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Abstract: An imaging system has natural statistics that reflect its intrinsic characteristics. For example,
the gradient histogram of a visible light image generally obeys a heavy-tailed distribution, and its
restoration considers natural statistics. Thermal imaging cameras detect infrared radiation, and
their signal processors are specialized according to the optical and sensor systems. Thermal images,
also known as long wavelength infrared (LWIR) images, suffer from distinct degradations of LWIR
sensors and residual nonuniformity (RNU). However, despite the existence of various studies on
the statistics of thermal images, thermal image processing has seldom attempted to incorporate
natural statistics. In this study, natural statistics of thermal imaging sensors are derived, and an
optimization method for restoring thermal images is proposed. To verify our hypothesis about the
thermal images, high-frequency components of thermal images from various datasets are analyzed
with various measures (correlation coefficient, histogram intersection, chi-squared test, Bhattacharyya
distance, and Kullback–Leibler divergence), and generalized properties are derived. Furthermore,
cost functions accommodating the validated natural statistics are designed and minimized by a
pixel-wise optimization method. The proposed algorithm has a specialized structure for thermal
images and outperforms the conventional methods. Several image quality assessments are employed
for quantitatively demonstrating the performance of the proposed method. Experiments with
synthesized images and real-world images are conducted, and the results are quantified by reference
image assessments (peak signal-to-noise ratio and structural similarity index measure) and no-
reference image assessments (Roughness (Ro) and Effective Roughness (ERo) indices).

Keywords: long wage infrared; image optimization; regularization; deconvolution; total variation

1. Introduction

Thermal imaging is being extensively used owing to the ongoing global pandemic
of coronavirus disease 2019 (COVID-19). Fever is one of the prominent symptoms of
COVID-19, and people infected by the virus are detected efficiently by LWIR thermal
cameras (also known as microbolometer cameras). Infrared (IR) thermography converts
radiation in the LWIR bands to thermal images (commonly referred to as thermograms),
and allows for the detection of temperature variations. Visualization of thermal information
benefits the recognition of the surroundings in some cases (e.g., low-light conditions or
dark areas) because thermal imaging tends to provide more meaningful information in
urban environments with huge thermal variations [1]. Therefore, LWIR imagers have been
extensively used in medical, military, and security applications, as well as commercial
applications, such as remote sensing [2,3], medical imaging [4], advanced driver-assistance
systems [5], and face recognition [6–8].

Continuing advances in IR imaging have resulted in inexpensive, portable IR cameras,
shutterless operations, and both cooled and uncooled, which can provide high-resolution
thermograms [9]. Despite the advances and increasing demand for thermograms, thermal
imagers still suffer from certain problems when measuring the thermal distribution within
the field of view. Microbolometers are sensitive to the radiation emitted by objects in
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the scene, and the background radiation reflected by the objects in the scene, and the
background radiation reflected by these objects. The relationship between the irradia-
tion collected at the sensor and the temperatures of the imaged materials is nontrivial.
For example, the material and surface properties of an object alter its emissivity. Similarly,
the reflective properties of an object will vary the amount of background radiation reflected
by the object and subsequently collected by the thermal imaging sensor. This variability
can lead to errors in the measurement of an object’s temperature.

Additionally, the LWIR imaging sensor suffers from image degradation caused by
its intrinsic limitations. First, a typical LWIR camera has a problem of severe noise in
the framework without cooling systems. In general, LWIR cameras with cooling systems
provide high-quality thermograms; however, applications that use handheld devices
require minimized LWIR cameras [9]. Most LWIR imagers employ uncooled systems
because of their size, weight, power, and price. A thermal camera without the cooler is
usually referred to as a microbolometer. Second, residual non-uniformity (RNU, also known
as fixed pattern noise (FPN)) is another degradation of the LWIR imaging sensor without
a mechanical shutter. Typical LWIR cameras employ a shutterless imaging system that
allows sensors to operate continually without the need for the mechanical shutter for NUC.
The shutterless operation prevents external interruption yielding recalibration, and the
changing thermal distributions can be treated based on the temperature measurements of
the camera [10]. However, shutterless operations refer to the absence of a reference LWIR
image typically used to cancel the non-uniformity, and RNU are observed owing to the
low performance of the NUC [11].

Various conventional methods have been proposed to reduce the distortions of thermal
imaging sensor [12–14]. These traditional methods considered adjacent pixels or referred
data sequences to reduce the RNU. However, the characteristics or statistics of thermal
images have seldom been employed to regulate thermal image processors, even if the
statistics of LWIR images have been studied for a decade. Morris et al. [1] found that the
power spectrum of a thermal image is predicted by the generalized Laplace distribution
and suggested ranges of the parameter of the Laplace distribution. Goodall et al. [15]
studied distortions unique to LWIR images, and found statistical models for measuring
the degree of presetting non-uniformity in thermal images. Moreno-Villamarín et al. [16]
analyzed common image distortions, such as blur, white noise, JPEG compression, and non-
uniformity, in fused LWIR and visible light images, and proposed an opinion-aware fused
image quality analyzer. Pezoa and Medina [11] proposed a model for RNU (or non-
uniformity) present in IR focal plane arrays (FPAs) in the frequency domain (note that
the RNU in the thermal imaging sensor is usually observed as a grid-like pattern and
is different from those of complementary metal-oxide semiconductor (CMOS) sensors.).
In particular, the statistical regularities of LWIR [16] or fused visible-LWIR images [15]
were derived based on natural scene statistics (NSS) of the visible light images, but the
characteristics were not incorporated as prior information to solve optimization problems
of thermal imaging.

