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Abstract

Background: Antimicrobial resistance is a global health problem that demands all possible means to control it.
Mathematical modelling is a valuable tool for understanding the mechanisms of AMR development and spread,
and can help us to investigate and propose novel control strategies. However, it is of vital importance that
mathematical models have a broad utility, which can be assured if good modelling practice is followed.

Objective: The objective of this study was to provide a comprehensive systematic review of published models of
AMR development and spread. Furthermore, the study aimed to identify gaps in the knowledge required to
develop useful models.

Methods: The review comprised a comprehensive literature search with 38 selected studies. Information was
extracted from the selected papers using an adaptation of previously published frameworks, and was evaluated
using the TRACE good modelling practice guidelines.

Results: None of the selected papers fulfilled the TRACE guidelines. We recommend that future mathematical
models should: a) model the biological processes mechanistically, b) incorporate uncertainty and variability in the
system using stochastic modelling, c) include a sensitivity analysis and model external and internal validation.

Conclusion: Many mathematical models of AMR development and spread exist. There is still a lack of knowledge
about antimicrobial resistance, which restricts the development of useful mathematical models.

Background
The discovery of antimicrobials in medicine in the 1920s
was regarded as a miracle. Since then, millions of lives have
been saved as a result of this treatment. However, history
has shown that the introduction of any kind of antimicro-
bial compound into human or veterinary medicine is
swiftly followed by emerging resistance to that compound
[1]. Antimicrobial resistance (AMR) is threatening our abil-
ity to treat common infectious diseases, resulting in pro-
longed illness, disability and death [2]. Multidrug and even
pan-resistant organisms are now a worldwide problem.
Despite the difficulty in estimating the actual costs of
AMR, the true economic burden is substantial [3]. The es-
timated economic consequences of AMR in Europe in

2007 were at least €1.5 billion, while they were estimated
to be $55 billion in the US in 2000 (cited from Gandra et
al., 2014 [3]). It is therefore of utmost importance to limit
the emergence and spread of AMR.
AMR is spreading globally - not just in the human

population, but also in animal populations and the envir-
onment. Furthermore, there is consistent evidence that an
exchange of bacteria resistant to antimicrobials and AMR
determinants exists between these different compartments
[4]. AMR determinants have been shown to survive in en-
vironments such as sludge and wastewater treatment sys-
tems [5, 6], thus allowing for the transmission of
infectious bacteria and accelerating the problem of AMR.
Mathematical models have become important decision

support tools in medicine and public health [7]. They
have helped in improving our understanding of the de-
velopment, emergence and spread of AMR [7, 8]. In
addition, they can identify gaps in our knowledge, and
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direct research towards missing information for import-
ant parameters and processes in the modelled system.
However, in 2006, Opatowski et al. [7] published a re-
view on mathematical models on AMR and concluded
that there was still a need for major improvements of
AMR models such as regarding implementing important
features of pathogen including resistance mechanisms
and inter-species cooperation. Continual evaluation of
published mathematical models is therefore necessary
for us to recognise the progress in AMR modelling.
Gaps in our knowledge can be identified, and this can be
used to set the agenda and form suitable hypotheses for
future research in the fight against AMR.
Grimm et al. [9] updated the TRACE paradigm that

was established in 2010 with the aim of developing
guidelines to produce useful models. The TRACE para-
digm includes eight elements that, when followed, en-
sure that models are clearly communicated when
published. These elements are: 1) Problem formulation
(clear formulation of the objective and a description of
the context of the model); 2) Model description (written
description of model elements to allow readers to under-
stand and replicate the model); 3) Data evaluation (an
assessment of the quality of data used to parameterise
the model); 4) Conceptual model evaluation (a list and
explanation of the most important conceptual design de-
cisions); 5) Implementation verification (internal valid-
ation of the model, testing for programming errors and
assessing model performance); 6) Model output verifica-
tion (external validation, testing whether the model out-
put matches the observations); 7) Model analysis
(mainly sensitivity analysis); 8) Model output corrobor-
ation (a comparison of model output with data that were
not used to create the model). For a full description of
the TRACE elements, see Grimm et al. [9].
Since the comprehensive systematic review of math-

