of background surrounding each lesion and
scaled to 224 square pixels. Pixel values were then nor-
malized from a range of 0-255 to 0-1.
Deep learning model architecture
A convolutional neural network (CNN) with the pre-
trained EfficientNetB4 architecture was applied as a
backbone network. A series of dense (fully connected)
layers with 256 and 16 neurons with a rectified linear
unit (ReLU) activation function and batch normaliza-
tion constituted the top layers of the neural network.
The final classification layer was composed of a single
neuron with a sigmoid activation function. The image
inputs for the three channels of the EfficientNet con-
sisted of a single slice each from the sagittal, coronal,
and axial dimensions of the lesion, selected by maximal
cross sectional lesion area in each axis. Ensemble mod-
els were created by taking an average of the final pre-
dicted progression probabilities from the strongest
individual PET and CT models by test set area under
the receiver operating characteristic curve (AUC).
Deep learning model training and testing
Deep learning models using manual and automated
masks were trained and tested using the same 7:2:1
training, validation, and test split as the automated
lesion segmentation. Each model was trained for a
3



Figure 1. Patient Selection Flow Diagram.
Red boxes represent patients that were excluded for the stated reason. RIH: Rhode Island Hospital; HUP: Hospital of the Univer-

sity of Pennsylvania; SXH: Second Xiangya Hospital.
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maximum of 150 epochs with a patience of 50, early
stopping, and a fixed batch size of 32. The training set
was augmented by using vertical flips, horizontal flips,
shears, and zooms on the original images. Validation
accuracy was measured at each epoch, and the point
with the highest validation accuracy was selected as the
final model. Models were trained with stochastic gradi-
ent descent with Nesterov momentum using a learning
rate of 0.001 and a dropout rate of 0.5. Five models
were trained for each modality using the Keras library
with Tensorflow backend on two Nvidia Quadro GV100
GPUs. Performance of the progression risk model was
evaluated using AUC, accuracy, sensitivity, and specific-
ity. Performance was additionally re-evaluated with the
second manual segmentation. Heatmaps generated
using the Grad-CAM algorithm with absolute gradients
from the CT and PET CNN models with manual or
automatically segmented masks were generated with
and overlaid onto axial slices of the corresponding CT or
PET lesions to visualize salient lesion regions identified
by the models.
Deep learning and radiomics feature extraction
For deep learning features, 16 image features for the
training, validation, and test sets were extracted as the
output of the penultimate dense 16 neuron layer of the
strongest performing CNNs of PET and CT modalities
for both manually and automatically segmented masks.
Radiomics feature extraction was performed by using
www.thelancet.com Vol 82 Month , 2022
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the PyRadiomics feature extractor13 on the preprocessed
CT and PET data. First-order features, 2D and 3D shape
features, and textural features were obtained from the
extraction process. Missing feature values were esti-
mated through mean-value imputation. Additional deep
learning and feature sets were also constructed by apply-
ing the ComBAT data harmonization algorithm to
examine inter-site variability.
Random survival forest model
Training and validation sets for deep learning and radio-
mics features were merged to form new training sets for
the random survival forest (RSF) model. GridsearchCV
was performed to select optimal hyperparameters for
the RSF model, including number of estimators, maxi-
mum tree depth, minimum samples to split a node,
minimum samples per leaf node, and maximum fea-
tures used at each split. CT features, PET features, and
clinical features were each utilized to train three RSF
models. The clinical feature model included age, sex,
race, maxSUV, and lesion volume (CT and PET). Each
model was fitted on the training set to predict OS. Two
ensemble RSF models (CT and PET together and CT
and PET along with clinical features) were also created
by taking the average risk prediction of the individual
RSFs. Model performance was evaluated on the test set
by concordance index (C-index) and integrated brier
score (IBS). C-index calculations on the test set were
also performed using direct CNN model prediction out-
puts, maxSUV alone, average of CT and PET tumor vol-
ume alone, or AJCC (American Joint Committee on
Cancer) stage as risk scores for comparison.