The thermal image processing algorithm can consider the prior knowledge, which
is about the properties of LWIR images. Usually, the image restoration algorithm that
considers visible light images attempts to incorporate the characteristics of the images,
and the natural image statistics are usually derived from the distribution of gradients.
For example, a mixture of the Gaussian approximation [17] and hyper-Laplacian [18]
priors is derived from the heavy-tailed distribution of gradients in natural scenes and is
incorporated as a regularization strategy. Although the relationship between the statistics
and qualities of visible light images has been extensively studied, limited work has been
conducted on the restoration of thermal images based on considerations of their own
statistical characteristics. Our observation of LWIR images indicates that restoration of an
LWIR image requires the inherent characteristics of the image. The spectral band of LWIR
is characterized by wavelengths in the range of 8 to 14 µm and possesses its own statistics
in the FPA. The difference between the gradients of visible light and LWIR images is shown
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in Figure 1 (note that we analyzed five datasets marked as MORRIS [1], KRISTO [19],
ADAS [5], OSU1 [20], and OSU2 [21]). LWIR and visible light images have different mean-
subtracted contrast normalized (MSCN) coefficients and gradient statistics even if they
share a comparable field of view.
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Figure 1. Test images of the five LWIR databases. The first row demonstrates different spectral images, thermal image, and
visible light image, respectively. The second and third rows demonstrate the histogram and the histogram of the gradient
distribution, respectively. Despite of their comparable field of view, the MSCN and the gradient distributions of LWIR and
visible light images have been observed differently in most cases. (a) MORRIS [1]; (b) KRISTO [19]; (c) FLIR ADAS [5];
(d) SRIP; (e) OSU [20,21].

The experiments reported herein, present the properties of LWIR images without con-
sidering the LWIR imager’s optical or electronical characteristics. Therefore, we have tried
to derive an intrinsic property using various datasets. A brief description of datasets fol-
lows. Dataset Morris [1] contains about 450 scenes with 350 outdoor and 100 indoor scenes.
Each scene consists of a pair of images (visible light and LWIR image). Dataset Kristo [19]
contains 180 scenes with 80 outdoor and 100 indoor scenes. Each scene also consists of a
pair of images (visible light and LWIR image). Dataset ADAS [5] contains 14,452 annotated
thermal images with 10,228 images sampled from short videos and 4224 images from a
continuous 144-s video. All videos were taken on the streets and highways in Santa Bar-
bara, California, USA from November to May. Dataset OSU [20] contains about 500 scenes
obtained by surveillance cameras and each scene consists of a single LWIR image. Dataset
OSU2 [21] contains about 10,000 scenes obtained by surveillance cameras and each scene
consists of a pair of visible light and LWIR images. Finally, dataset SRIP contains 20 scenes,
and each scene consists of a pair of visible light and LWIR images.

This paper is organized as follows: in Section 2, we derive a property of LWIR images
using the aforementioned datasets. In Section 3, we propose an optimization strategy
that incorporates our hypothetical property. In Section 4, the results of our optimization
method are compared with those of the conventional methods. Finally, Section 5 concludes
this study.

2. Related Work
2.1. Background

An underlying latent image is usually estimated under the assumption that the
degradation is linear, and the degraded image can be restored by convex optimization.
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The degradation model of a thermal imaging camera is explained by a linear system,
and the procedure is mathematically represented by a linear equation:

y = Hx + n, (1)

where y is an observed LWIR image, H is the system matrix of degradation, x is the clear
latent image, and n is the corresponding error. When considering noise, the system matrix
is considered to be an identity matrix I. In general, optical problems due to defocus
aberration or atmospheric turbulence can be solved by an inverse operation of the system
matrix but directly solving Equation (1) usually yields an unacceptable result.

The unacceptable result of the inverse matrix is caused by uncertainties. Therefore,
the ill-posed problem is solved by using an iterative method. Many applications, such as
medical imaging, surveillance, astronomy, and remote sensing, have adopted the iterative
method based on convex optimization to reduce the uncertainty. Typically, a convex opti-
mization problem to restore the degraded image is achieved by minimizing the following
cost function as bellow:

F(x) = ||y−Hx||22 + Γ(x), (2)

where the two terms indicate the data fidelity and regularization term, respectively. To con-
strain the feasible solution set, various regularization schemes have been deployed by
the regularization term [22]. Therefore, in the case of optimization for the LWIR images,
a regularization strategy related to the thermal images should be employed to obtain the
steady-state solution.

2.2. Basic Concepts

An appropriately regularized cost function incorporates information regarding the
restored images a priori defined as acceptable solutions and computationally stabilizes the
solution of the under-constrained inverse problem [23]. As considerable work has been
conducted to identify an efficient regularization strategy capable of the gradient distribution
of the visible light images, an efficient image prior model, in which the intrinsic properties
of LWIR images, needs to be constructed to recover the latent image. Therefore, we propose
an optimization method incorporating the property of LWIR images derived from our
observations on the datasets [1,5,19–21]. Our analysis of the LWIR images also departs
from the gradient information. As in Figure 2, we estimate the gradient distribution of
individual thermograms and attempt to demonstrate the correlation between the observed
gradient distribution and the estimated distribution. All the histograms demonstrating
the gradient distribution are visualized based on the kernels [−1, 1], [−1, 1]T yielding the
output range [−510, 510] with 8-bit images.
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Figure 2. LWIR images, histograms, and the measured similarity. Ten images are sampled from each dataset, and the
observed and estimated gradient distributions are demonstrated. The similarities between the observed and estimated
distributions are also visualized. In most cases, measurement scores show that the two distributions are closely related.
(a) MORRIS [1]; (b) KRISTO [19]; (c) FLIR ADAS [5]; (d) SRIP; (e) OSU [20,21].