ematical models between 1993 and 2006 was conducted
by Temime et al. [10], a number of additional reviews
have been published [7, 8, 11]. However, these reviews
either focused on models linking antibiotic use to AMR
[11] or modelling AMR in populations (humans and
bacteria) and hospitals [7], and did not include exclu-
sively within-host models [8]. These systematic reviews
did not examine models of AMR in relation to animal
populations and the environment. However, a compre-
hensive review of mathematical models of AMR should
consider models of all relevant populations and ecosys-
tems in order to target the AMR problem from a
One-Health perspective. In this way, researchers from
different fields could benefit from experiences and ad-
vances in the other fields.
The objective of this review was to assess the useful-

ness of mathematical and simulation models of AMR
development and/or spread in individuals and/or

populations of humans, animals and bacteria, as well as in
the environment. We also aimed to identify gaps in the
knowledge needed to provide useful models of AMR. The
assessment was achieved using a systematic review. The
published models were then summarised and compared
using an adapted version of previously developed frame-
works [7, 8]. Furthermore, the strengths and weaknesses of
the models were discussed using the TRACE paradigm [9] .

Methods
This is a systematic review following the PRISMA guide-
lines [12] without the use of an existing review protocol.

Selection of papers and search criteria
The search was performed in PubMed and Web of
Science on 6th February 2017. We used the following
search terms:
In PubMed three searches were performed:

1) ((((((((antimicrobial) OR antibiotic) OR
antibacterial) AND “last 10 years”[PDat])) AND
resistan*) AND model[Title]) AND “last
10 years”[PDat] AND English[lang]).

2) ((((((((antimicrobial) OR antibiotic) OR
antibacterial) AND “last 10 years”[PDat])) AND
resistan*) AND model[Title]) AND “last
10 years”[PDat] AND English[lang]).

In Web of Science three searches were performed:

1) TS = (resistan*) AND (TS = (antibacterial) OR TS
= (antimicrobial) OR TS = (antibiotic)) AND TITLE:
(model*) ENGLISH, ARTICLE, REVEIW, 2006–
2017 & TS = (resistan*)

2) (TS = (antibacterial) OR TS = (antimicrobial) OR TS
= (antibiotic)) AND TITLE: (population dynamic*)
ENGLISH, ARTICLE, REVIEW, 2006–2017

3) TS = (resistan*) AND (TS = (antibacterial) OR TS
= (antimicrobial) OR TS = (antibiotic)) AND TITLE:
(simulat*) ENGLISH, ARTICLE, REVIEW, 2006–2017

We checked for duplicates between the two databases,
and excluded papers based on titles. More papers were
excluded after the abstracts of all papers were screened.
Finally, following full screening of the papers, some were
deemed not to fulfil the inclusion criteria and were
therefore excluded (Fig. 1). The screening of abstracts
and full papers was carried out by three of the authors,
with each person reading 2/3 of the abstracts and 2/3 of
the full papers.
Papers were included if they: 1) presented not previous

published mathematical models that represented the de-
velopment and/or spread of AMR; 2) modelled AMR in
bacteria, humans, animal or the environment, and 3)

Birkegård et al. Antimicrobial Resistance and Infection Control  (2018) 7:117 Page 2 of 12



included the effect of antimicrobial compounds. Papers
that focused on only the spread of a specific resistant
bacterial pathogen were not included. In addition, papers
based solely on statistical analysis were also excluded, as
this review focuses on mathematical models.
Previously published reviews of mathematical models of

AMR were identified during the review process. The refer-
ence lists of these reviews were scrutinised to identify add-
itional papers that might fit the inclusion criteria. These
are referred to as “papers identified by other means”.

Analysing the papers
Three of the authors read the selected papers. Each per-
son read a random sample of 2/3 of the papers (as de-
scribed above), while ensuring that each paper was read
by two authors. Information about the papers was ex-
tracted and sorted into five constructs (model descrip-
tion, modelling technique, modelling pathways, model
specifications and model validation).
Relevant information for each of the five constructs was

extracted from the papers. This information is described
in Table 1. Furthermore, information on the following de-
scriptive parameters was extracted from the papers: pro-
gramming software, year of the publication of the paper,
and the country of affiliation of the first author.