Test set nodules were also separated into two groups
based on whether their predicted risk score was above
or below the mean predicted risk score from the CT
+PET+clinical feature ensemble RSF models. Kaplan
Meier survival curves were generated for the high and
low risk nodules. Deep learning features were ordered
by RSF feature importance and absolute value correla-
tion heatmaps with radiomics features were
generated.14

A full flow diagram for the machine learning
models is displayed in Figure 2. The codebase used
in this study is available online (https://github.com/
BrianHeHuang/Lung-PET-CT-Survival). The full
dataset used to train and evaluate the models in this
study is not available for public access because of
patient privacy concerns but is available from the
corresponding authors if there is a reasonable
request and approval from the institutional review
boards of the affiliated institutions.
Ethics
This study met eligibility for review exemption and
HIPAA waiver by the institutional review boards of the
www.thelancet.com Vol 82 Month , 2022
University of Pennsylvania (Protocol # 8499999) and
was approved by the institutional review board of Rhode
Island Hospital (Protocol # 1666262-2). This study was
also approved by the institutional review board of Xian-
gya Second Hospital (Protocol # 2020144). A HIPAA
authorization waiver was granted based on minimal
risk to the privacy of individuals, so informed consent
was not obtained for participants.
Statistics
The significance level used throughout this study
was 0.05. Two-sample T-tests were used to evaluate
differences in means between patients with progres-
sive and non-progressive nodules for continuous vari-
ables, and Chi-squared tests were used to evaluate
differences in proportions between the groups for
categorical variables.

For progression CNNmodel evaluation metrics, 95%
confidence intervals were computed using the adjusted
Wald interval and comparisons between model perfor-
mance metrics were performed using a McNemar test
for paired proportions.

Percentile 95% confidence intervals were generated
RSF models by performing a bootstrap on the test set.15

Two-thirds of the set were sampled without replacement
for 100 total iterations. Comparisons between RSF
model results were performed by computing percentile
bootstrap p-values on the differences in performance
across the 100 iterations. For the Kaplan Meier survival
curves, a log rank test for survival was conducted
between the high risk and low risk survival groups.
Role of Funders
The funding source had no role in the study design,
data collection, data analysis, interpretation, or writing
of the report. All the authors have full access to the data
and take full responsibility for the contents of this report
and the decision to submit it for publication.
Results

Patient cohort and clinical features
1168 nodules from 965 patients were identified. Of
these nodules, 792 had progression and 376 were pro-
gression-free. The most common malignancies were
adenocarcinoma (n=740 nodules) and squamous cell
carcinoma (n=179 nodules). Progression-free nodules
occurred in older patients (p<0.001 [t-test]) and had
increased maxSUV uptake (p=0.020 [t-test]), but did
not have significantly increased volume. Progressive
nodules were also significantly more likely to have
received chemotherapy, radiation therapy, and immu-
notherapy at some point during treatment. A detailed
summary of demographic and clinical information is
shown in Table 1.
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Figure 2. Machine Learning Architecture and Flow Diagram.
The EfficientNetB4 architecture was used for the convolutional neural network with three dense layers with batch normalization

and dropout. Ensemble models were generated by taking an average of the final predicted progression probabilities from the stron-
gest individual PET and CT models. Features were extracted from the penultimate dense layer for the random survival forest model
for overall survival risk. CT: computed tomography; PET: positron emission tomography.
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nnU-Net automatic segmentation performance
The nnU-Net AUC on the test set was 0.828 for CT and
0.755 for PET, while sensitivity was 0.657 for CT and
0.510 for PET, defined as proportion of nodule correctly
annotated. Accuracy and specificity were greater than
0.998 across both CT and PET segmentations, defined
as percentage of overall area and healthy area annotated
correctly respectively. The full results of the nnU-Net
segmentation, including training and test set perfor-
mance, are displayed in Table 2.
Progression model performance
The CT only CNN model with manually segmented
masks predicted progression with an accuracy of 0.723,
AUC of 0.888, sensitivity of 0.681, and specificity of
0.857. The corresponding PET only progression model
achieved an accuracy of 0.664, AUC of 0.669, sensitiv-
ity of 0.659, and specificity of 0.679. The PET+CT
ensemble model achieved an accuracy of 0.790, AUC of
0.876, sensitivity of 0.769, and specificity of 0.857. The
ensemble had significantly stronger accuracy and
www.thelancet.com Vol 82 Month , 2022



Clinical Feature Summary

Variable Progression No Progression P-value

Total Nodule Count 792 376

Age (SD) 66.54 (13.93) 69.66 (10.69) <0.001

MaxSUV Uptake (SD) 8.64 (7.40) 9.72 (7.34) 0.020

CT Lesion Volume (SD) 26,097 (66,850) 26,012 (72,518) 0.984

PET Lesion Volume (SD) 27,575 (68,507) 27,626 (73,039) 0.991

Sex (Nodule Count) 0.953

Male 48.5% (384) 48.7% (183)

Female 51.5% (408) 51.3% (193)

Diagnosis Method (Nodule Count) 0.235

Biopsy 41.8% (331) 45.5% (171)