Throughout our experiment for deriving natural statistics, the gradient distribution of
individual LWIR images can be approximated by the following equation:

h∇x(n) ∼
N

2 |∇x|
N

exp (− |n||∇x|
N

), (3)
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where h∇x indicates a histogram demonstrating the gradient distribution of a thermogram
x, and N denotes the number of pixels in the thermogram. Note that a random variable Z
has a Laplace distribution if its probability density function (PDF) is as follows:

Z ∼ 1
2b

exp (−|z− ν|
b

) := Laplace(z|ν, b), (4)

where ν is the mean, and b > 0 is a scaling parameter. By using this abbreviation of the
Laplace distribution, our observation can be hypothesized as below:

h∇x(n)
N

∼ Laplace(xn|0, |∇x|
N ), (5)

which is a probability mass function of a zero mean Laplace distribution with a scaling
parameter b = |∇x|

N . Additionally, to support our hypothesis formulated by Equation (5),
five measures were utilized to show how the estimated distribution is different from
the observed distribution, as summarized in Table 1. (For more detailed information
about the measures, refer to [24,25].) The empirical scores for each measure are shown
in Figure 2, and the average of their scores are presented in Table 2. As seen in Figure 2,
the gradient distributions do not always satisfy Equation (5). Images with the severe pattern
of RNU or saturation sometimes do not obey our hypothesis. For example, the dataset
OSU often shows a saw pattern shape of the gradient distribution. Thermal images with
saturated regions also record relatively low scores. Despite these perturbations, most of
the thermograms can be considered as following our hypothesis.

Table 1. Definition of Measures qualifying the similarity between histograms of the gradient distribution.

Definition Range Remarks

Correlation
coefficient (ρ) ρhp ,hq =

E[(hp−µhp )(hq−µhq )]

σhp σhq
[−1,1] ρhp ,hp = 1

Histogram
intersection (∩) hp ∩ hq = ∑i min(hp(n), hq(n)) [0,1] hp ∩ hp = 1

Chi-squared
test (χ2) χ2(hp, hq) =

1
2 ∑

[hp(n)−hq(n)]2

[hp(n)+hq(n)]
[0,1] χ2(hp, hp) = 0

Bhattacharyya
distance (DB)

DB(hp, hq) =

− ln(∑i

√
hp(n)hq(n)))

[0,∞) DB(hp, hp) = 0

Kullback–Leibler
divergence (DKL)

DKL(hp||hq) = ∑i hp(n) ln (
hp(n)
hq(n)

) [0,∞) DKL(hp||hp) = 0

Table 2. Average scores of the measures in Figure 2. The scores of the correlation coefficient and
histogram intersection are close to unity, and the scores of the Chi-squared test, Bhattacharyya
distance, and Kullback–Leibler divergence are close to zero.

MOR KRI ADAS SRIP OSU Average

ρ 0.9867 0.9722 0.9814 0.9808 0.9551 0.9757

∩ 0.9055 0.8764 0.9074 0.8758 0.8768 0.8897

χ2 0.0249 0.0287 0.0149 0.0325 0.0285 0.0256

DB 0.0151 0.0164 0.0081 0.0195 0.0157 0.0148

DKL 0.1498 0.1312 0.0462 0.1605 0.0780 0.1132
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The gradient distribution (or marginals) is assumed to be the Laplace distribution
that allows image restoration algorithms to deploy total variation (TV) regularization [18].
The assumption of Laplace-distributed gradients in visible light images inspires a num-
ber of L1-norm or TV-norm-based methods at the beginning [26], but recent work has
focused on Lp-norm-based (0 < p < 1) methods capable of achieving heavy-tailed distribu-
tion [17,18] or nonconvex cost functions [27]. However, TV-regularization is a meaningful
regularization strategy, and suitable for thermograms in accordance with our hypothesis of
Equation (5). Therefore, the TV-regularized cost function for restoring LWIR images can be
expressed as below:

F(x) = ||y−Hx||22 + λ|∇x|, (6)

where λ is a regularization parameter, and ∇ denotes the first derivative operator.
Moreover, the Laplace distribution hypothesis of LWIR images enables additional

studies. The regularization term in Equation (6) can incorporate additional prior knowl-
edge derived from the statistical properties of the Laplace distribution. The mean and
variance of the derivative signal ∇x are important clues that can be inferred from our
hypothesis. First, the mean of ∇x is intuitively obtained owing to the symmetricity of the
Laplace distribution:

E[∇x] = µ∇x = 0. (7)

Second, the variance of ∇x is also obtained by referring to the properties of the
Laplacian PDF as indicated below:

Var[∇x] = 2( |∇x|
N )2. (8)

Finally, another representation for the variance of the PDF whose mean is zero can be
applied to our derivation based on Equation (7) as follows:

Var[∇x] =
||∇x−−→µ∇x||22

N
=
||∇x||22

N
, (9)

where −→µ∇x is a vector whose components are µ∇x, i.e.,~0. The properties of Equations (7)
and (9) originate from the symmetricity, and Equation (8) comes from the exponentiality of
the Laplace-distributed gradient distribution.

The cost function that accommodates our hypothesis about the Laplace-distributed
gradient histogram can be derived by integrating the properties of symmetry (or zero
mean) and exponentiality. The properties obtained by integrating Equations (8) and (9) are
as follows:

|∇x| =
√

N
2 ||∇x||2, (10)

which means the relationship between anisotropic TV (|∇x|) and isotropic TV(||∇x||2) in
thermal imaging. Finally, the regularization term in Equation (6) can be substituted by
Equation (10), and the cost function suitable for the LWIR image is proposed as below:

F(x) = ||y−Hx||22 + λ̃||∇x||2, (11)

where λ̃ is a re-scaled regularization parameter. Quantifying the isotropic functional like
TV on grid Z2 (which is not isotropic) is difficult, and anisotropic TV yields larger TV values
owing to the metrication artifacts [28]. The LWIR image optimization takes advantage of
isotropic TV which has more proper definition of discrete TV based on Equation (10).

In the next section, an advanced hypothesis based on patc-level analysis is derived by
developing Equation (5), and a refined cost function incorporating patch-based gradient
statistics is proposed. Finally, we propose an optimization method that minimizes the cost
function by employing isotropic TV regularization.
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3. Proposed Method

In this section, the gradient distributions are further expanded and applied to image
optimization problems. The Laplace distribution can also describe not the gradient but
the high-frequency contents of thermal images. We observe that the natural statistics of
the thermal images are locally satisfied by performing a patch-level analysis. Henceforth,
we propose an optimization method that employs observed patch-level natural statistics.
The localized properties corresponding to Equations (7)–(9) are also derived and consid-
ered a regularization strategy. Note that the proposed optimization method inherits the
framework of coordinate-wise optimization from our previous work [22] to accommodate
local priors.