Model usefulness and documentation
We used the TRACE framework for good practice in
model development and documentation developed by
Grimm et al. [9] to evaluate the conformity of the

models to the TRACE guidelines. These guidelines en-
sure that useful models are produced.
Studies were initially evaluated according to the con-

structs described in Table 1. Hereafter, studies that had
verified the model and conducted sensitivity analysis –
hence complying with two of the TRACE criteria [9]
(Criteria 6 and 7) – were identified. These studies were
further evaluated to assess whether they fulfilled the
remaining criteria.

Results
Exclusion of papers
Studies that were excluded based on their title mainly in-
cluded models of pathogen spread and the mode of action
of antimicrobial compounds. The main reason for exclud-
ing studies based on the abstract or the full paper was that
the study described statistical models of AMR spread and
development. Another reason for exclusion was that the
studies described a model of resistant bacteria without any
susceptible counterpart, therefore merely describing a
model of bacterial spread within a population. The exclu-
sion of papers is described in Fig. 1.

Assessing the included papers
The vast majority of the models were population models
(77%), while a small number were individual- or
agent-based models. Only one was a nested model, in
which individuals (pigs) and the bacterial populations in-
side them were modelled (Table 2).

Records identified in 
PubMed search 

(n = 1754) 

Records identified in  
Web of Science search 

(n = 1713) 

Records after duplicates removed  
(n = 2763)

Records after screening of title 
(n = 152)

Records after screening of abstract 
(n = 86)

Records after screening of full text 
(n = 38)

Papers  included in
review (n = 38)

Other review papers
(n = 6)

Comparison papers
(n = 4)

Records found by screening
reference of papers included

in review  
(n = 10)

Fig. 1 Exclusion tree in the selection of papers
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Table 1 Description of the information extracted from the selected studies
Construct Attributes Levels Comments

Model description Modelled process Spread of AMR
Development of AMR
Spread and development of AMR

Other types of AMR processes
were for example fitness cost
and difference in resistance
due to the age of bacteria.

Model type Agent based
Nested model
Individual based
Population
Other models

Other model types were:
Beverton-Holt, cellular
automata, band-pass,
or chemostat model.

Population Animal species
Bacteria
Humans

No specified host was used
in cases where only the
bacterial population
was modelled.

Environment River
Slurry
Cellular automata
Community
Farm
Hospital
Human
Animal species
In vitro
Not specified

Hospital refers to both
human and veterinary hospitals.

Modelling
techniques

Simulation /
analytic

Simulation
Analytic
Analytic & simulation

Uncertainty
display

Deterministic
Stochastic
Deterministic
& stochastic

Both deterministic and
stochastic were used for
example in the case of

nested models and
papers comparing
deterministic and
stochastic models.

Modelling
population
interactions

Mixing of
population

Homogenous mixing
Heterogeneous
mixing
Homogenous
& heterogeneous mixing
Not relevant

Both heterogeneous
and homogenous mixing
refers to e.g. rivers and network
models with homogenous
mixing at the nodes
but heterogeneous between
nodes. Not relevant may
refer to development
of specific traits such as
efflux pumps.

Co-existence
levela

No conversion
Single strain
Uni-directional
Bi-directional

Uni-directional was defined
as a one-way conversion
from resistant
strain/carrier to sensitive
strain/carrier or vice versa,
whereas bi-directional
conversion was possible
in case of a two-way
conversion. In case of no
conversion, only
competition between
strains was possible.

Model
specification

AMR display Genotypic AMR
Phenotypic AMR
Genotypic
& phenotypic AMR
Other types of AMR

Other types of AMR
describing a more
molecular AMR
mechanism were for
example modelling
of efflux pumps or plasmids.