Surgery 58.2% (461) 54.5% (205)

Race (Nodule Count) <0.001

White 68.6% (543) 75.3% (283)

African American 15.9% (126) 12.0% (45)

Asian/Pacific Islander 12.5% (99) 12.8% (48)

Other 1.1% (9) 0% (0)

Unknown 1.9% (15) 0% (0)

Treatments (Nodule Count)

Chemotherapy 27.0% (215) 3.0% (11) <0.001

Radiation therapy 26.5% (211) 16.5% (53) <0.001

Immunotherapy 8.1% (64) 3.3% (12) 0.002

Histologically Confirmed Diagnosis Summary

Progression (Nodule Count) No Progression (Nodule Count)

Adenocarcinoma 62.4% (494) Adenocarcinoma 65.4% (246)

Squamous Cell Carcinoma 14.9% (118) Squamous Cell Carcinoma 16.2% (61)

Lymphoma 4.2% (33) Lymphoma 1.6% (6)

Metastasis 7.2% (57) Metastasis 2.7% (10)

Unspecified SCLC 4.7% (37) Unspecified SCLC 7.2% (27)

Unspecified NSCLC 2.9% (23) Unspecified NSCLC 4.8% (18)

Carcinoid 1.5% (12) Carcinoid 1.3% (5)

Neuroendocrine 1.3% (10) Neuroendocrine 0% (0)

Other 1.0% (8) Other 0.8% (3)

Table 1: Demographic and Clinical Features. Data for progressive (n=792) and non-progressive (n=376) nodules are displayed as mean (standard
deviation) for continuous variables and percent (count) for categorical variables. Age is represented in years, and lesion volumes are measured in
voxels. P-values were computed for difference in means (two-sample T-test) or proportions (Chi-squared test) between the progression and non-
progression groups for continuous and categorical variables, respectively. Statistically significant p-values are highlighted in bold. MaxSUV:
maximum standardized uptake value, SD: standard deviation; SCLC: small cell lung carcinoma; NSCLC: non-small cell lung carcinoma.
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sensitivity than the PET model (p = 0.029, p =0.031
[McNemar test]) but had no significant differences com-
pared to the CT only model.

The CT only CNN model with automatically seg-
mented masks achieved an accuracy of 0.798, AUC of
0.876, sensitivity of 0.791, and specificity of 0.821. The
corresponding PET only model had an accuracy of
0.571, AUC of 0.706, sensitivity of 0.495, and specificity
of 0.821. The PET+CT ensemble had an accuracy of
0.815, AUC of 0.874, specificity of 0.813, and sensitivity
of 0.821. Both the CT and ensemble models outper-
formed the PET model in accuracy (p < 0.001, <0.001
[McNemar test]), and sensitivity (p < 0.001, <0.001
www.thelancet.com Vol 82 Month , 2022
[McNemar]), but there were no significant differences
between CT and CT+PET ensemble performance.

The CT CNN model with automatically segmented
masks had significantly higher accuracy and sensitivity
than the corresponding manual mask model
(p = 0.049, p = 0.006 [McNemar test]), while the PET
CNN model with manually segmented masks had sig-
nificantly higher sensitivity compared to corresponding
automatic mask model (p = 0.004, [McNemar test]).
There were no significant differences in performance of
the CT+PET ensemble models between manually and
automatically segmented masks. Model performance and
comparisons are summarized in Table 3 and AUC curves
7



CT Automatic Segmentation Performance

AUC Accuracy Sensitivity Specificity

Training Set 0.865 0.999 0.730 0.999

Validation Set 0.848 0.999 0.696 0.999

Test Set 0.828 0.999 0.657 0.999

PET Automatic Segmentation Performance

AUC Accuracy Sensitivity Specificity

Training Set 0.747 0.998 0.495 0.999

Validation Set 0.741 0.999 0.489 0.999

Test Set 0.755 0.999 0.510 0.999

Table 2: nnU-Net Automatic Segmentation Performance. Accuracy represents percentage of overall percentage of correctly predicted areas in
the overall image. Sensitivity corresponds to the percentage of nodules that were correctly predicted and annotated. Specificity refers to the
percentage of healthy area that was correctly predicted and annotated.

