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Abstract

The NAC transcription factors involved plant development and response to various stress

stimuli. However, little information is available concerning the NAC family in the woodland

strawberry. Herein, 37 NAC genes were identified from the woodland strawberry genome

and were classified into 13 groups based on phylogenetic analysis. And further analyses of

gene structure and conserved motifs showed closer relationship of them in every subgroup.

Quantitative real-time PCR evaluation different tissues revealed distinct spatial expression

profiles of the FvNAC genes. The comprehensive expression of FvNAC genes revealed

under abiotic stress (cold, heat, drought, salt), signal molecule treatments (H2O2, ABA, mel-

atonin, rapamycin), biotic stress (Colletotrichum gloeosporioides and Ralstonia solana-

cearum). Expression profiles derived from quantitative real-time PCR suggested that 5

FvNAC genes responded dramatically to the various abiotic and biotic stresses, indicating

their contribution to abiotic and biotic stresses resistance in woodland strawberry. Interest-

ingly, FvNAC genes showed greater extent responded to the cold treatment than other abi-

otic stress, and H2O2 exhibited a greater response than ABA, melatonin, and rapamycin.

For biotic stresses, 3 FvNAC genes were up-regulated during infection with C. gloeospor-

ioides, while 6 FvNAC genes were down-regulated during infection with R. solanacearum.

In conclusion, this study identified candidate FvNAC genes to be used for the genetic

improvement of abiotic and biotic stress tolerance in woodland strawberry.

Introduction

Transcription factors containing the highly conserved NAC domain (NAM-ATAF1/2-CUC)

in the N-terminal region compromise is one of the largest transcription factors families in

plants [1–3]. The C-terminal region that contains the protein binding activity domain is

greatly variable and plays an important role in transcriptional regulation [2, 4–7]. The NAC

proteins play crucial roles in various aspects of plant growth and development (including the
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maintenance of the shoot apical meristem, cell division and expansion, nutrient remobiliza-

tion, secondary cell wall biosynthesis, fiber development, lateral root development, leaf senes-

cence, flower formation, seed development) [1, 3, 8–18], and adaption to the environment

[19], such as abiotic stresses [20–29], and response to pathogen infections [6,22,29–33], includ-

ing Magnaporthe oryzae [22,34], Phytophthora infestans [35], Sclerotinia sclerotiorum [36], and

Colletotrichum graminicola [33], to name a few.

To date, genome-wide analyses have identified a large number of NAC family members in

several species, including 117 NAC genes in the model plant Arabidopsis thaliana [7], 151 NAC
genes in Oryza sativa [7], 152 NAC genes in Nicotiana tabacum [37], 163 NAC genes in Populus
trichocarpa [38], 74 NAC genes in Vitis vinifera [39], 147 putative NAC genes in Setaria italic
[40], 145 NAC genes in Gossypium raimondii [41], 167 NAC genes in Musa acuminate [42], 71

NAC genes in Cicer arietinum [43], 96 NAC genes in Manihot esculenta [44], 148 NAC genes in

Zea mays [45], 79 NAC genes in Morus notabilis [46], 82 NAC genes in Cucumis melo [47], and

104 NAC genes in Solanum lycopersicum [48]. However, no information is available on the

NAC family in the rosaceous fruit crop, woodland strawberry (Fragaria vesca L.).

Notably, accumulated evidence has confirmed that a large number of NAC genes induced

by abiotic stresses play critical roles in the regulation of plant tolerance to abiotic stress. Three

Arabidopsis NAC genes (ANAC019, ANAC055 and ANAC072) showed up-regulation after

drought, high salinity, and abscisic acid (ABA) treatments, and positively regulate drought tol-

erance in the overexpression plants [20]. Similarly, overexpression of ATAF1 in Arabidopsis
enhanced plant tolerance to drought, ABA, salt, and oxidative stress [19]. While, ATAF1 was

negatively regulate the defense response to necrotrophic fungi (Alternaria brassicicola and

Botrytis cinerea) and bacterial pathogens (Pseudomonas syringae pv. tomato) [29]. The same

function of NAC genes, in increasing the tolerance of plants to abiotic stress, was also found in

rice. SNAC1, an NAC gene from O. sativa, can improve drought and salt tolerance in rice, and

transgenic plants were found to produce a 22–34% higher yield than the control in the field

under severe drought stress conditions [21]. Accordingly, OsNAC10-overexpressing rice

plants showed increased grain yield in comparison to the controls under both normal and

drought conditions [23]. Overexpression of 3 rice drought-responsive NAC genes (OsNAC5,

OsNAC6, and OsNAC10) increased plant tolerance to drought and salt stresses [23,49], and the

overexpression of OsNAC6 led to increased resistance towards rice blast [22,34]. The genes

ZmNAC41 and ZmNAC100 were found to be induced in Z. mays during infection with C. gra-
minicola [33]. Similarly, BnNAC1-1, BnNAC5-1, and BnNAC5-7 were induced in Brassica cam-
pestris during infection with S. sclerotiorum. NAC family genes thus appear to be crucial

regulators of plant tolerance to abiotic and biotic stress, as well as crop yield.