Number of resistant strains Single resistant strain
Multiple resistant strains

Multiple resistance means
that two or more strains of the
same bacterial species resistant
to antimicrobials were modelled

Bacterial species Specified
Not specified

If specified, the specific
species was noted

Dosing of the antimicrobial Constant dosing
Other dosing

Other dosing was for example
specific treatment strategy
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Analytical solutions were used in eight models, while
numeric simulations were used in 16 models. In 14
models, analytical solutions were obtained using nu-
meric simulations. There were 29 models for which the
uncertainty was modelled deterministically, a further

four were stochastic, and five used both stochastic and
deterministic uncertainty display (Table 3).
It was not relevant to describe the mixing of the popu-

lation for four of the papers, as they focused on develop-
ment of AMR without population mixing. The majority

Table 1 Description of the information extracted from the selected studies (Continued)
Construct Attributes Levels Comments

or spatial distribution

Antimicrobial compound Single, not specified
Single, specified
Multiple, not specified
Multiple, specified

If specified, the specific
compound was noted

Immune system Yes
No
Not relevant

Not relevant describes situations
where the model did
not incorporate a human
or animal host with a
functioning immune system.

Model validation Model validation Literature
No validation

Sensitivity analysis Yes
No

Bifurcation analysis Yes
No

AMR Antimicrobial resistance; athe co-existence level was described according to Spicknall et al. [8], modified to population leve

Table 2 Model description – results of the information extracted from the selected studies

Modelled process Model type Population Environment Reference no.

Development of AMR Individual based Bacteria Not specified [66]

Population Bacteria Human [53, 67]

In vitro [19, 58]

Pig [14, 51]

River [17]

Not specified [16, 49, 68, 29, 18]

Human Not specified [32]

Other typesa Bacteria In vitro [59]

Not specified [69]

Spread of AMR Agent based Bacteria Not specified [57]

Individual based Dog Hospital [13]

Population Bacteria Slurry [64]

Not specified [30]

Human Community [31, 48]

Hospital [47]

Pig Farm [54]

Development and spread of AMR Agent based Bacteria In vitro [60]

Nested Pig & bacteria Farm [27]

Population Bacteria River [63]

Human Hospital [33, 46, 50, 56]

Hospital & community [20]

Not specified [15, 34, 55]

Other typesa Bacteria In vitro [61]

Cellular automata [70]
aBeverton-Holt [69] and Chemostat [59], Cellular automata [70], Chemostat [61]; AMR antimicrobial resistance
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of the models used a homogenous mixing of the popula-
tion (25 papers, 66%). There was no conversion from re-
sistant strain to sensitive or vice versa in seven of the
published models (18%), of which five described only a
single strain infection and five modelled more than one
strain without conversion between resistant and sensitive
strains (Table 4).
Phenotypic AMR in single strains was modelled in the

majority (11 models, 29%) of the models. Only nine
models included the effect of the immune system, and
11 of the models used a constant effect of antimicrobial
compound (Table 5).
Validation of the models was not reported in 27 of the

papers (71%). Three models were validated based on the
literature and ten models were validated based on data.
Sensitivity analysis was carried out in 27 papers, while
11 papers did not report conducting a sensitivity

analysis. Four of the papers reported no validation, sen-
sitivity analysis or bifurcation analysis (Table 6).

Model usefulness and documentation
The papers frequently lacked proper discussion and
evaluation of the model assumptions, the usefulness of
the data for input parameters and the implications of
model conclusions in relation to real-life situations. Only
eight papers [13–20] verified the model and conducted
sensitivity analysis, thus complying with two of the
TRACE criteria [9] (Criteria 6 and 7, Table 6). We iden-
tified three papers [14, 17, 18] that satisfied all TRACE
criteria except element 5, as none of the studies con-
firmed the internal validity of the models. Furthermore,
these three studies could have provided a better evalu-
ation of the implications of data for input parameters
and model assumptions (Table 7).