3.1. Natural Statistics of Thermal Images

In the restoration of visible images, the gradient statistics are mainly recognized
as prior knowledge as in [17,29,30]. However, in the studies [15,16] of thermal images,
researchers tried to explain the characteristics of thermal images by using the MSCN
coefficients. Therefore, we also have conducted an experiment to estimate the histogram
of features obtained using the MSCN coefficients. Figure 3 demonstrates the histogram
estimation process of the MSCN coefficients in thermal images. Additionally, histograms of
signals filtered with the first and second derivatives are also visualized with a log scale for a
clearer comparison. The MSCN coefficients and the high frequencies filtered by the second
derivative show similar distributions to the gradient distribution, and their histograms can
also be estimated using the Laplace distribution. Table 3 demonstrates the mean of the
scores obtained by the five measures from the 50 images in Figure 2. The scores of the three
operators can be considered highly correlated with each other.
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(a) (b) (c) (d) (e)

Figure 3. Distribution derived from the high-frequency of LWIR images. The statistics of the high-frequency is derived
with three filters, MSCN, the first and the second derivatives. The three filtered signals demonstrate similar distributions.
(a) MORRIS [1]; (b) KRISTO [19]; (c) FLIR ADAS [5]; (d) SRIP; (e) OSU [20,21].

Table 3. Averaged scores from three filtered images in Figure 2. Similar to the gradients, the scores
of the correlation coefficient and histogram intersection are close to unity, and the scores of the
Chi-squared test, Bhattacharyya distance, and Kullback–Leibler divergence are close to zero.

MSCN 1st Derivative 2nd Derivative

ρ 0.9778 0.9754 0.9701

∩ 0.8587 0.8954 0.8444

χ2 0.0424 0.0258 0.0524

DB 0.0252 0.0150 0.0316

DKL 0.1250 0.1235 0.1376

Finally, the natural statistics of thermal images can be derived from the results pre-
sented in Table 3. Our hypothesis indicates that the high-frequency components of the
thermal image have a Laplace distribution. The first and second derivative operators,
which can be utilized for the computation of image gradients, can be considered to filter
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out high frequencies. The MSCN coefficients can also be considered as an adaptive band-
pass filter with a high-frequency band. Linear operators or adaptive filters that extract
the details of the thermal image could be utilized to verify our hypothesis. For example,
the image gradients filtered by the Sobel operator also obey the Laplace distribution.

3.2. Patch-Based Statistics

A further analysis is continued from the previous section in which the hypothesis is
derived from the entire LWIR image. We have conducted an experiment based on patches
that are randomly sampled from the LWIR images and observed that our hypothesis
of Equation (5) is valid for image patches. A number of image patches were analyzed
using the same approach as demonstrated in Figure 4; each gradient distribution was
obtained by considering the information of individual patches. In addition to the first
derivative, the second derivative (i.e., Laplacian operator) also used to derive the high-
frequency components to verify our hypothesis. Therefore, Equation (5) can be rewritten
by considering our patch-level experiment in Figure 4 as below:

h∇tPi(x)(n)
l2 ∼ Laplace(xn|0, |∇

tPi(x)|
l2 ), (12)

where t = 1, 2 used as a derivative index, Pi(x) indicates a patch of an LWIR image x with
a center pixel i, and l × l indicates the pixel size. As a result, following properties can
also be derived from image patches. First, the properties of the symmetric distribution are
as follows:

<~1,∇tPi(x) >= 0, (13)

and the property derived from the variance is written as follows:

|∇tPi(x)| =
√

Ni
2 ||∇

tPi(x)||2, (14)

where Ni is the number of pixels in a single patch with a center pixel i. These proper-
ties are considered as local priors and incorporated into our optimization method as a
regularization strategy.

In our experiments, Equation (12) does not hold in all image patches as shown in Figure 4.
Thus, an experiment has been conducted to investigate the validity of Equation (12).
As seen in Figure 5, gradient distributions have been analyzed with respect to the patch
size, and we have observed that the degree of the validity increases as the patch size
increases. The scores of correlation coefficient, histogram intersection, and Bhattacharyya
coefficient converge to the value of one, and the scores of the Chi-squared test and Kullback–
Leibler divergence converge to zero as the number of pixels in a patch increases (note that
the Bhattacharyya coefficient was utilized instead of the Bhattacharyya distance due to the
absence of definition ln 0). We have tried to deduce the optimal patch size analyzing the
interquartile range (IQR) and standard deviation of the measures. With the patch size being
varied, 4000 patches were randomly sampled from the datasets, and the IQR and standard
deviation were calculated at each size as demonstrated in Figure 6. The blue boxes show
the IQR (= Q3− Q1); the top line of the box shows the 75th percentile (Q3), the bottom
line shows the 25th percentile (Q1), and the center line shows the 50th percentile, i.e., the
median (Q2). Based on this patch size analysis, 21 × 21 is determined as the optimal patch
size where the IQRs of the Bhattacharyya coefficient and Kullback–Leibler divergence
decrease by less than 10% compared with the previous patch size (note that these two
measures estimate precisely the similarities of the histograms).
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Figure 4. Analysis of the patch-based Gradient statistics. The patches (of size 21 × 21) are randomly sampled, and the
observed and estimated distribution of high frequencies using ∇ and ∇2 have been analyzed with the measures of
Table 1. All the LWIR images in the datasets have demonstrated similar results; most of the patches satisfy our hypothesis.
(a) MORRIS [1]; (b) KRISTO [19]; (c) FLIR ADAS [5]; (d) SRIP; (e) OSU [20,21].
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(b)
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Figure 5. The validity of our hypothesis with varying patch sizes. The distribution of high-frequency components can be
clearly estimated by the Laplace distribution as the size of the patch increases. Note that the measure scores over 1 were
clipped for clear demonstration. (a) MORRIS [1]; (b) KRISTO [19]; (c) FLIR ADAS [5]; (d) SRIP; (e) OSU [20,21].
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Figure 6. Experiment for deciding the optimal patch size. The interquartile range (IQR) and standard deviation were utilized
to derive the appropriate condition for the properties of the LWIR image. A total of 4000 patches were randomly sampled
from the datasets for each patch size. In this study, size of 21 × 21 has been empirically decided as the optimal patch size.
IQRs of five measures with respect to increasing patch size are demonstrated. IQRs of each patch size were calculated based
on the randomly sampled 4000 patches. Standard deviation with respect to increasing patch size is also demonstrated.