Modality AUC Accuracy (Acc) Sensitivity (Sens) Specificity (Spec)

CNN Models � Progression (Manually segmented masks)

CT 0.888 0.723 (0.643, 0.803) 0.681 (0.587, 0.775) 0.857 (0.722, 0.992)

PET 0.669 0.664 (0.580, 0.748) 0.659 (0.563, 0.755) 0.679 (0.514, 0.843)

PET+CT Ensemble 0.876 0.790 (0.717, 0.863) 0.769 (0.683, 0.855) 0.857 (0.722, 0.992)

CNN Models � Progression (Automatically segmented masks)

CT 0.876 0.798 (0.726, 0.870) 0.791 (0.708, 0.875) 0.821 (0.678, 0.965)

PET 0.706 0.571 (0.484, 0.659) 0.495 (0.394, 0.595) 0.821 (0.678, 0.965)

PET+CT Ensemble 0.874 0.815 (0.745, 0.885) 0.813 (0.733, 0.894) 0.821 (0.678, 0.965)

P-values [McNemar], comparisons
between CNNs (Manual Masks)

P-values [McNemar], comparisons
between CNNs (Automated Masks)

P-values [McNemar],
comparisons between manual (M)

and automated (A) CNNs

Comp. Acc. Sens. Spec. Comp. Acc. Sens. Spec. Comp. Acc. Sens. Spec.

CT vs. PET 0.371 0.864 0.227 CT vs. PET <0.001 <0.001 1.00 CT (M vs. A) 0.049 0.006 1.00

CT vs. PET+CT 0.115 0.077 1.00 CT vs. PET+CT 0.754 0.727 1.00 PET (M vs. A) 0.090 0.004 0.344

PET vs. PET+CT 0.004 0.031 0.125 PET vs. PET+CT <0.001 <0.001 1.00 PET + CT (M vs. A) 0.629 0.388 1.00

Table 3: Model Performance. Results for performance metrics on the test set are displayed for the machine learning models using manually and
automatically segmented masks. Accuracy, sensitivity, and specificity for the CNN models are shown with 95% confidence intervals in parentheses.
Confidence intervals were calculated using the adjusted Wald method. Comparisons between performance metrics between models was performed
with a McNemar test for paired proportions. Statistically significant p-values are highlighted in bold (p<0.05); CNN: convolutional neural network;
RSF: random survival forest; AUC: area under the receiver operating characteristic curve.
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are displayed in Figure 3. Testing with the second inde-
pendent manual segmentation yielded comparable results,
apart from a significantly lower CT+PET specificity for the
model trained with automated masks (p = 0.039, [McNe-
mar test]), which are shown in Appendix B.

The GradCAM algorithm results showed that CT
models tended to highlight intra-tumoral regions with
frequent extension and crossing over an edge of the
lesion. PET models frequently annotated a more diffuse
region around the center of the lesion. Images of over-
laid Grad-CAM heatmaps of six representative lesions
are displayed in Figure 4.
Overall survival model performance
For deep learning features derived with manually seg-
mented masks, the CT feature only RSF had a C-index
of 7.30, while the PET only RSF had a C-index of 0.595
and the clinical RSF had a C-index of 0.595. The com-
bined PET+CT and PET+CT+clinical ensemble models
achieved C-indices of 0.741 and 0.737 respectively. For
deep learning features from automatically segmented
masks, the CT, PET, and clinical only C-indices were
0.739, 0.567, and 0.587 respectively, while the CT
+PET ensemble had a C-index of 0.740 and the full CT
+PET+clinical ensemble had a C-index of 0.732.
www.thelancet.com Vol 82 Month , 2022



Figure 3. Receiver Operating Characteristic Curves for Progression Risk.
AUC: area under the receiver operating characteristic curve.

Figure 4. Grad-CAM Results.
Heatmaps generated using the Grad-CAM algorithm with absolute gradients from the CT and PET CNN models with manual/

automatically segmented masks were generated with and overlaid onto axial slices of corresponding lesions. Images of six represen-
tative lesions across the four CNNs are displayed.
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Modality C-Index IBS Modality C-Index IBS

RSF model with deep learning features (Manual masks) RSF model with deep learning features (Automated masks)

CT 0.730 (0.687, 0.774) 0.171 (0.139, 0.208) CT 0.739 (0.703, 0.793) 0.159 (0.13, 0.193)

PET 0.595 (0.543, 0.663) 0.177 (0.15, 0.204) PET 0.568 (0.512, 0.620) 0.185 (0.165, 0.202)

Clinical 0.595 (0.529, 0.659) 0.177 (0.15, 0.204) Clinical 0.587 (0.536, 0.658) 0.185 (0.165, 0.202)

PET + CT Ensemble 0.741 (0.695, 0.802) 0.168 (0.141, 0.197) PET + CT Ensemble 0.740 (0.695, 0.792) 0.165 (0.142, 0.189)

PET + CT + Clinical Ensemble 0.737 (0.680, 0.804) 0.169 (0.14, 0.199) PET + CT + Clinical