Description of comparison papers
A special class of papers relating to quantitative compar-
isons of mathematical models of AMR was identified.
Two papers compared the predictions of
individual-based models [21] and stochastic models [22]
to deterministic differential equation models. Both pa-
pers concluded that the deterministic approximation is
valid when the number of simulated individuals is suffi-
ciently large and the research question is not driven by
single events (i.e. extinction events).
One paper [23] compared SIR models of four, six,

eight and 12 compartments to include dual infection
and time lag between treatment and AMR development.
The inclusion of dual infections covers situations where
patients may recover to a state with a coexistence of
strains or strain takeover by the sensitive or resistant
strain, depending on parameters. These results were in-
dependent of the complexity of the model.
One paper [24] compared six different deterministic

differential pharmacodynamic models and the ability of
statistical methods to identify data simulated from the
six models as belonging to the correct one. They con-
cluded that datasets containing only counts of bacteria
did not provide sufficient information to identify the
correct model. Additional experiments must be under-
taken to determine which class of pharmacodynamic
models best describe the data.

Discussion
Recently, Heesterbeek et al. [25] reviewed the import-
ance of mathematical modelling of infectious disease dy-
namics in terms of improving public health. The authors
concluded that, mathematical models can provide inside
that can be used in public health policies through the
use of new data.

Table 3 Modelling technique – results of the information
extracted from the selected studies

Simulation or analytic Uncertainty
display

Reference no.

Analytic Deterministic [18, 29, 30, 34, 48, 49, 59, 61]

Simulation Deterministic [17, 19, 31, 33, 50, 54, 63, 64,
67, 70]

Stochastic [13, 51, 60, 66]

Deterministic
& stochastic

[20, 27]

Analytic and
simulation

Deterministic [14–16, 32, 46, 47, 53, 55, 58,
68, 69]

Deterministic
& stochastic

[57, 58]

Table 4 Modelling pathway – results of the information
extracted from the selected studies

Mixing of
population

Co-existing level Reference no.

Homogeneous No conversion [14, 51, 58]

Single strain [19, 29, 30]

Uni-directional [15, 31, 33, 46–48, 53, 57, 59,
64]

Bi-directional [18, 34, 50, 54–56, 66, 67]

Heterogeneous No conversion [16]

Single strain [60]

Uni-directional [70]

Bi-directional [13]

Homogeneous
& heterogeneous

No conversion [27]

Uni-directional [61]

Bi-directional [17, 20, 63]

Not relevant Single strain [69]

Uni-directional [32, 49, 68]

Birkegård et al. Antimicrobial Resistance and Infection Control  (2018) 7:117 Page 6 of 12



AMR is a major threat to public health, and the fight
against it could benefit from the use of mathematical mod-
elling. It could play an important role in providing an
insight into the dynamics of AMR, quantifying the effect of
factors that influence it and providing tools for its control
and prevention. Furthermore, modelling can present an
opportunity to elucidate potential gaps in our knowledge.
The reviewed papers varied in their choice of model

structure and complexity – from simple deterministic
models to advanced mechanistic models (agent-based,
individual and nested models). However, they generally
provided little justification for the model type and struc-
ture that was chosen. In addition, the majority of studies
focused on modelling only one unit (Table 2), a single

strain of a pathogen (Table 5), assumed homogeneous
mixing (Table 4), and ignored uncertainty and stochasti-
city in the development and/or spread of AMR (Table
3). AMR is a multifactorial problem with several ele-
ments – including external factors and interactions
within and between populations (microbiota, animal and
human populations) – able to affect its development and
spread [26]. This creates nonlinearity, heterogeneity, and
stochasticity that should be considered when mathemat-
ical models of AMR are developed. Opatowski et al. [7]
wrote that models should take into account the specific
pathogen characteristics such as the resistance mechan-
ism of the pathogen and cooperation among species.
They concluded that this would provide major

Table 5 Model specification – results of the information extracted from the selected studies

AMR display Number of resistant
strains

Bacterial
species

Modelling of
antimicrobial dosing

Antimicrobial
compound

Immune
system

Reference

Genotypic Single Not specified Not constant Single, not specified Not relevant [18]

Phenotypic Single Specified Constant Single, specified Not relevant [16]

Multiple, specified Yes [32, 53]

Not constant Single, specified No [14, 34]