Finally, considering from the hypothesis to the cost function in the previous section,
a single patch can possess its own gradient distribution, and the corresponding cost
function is derived in the same manner. A “small” cost function constructed by a single
patch is represented as follows:

fi(x) = ||Pi(y−Hx)||22 + λ̃
∣∣∣∣∇tPi(x)

∣∣∣∣
2 , (15)

where fi denotes a cost function considering the i-th patch, and λ̃ denotes the regulariza-
tion parameter. The cost function in Equation (11) will be minimized by the successive
minimization of these “small” cost functions in the next section.

3.3. Pixel-Wise Optimization

The hypotheses corresponding to each patch can be effectively employed by the
adaptive iterative algorithm because the adaptive process considers the spatially varying
local characteristics. To consider local priors, we have extended our previous work [22]
to incorporate the hypotheses in the middle of minimizing the cost functions. In other
words, we propose an optimization method based on the coordinate descent method,
which is closely related to the adaptive process. The proposed method focuses on the
coordinate-wise (or pixel-wise) image restoration in which a single pixel is updated by
its own subproblem. The cost function of Equation (11) will be addressed to derive
the subproblems of minimizing Equation (15), and each pixel is restored by solving the
corresponding subproblem.
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Typically, iterative algorithms are attractive for image restoration because they allow
for the incorporation of prior knowledge and are fairly robust with respect to errors in the
approximation of image degradations [31]. The proposed regularized optimization for the
LWIR images departs from minimizing the cost function of Equation (11). The steady-state
solution of our optimization problem is estimated by an iterative algorithm. Our update
strategy is based on the coordinate-wise optimization and is represented as follows:

x(k+1) = x(k) + ε · ek mod N , (16)

where N is the number of LWIR images, ei denotes the standard basis, whose i-th compo-
nent is one and the others are zero, mod denotes the modulo operation, and ε is an additive
scalar to be added to the (k mod N)-th pixel.

The update strategy of Equation (16), in which a single pixel is updated in a single
iteration, can be regarded as a projection onto a hyperplane [32]. The projection onto the
hyperplane containing adjacent pixels allows the multivariable problem to be converted to
a series of single-variable problems. The coordinate-wise optimization for updating each
pixel in the LWIR image is derived as follows:

min F(x(k+1)) = min
ε

F(x(k) + ε · ek mod N)

= min
ε

f(k mod N)(ε),
(17)

where F denotes the multivariable cost function of Equation (11) and f denotes a sim-
plified cost function of Equation (15) based on which the (k mod N)-th pixel is restored.
This coordinate-wise and iterative algorithm progresses based on a sequence of scalar
optimizations, i.e., at each iteration, a subproblem is derived and solved to calculate the
additive scalar.

A subproblem of the isotropic TV-regularized cost function can be derived from
Equation (15) with t = 2 based on its projection onto a certain hyperplane. The derivation
of the isotropic TV-regularized subproblems and the general form of the subproblems can
be represented as below:

F(x(k) + ε · eτ) =
∣∣∣∣∣∣y−H(x(k) + ε · eτ)

∣∣∣∣∣∣2
2

+ λ̃
∣∣∣∣∣∣∇t(x(k) + ε · eτ)

∣∣∣∣∣∣
2

= D2 · ε2 − 2D1 · ε + D0

+ λ̃
√

R2 · ε2 − 2R1 · ε + R0

= d(ε) + λ̃ · r(ε)
= fτ(ε),

(18)

where τ is a substitution of (k mod N) for the coordinates calculated from the number of
pixel updates. The subproblems can be divided into two parts: the quadratic equation from
the data fidelity term, d(ε), and the irrational equation from the isotropic TV regularization
term, r(ε). The coefficients Dms of the data fidelity function are obtained by considering
the neighborhood of the updated pixel as follows:

D1 =
l

∑
u,v=−l

h(u,v)

(
y(u,v) −

l

∑
u,v=−l

h(u,v)x
k
(i−u,j−v)

)
,

D2 =
l

∑
u,v=−l

h2
(u,v),

(19)
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where (i, j) denotes the coordinate of the updated pixel, and the Rms of the regularization
function with t = 1 are obtained as follows:

R0 =
l

∑
m,n=−l

(∇x)2
(i+m,j+n),

R1 = 3x(i,j) − x(i−1,j) − x(i+1,j) − x(i,j−1)

− x(i,j+1) +
1
2 x(i,j) +

1
2 x(i,j),

R2 = 1.5,

(20)

where (∇x)(i,j) denotes the (i, j)-th component of∇x(k). In the case of the second derivative,
the coefficients of the regularization function are as below:

R0 =
l

∑
m,n=−l

(∇2x)2
(i+m,j+n),

R1 = 3
2 (x(i−1,j) + x(i+1,j) + x(i,j−1) + x(i,j+1))

− (x(i−1,j−1) + x(i−1,j+1) + x(i+1,j+1) + x(i+1,j−1))

− 1
2 (x(i−2,j) + x(i+2,j) + x(i,j+2) + x(i,j−2)),

R2 = 1.25.