Ensemble

0.732 (0.682, 0.783) 0.166 (0.141, 0.193)

RSF model with radiomics features (Manual masks) RSF model with radiomics features (Automated masks)

CT 0.735 (0.687, 0.787) 0.159 (0.135, 0.181) CT 0.718 (0.665, 0.771) 0.160 (0.139, 0.187)

PET 0.572 (0.520, 0.630) 0.191 (0.174, 0.207) PET 0.526 (0.502, 0.565) 0.211 (0.197, 0.242)

Clinical 0.597 (0.542, 0.655) 0.191 (0.174, 0.207) Clinical 0.584 (0.52, 0.631) 0.211 (0.197, 0.242)

PET + CT Ensemble 0.725 (0.689, 0.769) 0.169 (0.153, 0.187) PET + CT Ensemble 0.703 (0.654, 0.764) 0.179 (0.163, 0.204)

PET + CT + Clinical Ensemble 0.717 (0.674, 0.757) 0.168 (0.149, 0.189) PET + CT + Clinical

Ensemble

0.700 (0.645, 0.754) 0.176 (0.158, 0.206)

Table 4: RSF Model Performance. Mean results for performance metrics with associated bootstrap percentile 95% confidence intervals are
displayed for deep learning and radiomics features with manually or automatically segmented masks. C-index: concordance index; IBS: integrated
brier score.
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For radiomics features derived with manually seg-
mented masks, the CT only RSF had a C-index of 0.735,
the PET only had a C-index of 0.572, and the clinical
only model had a C-index of 0.597. The PET+CT ensem-
ble C-index was 0.725 and the PET+CT+clinical ensem-
ble C-index was 0.717. The radiomic feature RSF
models with automated masks had a CT only C-index of
0.718, PET only C-index of 0.526, and clinical only C-
index of 0.584. PET+CT ensemble had a C-index of
0.703, while the PET+CT+clinical ensemble achieved a
C-index of 0.700.

For all sets of models, the CT only, CT+PET, and CT
+PET+clinical models had a significantly higher C-index
than the PET only and clinical feature only models
(p <0.001, [bootstrap]). There were no significant differ-
ences when comparing C-indices between any of the
deep learning feature RSF models (single modality and
ensemble) and the corresponding radiomics feature
RSF model. There were also no significant differences
comparing models with manually segmented masks
and automatically segmented masks. Table 4 contains
the full summary of RSF results and Appendix C con-
tains a chart of p-values for all comparisons performed.

In comparison, the direct CT CNN risk score model
had a C-index of 0.544, the corresponding PET model
had a C-index of 0.536, and the CT+PET ensemble had
a C-index of 0.543. With automatic masks, the direct
CT, PET, and CT+PET models had C-indices of 0.537,
0.540, and 0.539 respectively. The corresponding RSF
models had significantly stronger performance on CT
and CT+PET models for both manual and automated
masks (all p < 0.001, [bootstrap]). The direct maxSUV
model had a C-index of 0.537, the average CT and PET
volume model had a C-index of 0.541, and the AJCC
stage model had a C-index of 0.538. All three of the
models had comparable performance to a
corresponding RSF clinical model. Full results and com-
parisons are displayed in Appendix D.

In the Kaplan Meier survival analysis, 62 nodules
had predicted risk scores higher than the mean score
from the CT+PET+clinical feature DL manual mask
RSF model, while 57 nodules had scores lower than the
mean. For the corresponding ensemble model with
automatic masks, 66 nodules had higher than mean
risk scores, while 53 had lower than mean risk. In the
radiomics model CT+PET+clinical RSF model with
manual masks, 59 nodules had above average risk,
while 60 nodules have below average. The correspond-
ing automatic mask model had 69 lesions with above
average risk and 50 lesions with below average risk.
Nodules deemed high risk had a significantly lower sur-
vival distribution than nodules deemed low risk for all
four categories (p<0.001, [log rank test]). Full curves
are displayed in Appendix E.