Not relevant [19, 58]

Single, not specified No [13]

Multiple, not specified Yes [15]

No [48]

Not relevant [64]

Not specified Constant Single, specified Not relevant [30]

Single, not specified Yes [49]

No [67]

Not constant Single, specified Not relevant [63]

Single, not specified Yes [46, 70]

No [20, 31, 54]

Not relevant [57, 69]

Multiple, specified Not relevant [17]

Multiple, not specified No [35]

Multiple Specified Constant Single, not specified No [27]

Not constant Single, specified No [51]

Multiple, specified No [47]

Not relevant [60]

Not specified Constant Single, not specified Not relevant [61]

Not constant Multiple, not specified Yes [33, 50, 56]

No [55]

Geno- and phenotypic Multiple Not specified Not constant Single, not specified Not relevant [66]

Other Single Specified Constant Multiple, specified Not relevant [29]

Not specified Constant Single, not specified Not relevant [59]

Multiple Not specified Constant Single, not specified Not relevant [68]

AMR antimicrobial resistance
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improvements of models.. However, in the 6 years since
their review was published, only one paper has described
a truly nested model [27] (Table 2), modelling multiple
bacterial strains within individuals (pigs) that interact as a
population with a heterogeneous structure. Unfortunately,
this model was not validated and does not allow conver-
sion of the pathogens. Furthermore, one article [28] pub-
lished a framework to cope with multiple nested layers
from the genetic composition of cells, to the environment
of cells, the host of the cells, and the environment of the
host. This type of models is clearly something to be striv-
ing for in the future as the AMR problem is highly com-
plex, and the interaction on many levels require a deep
understanding. It would also be very helpful if the com-
munity could commit to using this type of standard
models, so that the huge work of parameterise these
models could begin. That in the future we could stand on
the shoulders of each other instead of trying to building
new models for every single problem.
Mechanistic modelling using stochastic processes can

describe complex heterogeneous structures and

processes, multiple pathogens/genes simultaneously, and
model biological interactions that may affect AMR such
as the immune system, the dosing effect of antibiotics,
the microbiome and variabilities involved in the system.
In addition, these models can provide insights into the
temporal dynamics of AMR, both in the individual and
the population. Arepeva et al. [11] also point to the ad-
vantage of this class of models over simpler types of
models such as deterministic differential equations. Nine
models used analytical solutions to solve the modelled
system (Table 2), providing extensive mathematical
solutions with a limited interpretation of the applicabil-
ity of the outcomes to real life. In fact, only two papers
[29, 30] attempted to validate the models using data.
Analytical solutions can be useful when trying to avoid
time-consuming and computer-intensive simulations.
Nevertheless, from a practical point of view, the high
complexity of AMR and limited translation of analytical
solutions to real life can call the usefulness of this ap-
proach to solve and/or limit the AMR problem into
question.
Ideally, models of AMR should be validated by data.

However, many of the published models represent hypo-
thetical situations in hospitals or communities with no
supporting data [31–35]. Such models are only useful in
the event that a similar hospital or environment can be
located. If this is the case, experiments or observational
studies can be carried out to validate the models. In
addition, there seems to be a lack of knowledge of how
to implement different typical parameters and how to
relate these to reality. For instance, what is the carrying
capacity of a human patient for different types of AMR
bacteria or genes, and how do levels of AMR relate to
transmission rates under different circumstances in a
hospital or community? This highlights the necessity for
further fundamental and conceptual research to provide
information and data to develop useful simulation
models of AMR processes.