(21)

As in our previous work [22], the cost function of Equation (15) can be minimized by
solving a series of subproblems demonstrated in Equation (18). The subproblem derived
from the proposed regularized cost function can also be regarded as a one-dimensional
regularized function, and the simplified version of a single variable function can be solved
easily. Each pixel possesses its own subproblem, and the subproblems are solved by
considering the algebraic characteristics. The version of the isotropic TV-regularized sub-
problem is described in Figure 7. We have observed that the final solution (blue rectangle)
of the subproblem minimization is always located between the critical point of the data
fidelity function (black rectangle) and of the regularization function (red rectangle). This
characteristic can be verified using the mean value theorem. To minimize the function of
Equation (18), several points between the vertices of the data fidelity and the regularization
function are investigated; nine points placed at equal intervals in the range of [D1

D2
, R1

R2
]

in our implementation. The final solution is substituted with the point of the minimum
function value. The sequence of the pixel-wise optimizations can be varied with several
sampling strategies, and the sequences are randomly constructed based on permutations
as in [22]. Finally, our pixel-wise update strategy is represented as below:

x(k+1) = x(k) + ε · eσ(k mod N), (22)

where σ(·) denotes a random permutation of size N, and ε minimizes the function of
Equation (18). The proposed optimization strategy is demonstrated in Algorithm 1.
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Isotropic ITV-regularized subproblem
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𝜖𝜖1𝜖𝜖2𝜖𝜖3 𝜖𝜖9𝜖𝜖8𝜖𝜖7⋯

Figure 7. Example of a one-dimensional subproblem represented in Equation (18). A single vari-
able subproblem (blue line) derived from the TV-regularized cost function of Equation (11) can be
decomposed into two parts: the part derived from the data fidelity term (black line), and from the
regularization term (red line). The solution of the subproblem lies between the critical points of data
fidelity and the regularization functions. Nine points marked by εl , {l|1, 2, · · · , 9} are investigated to
find the minimum value of fτ(ε). All functions are plotted on the same scale (λ̃ = 1) for visualization.

Algorithm 1 Minimization of Equation (11)

Input: Observed LWIR image y; iteratively estimated LWIR images x(k); system matrix H;
regularization parameter λ as a constant; image size N; random permutations σ of size
N; Threshold Th(= 0.07 * MAX Intensity).

Output: Estimated intrinsic LWIR image x̂
Initialization : x(0) = y
LOOP Process

1: for k = 0 to T do
2: if k mod N == 0 then
3: σ(·)← generatePermutation(·)
4: end if
5: ε← pixelwiseOpt(y, H, x(k), σ(k mod N))

6: x(k+1) ← x(k) + ε · eσ(k mod N)

7: if F(x(k))− F(x(k−N)) < Th then
8: break;
9: end if

10: end for
11: return x̂ = x(k)

4. Results and Discussion

Several experiments have been conducted to quantify the effectiveness of our hy-
pothesis and the optimization method. In general, the linear image-observation model of
Equation (1) attempts to explain various degradation problems. In this study, the proposed
optimization method is applied to denoising (H = I) and deconvolution, and thermal
images are restored by incorporating natural statistics as the regularization strategies.

4.1. Measurements

The experiments reported herein, have tried to demonstrate restoration results from
real-world LWIR images. In addition, some experiments have demonstrated the results
of simulations quantifying the performance of LWIR restoration algorithms with the use
of synthesized LWIR images. The pristine LWIR images have been contaminated with
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certain distortion as in [15], and the pristine images and noise for the simulations are
represented in Figure 8. The pristine LWIR images are synthesized with RNU, and restored
by the conventional and proposed algorithms. The results of these simulations are clearly
demonstrated by image quality assessments, such as the peak signal-to-noise ratio (PSNR),
and structural similarity index measure (SSIM) [33]. Moreover, we have utilized image
quality assessments, the Roughness (Ro) [34] index and the Effective Roughness (ERo) [35]
index, for real-world LWIR images that have no reference images to be compared to.
In general, the no-reference assessments, Ro and ERo, are frequently used to quantify the
performance of thermal image processing algorithms.

To quantify the performance of restoration algorithms for thermal images, the RNU
proposed in [36] has been employed to our experiments. The RNU are frequently observed
as grid-like patterns and differ from the additive white Gaussian noise (AWGN). The noise
model that considers the thermal image can be represented in the frequency domain
as below:

| Ĩ(u, v)| =Buexp(
−(u− u0)

2

2σ2
u

)+

Bvexp(
−(v− v0)

2

2σ2
v

),

∠ Ĩ(u, v) ∼ U[−π, π],

(23)

where u0, Bu, and σu (correspondingly, v0, Bv, and σv) are the location, the amplitude,
and the scale of the horizontal band (correspondingly, vertical), and U denotes the uniform
distribution. In our experiments, the severity of RNU has been controlled by manipulating
Bu, Bv, σu, and σv.

IMG1

(a)

IMG3

(b)

IMG2

(c)

Original
(pristine)

(d)

FPN

(e)

Figure 8. Images used for simulations (refer Tables 4 and 5), and visualized noise. (a–c) original
pristine images; (d) magnified region of image 1 (pristine image); (e) RNU of (Bu, Bv, σu, σv) = (20, 20,
25, 25).