Correlation heatmaps sorted by RSF feature impor-
tance demonstrated that the manual CT deep learning fea-
tures were most strongly correlated with corresponding
radiomics features, followed by the automatic CT deep
learning features. PET deep learning features for both
manual and automatic masks showed weak correlation
with radiomics features. There were no noticeable patterns
between feature importance and correlation strength. The
generated heatmaps are shown in Figure 5.
ComBAT Data harmonization results
For manual mask RSF models trained with deep learn-
ing features following ComBAT harmonization, the CT,
PET, and clinical modalities had C-indices of 0.649,
0.716, and 0.591 respectively. The PET+CT ensemble
and PET+CT+clinical ensemble models had C-indices
of 0.711 and 0.709 respectively. For the corresponding
www.thelancet.com Vol 82 Month , 2022



Figure 5. Correlation Heatmaps between Deep Learning Features and Radiomics Features.
Absolute value of correlations are displayed. Deep learning features are ordered from top to bottom by relative importance within the

random survival forest model. The sum of all correlations for each deep learning feature, normalized to 0 to 1, is shown in the final
column.
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CT, PET, and clinical models with automatic masks, C-
indices were 0.748, 0.717, and 0.590, while the PET
+CT and PET+CT+clinical models had C-indices of
0.729 and 0.727.

For manual mask RSF models with radiomics fea-
tures following harmonization, the CT, PET, and clini-
cal modalities had C-indices of 0.738, 0.629, and 0.600
respectively. PET+CT and PET+CT+clinical ensemble
www.thelancet.com Vol 82 Month , 2022
models had C-indices of 0.680 and 0.676. For corre-
sponding radiomics models with automatic masks, CT,
PET, and clinical models had C-indices of 0.680, 0.653,
and 0.589, while the PET+CT and PET+CT+clinical
models had C-indices of 0.664 and 0.659.

Compared to the corresponding models trained with
non-harmonized features, both deep learning PET mod-
els and the radiomics PET model with automatic masks
11



Modality C-Index IBS Modality C-Index IBS

RSF model with deep learning features (Manual masks) RSF model with deep learning features (Automatic masks)

CT 0.649 (0.596, 0.708) 0.207 (0.189, 0.238) CT 0.748 (0.700, 0.801) 0.168 (0.139, 0.200)

PET 0.716 (0.657, 0.776) 0.175 (0.138, 0.203) PET 0.717 (0.671, 0.768) 0.176 (0.150, 0.210)

Clinical 0.591 (0.525, 0.647) 0.175 (0.138, 0.203) Clinical 0.590 (0.538, 0.663) 0.176 (0.150, 0.21)

PET + CT Ensemble 0.711 (0.661, 0.767) 0.179 (0.154, 0.207) PET + CT Ensemble 0.729 (0.682, 0.774) 0.169 (0.141, 0.20)

PET + CT + Clinical Ensemble 0.709 (0.655, 0.774) 0.176 (0.148, 0.207) PET + CT + Clinical

Ensemble

0.727 (0.679, 0.774) 0.169 (0.142, 0.201)

RSF model with radiomics features (Manual masks) RSF model with radiomics features (Automatic masks)

CT 0.738 (0.677, 0.796) 0.183 (0.162, 0.217) CT 0.680 (0.638, 0.722) 0.196 (0.173, 0.223)

PET 0.629 (0.581, 0.682) 0.225 (0.194, 0.273) PET 0.653 (0.602, 0.704) 0.204 (0.173, 0.235)

Clinical 0.600 (0.541, 0.673) 0.225 (0.194, 0.273) Clinical 0.589 (0.534, 0.647) 0.204 (0.173, 0.235)

PET + CT Ensemble 0.680 (0.619, 0.743) 0.197 (0.174, 0.235) PET + CT Ensemble 0.664 (0.616, 0.705) 0.195 (0.167, 0.223)

PET + CT + Clinical Ensemble 0.676 (0.611, 0.733) 0.187 (0.162, 0.228) PET + CT + Clinical

Ensemble

0.659 (0.613, 0.712) 0.186 (0.159, 0.214)

Table 5: Harmonized Feature RSF Model Performance. Mean results for performance metrics with associated bootstrap percentile 95%
confidence intervals are displayed for deep learning and radiomics features with manually or automatically segmented masks. C-index:
concordance index; IBS: integrated brier score.
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had significantly higher C-index (all p < 0.001, [boot-
strap]). The manual deep learning CT model had a sig-
nificantly lower C-index (p < 0.001, [bootstrap]), but all
other CT models and both ensemble models had no sig-
nificant differences compared to their non-harmonized
equivalents. The full RSF model results are displayed in
Table 5 and a table of p-values for comparisons is dis-
played in Appendix F.
Discussion
The study demonstrates that CNNs trained using pre-
treatment FDG-PET/CT data performed well in predict-
ing lung malignancy progression and OS. Ensemble
progression models had significantly improved perfor-
mance compared to PET only but comparable results to
CT, and performed similarly with manual and auto-
mated segmentations. All CT models and ensemble
models for overall survival were significantly stronger
than PET only and clinical only models, but had compa-
rable performance to each other. Deep learning models
had generally higher C-indices than corresponding
radiomics models, but these differences were not signif-
icant. Data harmonization significantly increased the
performance of multiple PET RSF models, but did not
change ensemble performance.