Table 7 Fulfilment of the TRACE elements

Study Problem
formulation

Model
description

Data
evaluation

Conceptual model
evaluation

Implementation
verification

Model output
corroboration

Suthar et al., 2014 [13] Yes Yes Yes No No Yes

Nguyen et al., 2014 [14] Yes Yes Yes Yes No Yes

Ibargüen-Mondragón et al., 2016 [15] Yes Yes No No No No

Bhagunde, Nikolaou, and Tam, 2015 [16] Yes Yes No Not completely No Not completely

Hellweger, 2013 [17] Yes Yes Yes Yes No Yes

zur Wiesch, Engelstädter, and Sebastian
Bonhoeffer, 2010 [18]

Yes Yes Yes Yes No Yes

Tam et al., 2007 [19] Yes Yes No Not completely No Not completely

Kouyos, zur Wiesch, and Bonhoeffer,
2011 [20]

Yes Not completely Not completely Not No Yes

For a complete description of the TRACE elements see Grimm et al. [9]. The two TRACE elements model output verification and model analysis were fulfilled by all
eight studies as this was a selection criterion for the comparison with the TRACE elements

Table 6 Model validation – results of the information extracted
from the selected studies

Validation
model

Sensitivity
analysis

Bifurcation
analysis

Reference

Data Yes Yes [20]

No [13, 14, 16, 19]

No No [29, 30, 58, 63]

Not relevant [60]

Literature Yes Yes [15]

No [17, 18]

None Yes Yes [46–48, 53, 64, 66–69]

No [27, 31–33, 49, 50, 54, 55–57]

No Yes [55, 61]

No [34, 51, 59, 70]
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Validation is an essential factor when developing a
mathematical model. Validation can be both internal
(conducted to ensure that the model is doing what it
should) and external (conducted to assess whether the
model outcomes resemble real life). Models were exter-
nally validated in only 13 of the studies; ten studies used
data and three were dependent on literature. The ab-
sence of validation in many of the published models
(Table 5) could be due to a lack of usable data. There is
a large gap in our knowledge when it comes to the dy-
namics of AMR inside a host, especially in terms of
genotypic AMR. Interestingly, none of the studies indi-
cated that internal validation had been conducted. Sev-
eral methods can be used to internally validate the
models, such as the rationalism method, tracing method
and face validity [36]. Internal validation is important to
ensure that the code is free from errors, satisfying the
fifth criteria of the TRACE method [9]. It is possible that
internal validation has been conducted, even if it is not
mentioned in the paper. Nevertheless, we believe that it
is important to describe the methods and steps used for
internal validation in order to ensure confidence in the
predictions. A lack of model validation may increase the
risk of erroneous outcomes and conclusions, which in
turn may reduce any confidence the scientific community
and decision makers have in the predictions. Strict in-
ternal validation of the models must therefore be con-
ducted and reported. Furthermore, additional research
should be conducted to provide data to externally validate
the models, resulting in models that can provide trust-
worthy recommendations. There exist papers on mathem-
atical models where the TRACE criteria are fulfilled. A
good example hereof is written by Foddai et al. [37].
The vast majority of the papers focused on modelling

AMR in relation to humans, either directly by modelling
human populations (in hospitals or communities) or in
bacteria related directly to human health. Only four models
relating to animals were conducted (Table 1). Animals
might constitute a reservoir of AMR that can be spread to
humans through their products (e.g. meat [38–41]), the en-
vironment (faeces used as fertilisers [41–43]), or direct
contact [41, 44, 45], so more attention should be paid to
improving our understanding of AMR dynamics within
livestock production systems and the environment.
All studies included in this review report that an in-

crease in antimicrobial use increases AMR in general.
Some papers report that certain strategies show relatively
smaller increases in AMR, which could be due to reducing
contact rates or cycling different kinds of antimicrobial
products [13, 15, 20, 27, 31–34, 46–56]. One paper re-
ported a decrease in AMR when using an antimicrobial
against which bacteria have no resistance [35]. However,
as the authors report, such a property is transient and will
diminish in time proportional to the extent to which that

drug is used. Some papers construct several pathways to
achieving AMR (i.e. hospital- versus community-acquired
AMR) and deduce the parameter values at which the R0
(basic reproduction number, denoting how infectious the
disease is) is above 1 [20, 31, 48, 52, 55, 35, 57]. However,
no papers actually fit epidemiological data to determine
parameters or validate their model. There are many stud-
ies looking at the epidemiological spread of specific resist-
ant pathogens (e.g. MRSA), but these studies were
excluded from this review, as we are interested in the
spread of resistance rather than specific pathogens. In stat-
ing that there are no data of epidemiological spread, we
mean spread of resistance between bacteria in an in vivo
situation. There is an abundance of papers describing
spread in in vitro experiments [19, 58–61], yet we believe
that such parameters can at best be a starting point for es-
timating parameters in vivo, as the natural environment is
much more complex and competitive than a petri dish.
To improve our understanding of AMR, we might