4.2. Regularization Strategy for Thermal Images

The proposed natural statistics of the thermal image are clarified using Equations (10)
and (14). The regularization strategy for images obeying the Laplace distribution is sug-
gested as the anisotropic TV, and thermal images is verified to obey the Laplace distribution
in our experiments. Moreover, the properties of Equations (7) and (8) yield the isotropic TV
rather than the anisotropic TV for the various LWIR datasets. In our previous work [22],
the cost function regularized by the anisotropic TV was minimized by the general solution
for each pixel-wise optimization process, but the proposed method minimizes the isotropic
TV-regularized cost function by sweeping the certain range (refer to Figure 7). To explicitly
propose a proper regularizer for thermal images, we have conducted an experiment based
on the use of the pristine images as the reference images. Furthermore, the pristine images
and the condition of noise in Figure 8 have been employed. The synthesized images have
been restored under three conditions: RNU of (Bu, Bv, σu, σv) = (20, 20, 25, 25).
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To demonstrate the natural statistics clearly, we have established several regularized
cost functions. Each cost function is characterized by its regularization function. The regu-
larization strategies for the LWIR image can be derived from both sides of Equation (10).
The first regularization function, which is often called anisotropic TV, is expressed as below:

Γaniso(x) = |∇x|, (24)

and the second regularization function, which is often called isotropic TV, is as below:

Γiso(x) = ||∇x||2. (25)

The regularization strategies with TV [26,28] are often used for noise reduction. Addi-
tionally, two regularization functions, derived from both sides of Equation (10), are added
to our list by employing the second derivatives. The second derivative is often called
the Laplacian operator, and the regularization function with the L1-norm is marked with
“L1Lap”, and as below:

ΓL1Lap(x) = |∇2x|. (26)

Correspondingly, the regularization function of the Laplacian operator with the L2-
norm is marked with “L2Lap”, and is as below:

ΓL2Lap(x) = ||∇2x||2. (27)

Note that in the case of the thermal image, the regularization functions of Equa-
tions (24) and (26) can be substituted with Equations (25) and (27), respectively.

To propose an optimal regularization strategy for thermal images, LWIR images have
been restored with the four regularizers. The suggested regularization strategies can be
categorized into two groups: regularization using the L1-norm (Equations (24) and (26))
and L2-norm (Equations (25) and (27)). Table 4 demonstrates the noise immunity of the four
regularization strategies. Figure 9 visualizes the results of the four regularization strategies.
The second group that incorporating suggested thermal image statistics outperforms the
others both qualitatively and quantitatively. The results of the first group still demonstrate
remaining noise after restoration. However, the second group reduces RNU effectively.
Especially, isotropic TV outperforms the others in both flat and edge regions. Therefore,
Equation (25) is proposed as an optimal regularizer for noise reduction in thermal images.

Table 4. Thermal image denoising using synthesized images with the four regularization strategies.
Performances of each regularizer have been measured by four image assessments: PSNR and SSIM.

PSNR(dB) SSIM

IMG1 IMG2 IMG3 IMG1 IMG2 IMG3

degraded 39.14 39.15 39.13 0.9315 0.9255 0.9267

Equation (24) 39.86 40.15 40.13 0.9440 0.9441 0.9469
Equation (25) 40.57 41.59 41.74 0.9565 0.9646 0.9706

Equation (26) 39.67 40.03 40.11 0.9413 0.9424 0.9454
Equation (27) 40.40 41.13 41.16 0.9548 0.9607 0.9655
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(a) (b) (c)

(d) (e) (f)

Figure 9. Results from the experiment of RNU. Regions marked with rectangles are magnified.
The cost functions incorporating our hypothesis demonstrate more clear output images. (a) Original
image; (b) degraded image; (c) result with Equation (24); (d) result with Equation (25); (e) result with
Equation (26); (f) result with Equation (27).

4.3. Final Results and Discussion: Denoising

In the final results, as mentioned above, the proposed method reduces noise using the
optimal regularization strategy, i.e., isotropic TV. Several conventional methods have been
compared with the proposed method, and both the synthesized images and real-world
images have been restored to quantitatively demonstrate the results. We attempted to
find algorithms that had been implemented for thermal images, but conventional methods
for thermal imaging seldom exist. Typical degradation problems of thermal images are
explained as RNU (or FPN). The condition of RNU is different from AWGN and device-
dependent, but most of denoising algorithms are implemented for removing AWGN
from the visible light images. Therefore, we tried to appropriately quantify our method
by comparing with the widely known conventional methods to objectively demonstrate
the results.

The list of the conventional algorithms consists of BM3D [37], split Bregman method [38],
Ochs et al. [39], and TWSC [40]. BM3D [37] represents the methods based on block
matching in which image patches are grouped together based on similarity. The split
Bregman method, representing the TV-regularized optimization methods, employs primal
and dual variables, and projection onto the feasible set. Ochs et al. represents optimization
method incorporating non-smooth and non-convex cost functions. TWSC is a method
based on sparse coding. The parameters in their algorithms were suitably set to generate
the best possible results. The grid-like patterns of RNU were sometimes recognized as
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not the noise but a part of high-frequency texture, and the patterns were enhanced by
the restoration process. In this case, the results were selected from over-smoothed or
pattern-enhanced results based on the scores of the measurements.

To quantify the final results, two experiments have been conducted: first with the
synthesized images and reference image assessments, and second with the real-world
images and no-reference image assessment. Table 5 demonstrates the results of the first
experiment. In the case of RNU, which is inherent degradation of thermal imaging, ITV-
based method outperforms the others. Real-world thermal images are restored in the
second experiment. Figure 10 shows the restored images in detail. In the case of the severe
RNU, the grid-like patterns have been recognized as detailed textures by some conventional
methods, BM3D, Ochs et al., TWSC. However, the TV-based methods, including the
proposed method, effectively remove severe RNU patterns. In this experiment, we can
observe the difference of the results from both anisotropic and isotropic TV. The results
of TWSC also shows the effective regularizer. The isotropic TV reduces noise in thermal
image more effectively than anisotropic TV in both flat and edge regions. This tendency
can be observed in Table 6 demonstrating the quantitative analysis of the noise removal
algorithms. The ITV-based methods have recorded lower scores of Ro and ERo, and the
proposed method shows lower scores in many datasets (note that Ro and ERo could not
be regarded as imperative assessments, but they have been widely used to measure the
quality of thermal images.).