The majority of existing studies focusing on PET and
CT analysis for lung cancer outcome prediction have
used radiomics,16 which have had varied success. For
instance, 3D CT features were used to predict survival
time with decision trees in patients with adenocarci-
noma, achieving an accuracy of 0.775 and an AUC of
0.712.17 Similarly, CT radiomics features were used to
predict OS with ML in NSCLC, achieving a C-index of
0.68, less than our CT feature only and combined
ensemble RSF models across feature and mask types.18

RSFs have also been used with PET radiomics to predict
three-year disease recurrence with a strong accuracy of
0.901 and an AUC of 0.956.19 Our results highlight
that DL feature based RSF models have at least compa-
rably strong performance to a corresponding radiomics
feature model and offers some preliminary evidence of
potential improvement in performance with the DL
models. The GradCAM visualization demonstrates that
these features are likely to correlate with meaningful
regions and edges of the lesions. The heatmap results
provide further clinical validation for these features,
showing that CT DL features are well and more strongly
correlated with known engineered radiomics features
compared with PET DL features, which parallels the
improved CT performance with survival prediction.

While most existing work has used radiomics, sev-
eral studies have also proposed deep learning models
like those in our study. For instance, a 3D CNN was
used to predict two-year OS based on CT in NSCLC,
achieving AUCs ranging from 0.70 to 0.73.20 A U-net
CNN trained on the same CT dataset achieved an AUC
of 0.88 for two-year OS, and the CNN image features
were better correlated with OS than traditional radio-
mics features.21 In the analysis of PET with deep learn-
ing, Tau et al. used CNNs to predict lymph node and
distant metastasis in patients with NSCLC.22 While the
CNNs performed well in predicting N staging category
(accuracy=0.80), they performed poorly in predicting
distant metastasis at 6-month follow up (accu-
racy=0.63). While these results are strong, they have
focused on prediction of a timepoint-specific binary out-
come. This study extends prior work done with this
methodology to prediction of survival as a continuous
outcome through incorporation of the RSF model,
www.thelancet.com Vol 82 Month , 2022
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which outperformed corresponding direct CNN CT and
ensemble models.

This study additionally compared the survival model
performance between manual and automated lesion
masks. The nnU-NET segmentation had a very high
accuracy and specificity due to the high proportion of
healthy background tissue; while sensitivity perfor-
mance was weaker, AUC remained high for both
modalities. The non-significant differences in ensemble
model performance between manual and automatic
segmentation suggest that an end-to-end generalizable
model could offer comparably strong results, which
would be beneficial for reduction of inter-reader vari-
ability.

Another strength of this study is evaluation individ-
ual CT and PET modalities alongside ensemble models,
showing that CT models generally outperformed PET
and that addition of PET to CT caused non-significant
changes in model performance. Whether PET provides
additional prognostic information beyond CT in lung
cancer prognosis remains controversial. In the litera-
ture, the PET derived value maxSUV is most often
included in time-to-event models. Some studies have
indicated that while maxSUV may be helpful for pre-
dicting OS,23 local control,23 and recurrence free sur-
vival24 when combined with other metrics, it is a poor
independent predictor,25 which is supported by the
weaker performance of our maxSUV only OS prediction
model. A recent multivariate analysis in 1500 patients
found SUV to be predictive of prognosis in stage I to III
disease but not in stage IV disease.26 Interestingly, max-
SUV was greater in non-progressing nodules than in
progressing nodules, despite studies indicating that
increased maxSUV may be a biomarker for nodule
aggressiveness.27 Inconsistent findings regarding the
prognostic value of maxSUV may be explained by high
degrees of variability based on factors such as blood glu-
cose level, time of imaging following injection, lesion
size, age, sex, and body mass index.27�29 The indepen-
dent predictive value of AJCC stage or total tumor vol-
ume, both of which performed similar to maxSUV in
this study, have also had significantly variability in
reported results. One study found that AJCC stage alone
achieved a strong c-index of 0.833 on non-metastatic
NSCLC,30 while another large study examining general
NSCLC found that stage only achieved a c-index of
0.624.31 In a study examining subsets within Stage I
NSCLC, stage had a c-index of 0.56,32 and in another
analysis with SCLC, stage achieved a c-index of 0.65.33