need to specifically understand the mechanisms that
generate resistance. Some papers in our review modelled
specific mechanisms (i.e. efflux pumps, senescence, in-
doles, or influence of the normal flora) [29, 53, 59, 61].
However, only one of these papers was actually validated
by data [29]. Modelling specific mechanisms might be a
way to better understand the behaviours and interactions
of bacteria using these methods, and it may also give us
a better understanding of how AMR interacts when
multidrug resistance is considered.
The environmental impact of AMR was modelled in four

papers: three of the papers modelled rivers and described
the accumulation and survival of AMR [17, 62, 63]. One of
the papers also included the effects of metals on the devel-
opment of AMR [17]. One paper described AMR bacteria
growth in slurry [64], showing that AMR bacteria can
thrive in this medium. The aggregation and possible
growth of AMR bacteria in the environment might be of
great concern if bacteria are exposed to a mixture of AM
from several sources e.g. in rivers or slurry, they may ac-
quire multiple resistances. If there is a chance that these
can then transfer back into the animal or human popula-
tion, these types of models may be very useful.
The studies originated from 16 different countries and

were published in 30 different journals. This indicates
that a relatively large number of journals are interested
in modelling AMR. Furthermore, it highlights that math-
ematical modelling is a relevant subject for a broad sec-
tion of the scientific community. When screening and
excluding papers, we might have excluded papers based
on a misinterpretation of the title or abstract. However,
to minimise such mistakes, we strived to include papers
in cases where there was any doubt.
The majority of the studies modelled phenotypic

AMR, while few models represented genotypic AMR
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(Table 5). Modelling genotypic AMR can be more com-
plicated as many genes can be linked to a specific anti-
biotic, and the relationship between gene abundance and
antibiotic use seems to be more complex than first antic-
ipated [65]. Modelling genotypic AMR requires the rele-
vant genes for the modelled AMR to be represented, as
well as circumstances allowing for the genetic AMR to
be expressed as phenotypic AMR, leading to a spread of
the resistant pathogen within the population. Published
models of genotypic AMR do not link this AMR type to
the development of phenotypic AMR and the subse-
quent spread of the resistant pathogen between individ-
uals [18]. This is perhaps due to a lack of information
on the necessary circumstances for the phenotypic ex-
pression of genetic resistance determinants, thus empha-
sising the need for more research to better understand
this process. Understanding the process is essential in
the prevention of AMR development and spread.
In our opinion, the following elements should be con-

sidered when developing future models of AMR:

1) Modelling the biological processes mechanistically.
This allows heterogeneous processes and structures to
be modelled and provides an insight into the ‘how and
why’ of AMR occurrence, transfer and persistence.

2) Incorporating the uncertainty and variability of the
system using stochastic modelling.

3) Extensive sensitivity analysis and model validation
(both internal and external) using data that can
support model development, parameterisation and
validation.

The current study provides a comprehensive review of
published models of AMR spread and development since
2006. Although the study focuses on providing insights
into the technical elements of and differences between the
models, it also provides an insight into the elements that
should be included when AMR is modelled.

Conclusions
Many mathematical models of AMR development and
spread exist. However, there is still a lack of knowledge re-
garding the underlying mechanisms at work, thus limiting
the true usefulness of the developed models. Furthermore,
few models complied with the TRACE criteria. Future
AMR models should elucidate the dynamics and variabil-
ity of AMR occurrence and spread in order to investigate
ways of effectively influencing these dynamics to prevent
and control AMR. In addition, it is of utmost importance
to focus research on providing data to parameterise and
validate AMR models in order to extract useful conclu-
sions from them. There is a need for more rigorous model
development and testing and more abundant experimen-
tal and observational data to support model validation.
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