(a) (b) (c) (d) (e) (f)
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Figure 10. Final results of the conventional and proposed method. (a), (h) Original degraded
image of MORRIS (top) and KRISTO dataset(bottom); (b), (i) BM3D; (c), (j) Ochs et al.; (d), (k)
TWSC; (e), (l) split Bregman with ATV; (f), (m) split Bregman with ITV; (g), (n) proposed method.
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primal and dual variables, and projection onto the feasible set. Ochs et al. represents312

(j) (k) (l) (m) (n)

Figure 10. Final results of the conventional and proposed method. (a,h) Original degraded image of MORRIS (top) and
KRISTO dataset (bottom); (b,i) BM3D; (c,j) Ochs et al.; (d,k) TWSC; (e,l) split Bregman with ATV; (f,m) split Bregman with
ITV; (g,n) proposed method.



Sensors 2021, 21, 5443 20 of 23

Table 5. Thermal image denoising using synthesized images with the conventional algorithms. Performances of each
algorithm have been measured by four image assessments: PSNR, SSIM, Ro, and ERo.

PSNR SSIM Ro ERo

IMG1 IMG2 IMG3 IMG1 IMG2 IMG3 IMG1 IMG2 IMG3 IMG1 IMG2 IMG3

Degraded 39.14 39.15 39.13 0.9315 0.9255 0.9267 0.1019 0.0610 0.0789 0.4866 0.2275 0.2348
BM3D 39.14 39.15 39.13 0.9333 0.9290 0.9316 0.0928 0.0561 0.0738 0.4427 0.2075 0.2182
Ochs 40.17 40.38 40.41 0.9491 0.9477 0.9503 0.0791 0.0465 0.0623 0.3833 0.1736 0.1856

TWSC 39.56 39.4 39.60 0.9370 0.9293 0.9350 0.0787 0.0538 0.0701 0.3777 0.1996 0.2079
SB(ATV) 40.63 41.24 41.77 0.9550 0.9641 0.9612 0.0626 0.0342 0.0470 0.2989 0.0920 0.1329
SB(ITV) 40.85 41.23 41.27 0.9588 0.9607 0.9533 0.0384 0.0372 0.0524 0.3063 0.1384 0.1565

Equation (25) 40.57 41.59 41.74 0.9565 0.9646 0.9706 0.0490 0.0301 0.0445 0.2416 0.1105 0.1325
Equation (27) 40.40 41.13 41.16 0.9548 0.9607 0.9655 0.0553 0.0338 0.0485 0.2681 0.1241 0.1439

Table 6. Thermal image denoising using real-world images with the conventional algorithms. Performances of each
algorithm have been measured by no-reference image assessments.

Ro ERo

MORR. KRIS. ADAS SRIP OUS MORR. KRIS. ADAS SRIP OUS

Degraded 0.0418 0.0861 0.1455 0.2539 0.0456 1.2411 0.3905 0.5043 0.4351 0.2670
BM3D 0.0314 0.0640 0.1432 0.2522 0.0376 0.8530 0.2907 0.4961 0.4324 0.2148
Ochs 0.0220 0.0568 0.1313 0.2475 0.0332 0.6608 0.2662 0.4561 0.4266 0.1923
TWSC 0.0194 0.0505 0.0399 0.0308 0.2567 0.2886 0.2376 0.1454 0.1771 0.4243
SB(ATV) 0.0100 0.0353 0.0546 0.2168 0.0260 0.1877 0.1709 0.1946 0.3851 0.1473
SB(ITV) 0.0097 0.0314 0.0421 0.2097 0.0257 0.1722 1521 0.1502 0.3745 0.1403
Equation (25) 0.0093 0.0338 0.0495 0.2182 0.0251 0.1830 0.1413 0.1314 0.3869 0.1314
Equation (27) 0.0113 0.0422 0.0550 0.2327 0.0282 0.2266 0.1752 0.1895 0.3996 0.1526

4.4. Application: Deconvolution

The natural statistics of the thermal images can also be employed for image decon-
volution. In this case, the image observation model describes the degradation of linear
blurring. For example, defocus aberration or atmospheric turbulence blur can be included
in this problem. In this study, the SRIP dataset, which consists of real-world images, is
restored based on the observed point spread function (PSF). To demonstrate degradation,
line spread functions (LSFs) were obtained at each region within the field of view as
demonstrated in Figure 11. Note that the PSF has been constructed based on the LSFs,
and our PSF indicates the optical characteristics of our device. As in the denoising results,
isotropic TV regularization can be regarded as a proper strategy for thermal image de-
convolution. Figure 12 shows the thermal images restored by the two TV regularization
strategies. Isotropic TV regularization generates clearer output images, and anisotropic TV
regularization generates over-smoothed results.
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Figure 11. Application to LWIR image deconvolution. (a) Points of measured LSFs. The measured
LSFs were obtained by varying the distance from the optical axis. Seven LSFs were measured
at the points marked with ⊗ by the optical device; (b) visualized LSFs and their PSF. The PSF is
reconstructed by the Radon transform [41] based on the LSFs. Averaging of LSFs and A2D conversion
considering the pixel size of the LWIR sensor have been utilized to reconstruct the PSF.

(a) (b) (c)

Figure 12. Results of image deconvolution. Regions marked with rectangles are magnified. In the case of image deconvolu-
tion, isotropic TV has generated clear output images. (a) Degraded original image; (b) restored based on the regularization
term of Equation (24); (c) restored based on the regularization term of Equation (25).

5. Conclusions

LWIR sensors have their own optical and electrical characteristics, and some statistical
properties have been studied for a decade. However, despite these studies, the character-
istics of thermal images have seldom been incorporated into thermal image processing.
In this study, a statistical property of thermal imaging sensors has been derived, and the
generality of the property is verified with various datasets. Moreover, the cost function
considering the natural statistics is also proposed. The gradient statistics explains thermo-
gram from various LWIR sensors without considering the individual sensor characteristics.
The regularization strategies consider the natural statistics, and the specialized pixel-wise
optimization restores thermal images effectively. During the COVID-19 pandemic, we hope
that the proposed method will contribute to the generation of high-quality thermal images.
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