For total tumor volume, one study on Stage IA NSCLC
found volume to predict recurrence with a modest
AUC-ROC of 0.58,34 but another study with Stage III
NSCLC predicted PFS following chemoradiation with a
c-index of 0.68.35

Radiomics and deep learning studies with both PET
and CT features also offer mixed results on the prognos-
tic utility of PET. In one recent radiomics study for OS
www.thelancet.com Vol 82 Month , 2022
prediction in NSCLC based on longitudinal FDG-PET/
CT, a support vector machine classifier with PET fea-
tures outperformed one with CT features, and the com-
bination of PET and CT features slightly increased
performance compared to PET alone.10 Another study
in NSCLC found PET features to be more predictive of
local recurrence than CT features, and the combination
of PET and CT features increased performance.11 How-
ever, features from neither modality were predictive of
OS. A radiomics-based study examining disease-free
survival prediction with PET/CT using Cox models
found that a CT only model had an AUC of 0.75, while
a PET only and PET+CT models both had AUCs of
0.68.36 Another recent deep learning study employed
CT and PET CNNs to derive single risk scores for OS
prediction in lung cancer instead of using extracted fea-
tures.14 The CT risk score was found to be a better pre-
dictor of OS than PET, and combining the CT risk, PET
risk, and age in a Cox model predicted OS with a C-
index of 0.68, although they did not specifically exam-
ine single modality results.

Prognostication based on PET may be inherently
more difficult than that based on CT imaging alone,
since patients sent for FDG-PET/CT often have indeter-
minate lesions that physicians have deemed difficult to
evaluate with sequential CT.37 Furthermore, the deci-
sion to pursue an FDG-PET/CT scan is often dependent
on clinical judgement and institutional practices, which
may lead to high variability in patient datasets and asso-
ciated studies. The ComBAT data harmonization algo-
rithm has been shown to remove site bias in imaging
and radiomics features and improve prediction results
in PET, CT, and MRI imaging for neuroimaging,
NSCLC, cervical cancer, among others.38�40 In this
study, ComBAT harmonization did significantly
improve multiple PET model performances, suggesting
that the lower non-harmonized PET performance could
be attributable to inter-site variation. However, ensem-
ble performance did not have a corresponding increase,
even when CT model performance was comparable.
This indicates that site variability may be a cause of
decreased PET model performance, but that harmoniza-
tion may not necessarily improve the prognostic utility
of adding PET information to CT.

This study has several limitations. Firstly, the man-
ual segmentation of the nodules was done predomi-
nantly by one radiologist, which could have artificially
introduced variability into the dataset and influenced
the manual mask results. As discussed, most patients
that undergo FDG-PET/CT scans have specifically inde-
terminate nodules. Consequently, the study may be lim-
ited by selection bias and have less generalizability to a
broader lung cancer population. A further limitation is
that while this study examined a set of well-studied
radiomics features, multiple other radiomics
approaches exist and could provide differing results.14,18

Although the GradCAM results and heatmaps lend
13
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some insight into the deep learning features in this
study, they still lack some clinical interpretability as we
were not able to define a direct relationship between
these features and known clinical markers or outcomes.
Finally, the data harmonization work done within this
study was following feature extraction; additional analy-
sis with harmonization techniques prior to image proc-
essing could provide additional performance benefits
not represented within our results.

There are several potential avenues for future work.
A similar analysis of longitudinal FDG-PET/CT imag-
ing before and after treatment incorporating additional
information on clinical course with recurrent neural
networks could improve progression and OS risk pre-
diction. More analysis could also be done examining if
there are more optimal or robust strategies for extract-
ing features from these CNNs than using the penulti-
mate layer of features. While our data was derived from
three independent institutions, generalizability can still
be improved if data from additional institutions is added
to the training set. A possible approach is federated
learning, which facilitates distribution of model training
between multi-institutional datasets without requiring
data sharing.41 Proof of concept for this approach has
recently been demonstrated in lung cancer.42 Finally,
any prognostic ML model must be evaluated prospec-
tively in a variety of institutions and patient populations
for real clinical implementation. Computational effi-
ciency should also be prioritized if real-time use is to be
achieved.

In conclusion, CNNs trained using pre-treatment
FDG-PET/CT perform well in predicting lung malig-
nancy progression. Features extracted with the CNN
had strong performance in OS prediction with a RSF
model that was comparable to a radiomics feature
extraction approach. Models based on CT performed
better than those based on PET, and the addition of PET
to CT in an ensemble model only provides non-signifi-
cant improvements in performance over CT alone. By
identifying lung malignancies with high progression
and mortality risk, ML based on FDG-PET/CT can
improve prognostication and planning of care.
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