The cultivated strawberry (Fragaria × ananassa Duch.) is one of the most important fruit

crops in the world. The woodland strawberry (F. vesca, 2n = 2x = 14) has a smaller genome (~

240 Mb) that is highly congenic with the cultivated strawberry [50]. Robust in vitro regenera-

tion and transformation systems have been established for studying the counterparts of many

important genes in rosaceous fruit crops [50–53].

Based on the significance of NACs in the regulation of plant growth, development and

adaption to the environment, the NAC family was selected for systematic analysis in woodland

strawberry. In the present study, we identified 37 NAC genes from woodland strawberry and

performed a detailed investigation of their phylogeny, conserved motifs, gene structure,

expression profiles in various tissues and in response to cold, heat, drought, salt stress, signal-

ing of H2O2, melatonin, ABA and rapamycin, and response to the pathogens Colletotrichum
gloeosporioides and Ralstonia solanacearum. Our results should provide a basis for future

research on the evolutionary mechanisms and biotic and abiotic stress responses mediated by

NACs in the woodland strawberry.

NAC family in woodland strawberry
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Materials and methods

Plant materials and treatments

Woodland strawberry (F. vesca L., 2n = 2x = 14) seedlings were cultivated in a growth chamber

at 24±2˚C under a 14 h/10 h light/dark photoperiod with 80% relative humidity. The F. vesca
seeds collected from Beimu Experimental Station, Yumin County, Xinjiang Province of China.

Hundred-day-old woodland strawberry tissues (leaf, stem, root, flower, full reddening fruit)

were collected from the greenhouse for the treatments. The cold and heat stress treatments

was performed by transferring the plants to a low temperature (4˚C) for 48 h following recov-

ery, or to a high temperature (40˚C) for 4 h following recovery. The leaves of the plants treated

with cold and heat were then collected at 2 h, 6 h, 12 h, 2 d, 7 d, 14 d post-treatment (dpt).

Drought or salt stresses were simulated by irrigating potted strawberry plants with 200 mM

mannitol, 100 mM NaCl, respectively. The leaves of the plants treated with drought and salt

were collected at 2 h, 6 h, 3 d, 14 d, 18 d, 24 d post-treatment. Signal molecule treatments were

performed by spraying the woodland strawberry leaves with a solution containing 10 mM

H2O2, 0.1 mM ABA, 0.5 mM melatonin, 0.01 mM rapamycin, and the leaves were collected at

2 h, 6 h, 12 h, 1 d, 2 d, 3 d post-treatment. The control woodland strawberry seedlings were

similarly irrigating or spray with distilled water. 1×106 conidiospores/mL C. gloeosporioides
inoculation leaves were collected at 12 h, 22 h, 40 h, 60 h, 96 h, 120 h post-inoculation (hpi),

1×108 CFU R. solanacearum irrigating woodland strawberry seedlings were collected at 2 h, 6

h, 12 h, 24 h,48 h, 72 h post-inoculation (hpi), and uninfected leaves served as a negative con-

trol. All materials harvested from each treatment were immediately frozen in liquid nitrogen

and stored at -70˚C before for RNA isolation.

Identification and phylogenetic analyses of the NAC gene family in the

woodland strawberry

Whole protein sequences of woodland strawberry were obtained from the Plant Transcription

Factor Database version 4.0 (PlantTFDB; http://planttfdb.cbi.pku.edu.cn/) [54], Phytozome

version 12.0 (https://phytozome.jgi.doe.gov/pz/portal.html) and Pfam databases (http://pfam.

xfam.org/) [55]. The Arabidopsis (Arabidopsis thaliana) NAC amino acid sequences were

acquired from PlantTFDB version 4.0. The rice (Oryza sativa subsp. japonica) NAC amino

acid sequences were acquired from PhantTFDB and Nuruzzaman et al. [7]. Additionally, all

the Arabidopsis and rice NACs were entered as queries in BLAST and were used to identify the

predicted NACs in the woodland strawberry database. The full-length amino acid sequences of

the NAC proteins from Arabidopsis, rice and woodland strawberry were used to generate a

phylogenetic tree based on ClustalX 2.0 alignment [56] and the unrooted neighbor-joining

(NJ) method with 1,000 bootstrap replicates in MEGA 6.06 [57].

Protein properties and sequence analyses

The molecular weight and isoelectric points (pI) of the presumed FvNACs were predicted

using the online ExPASy proteomics server database (http://web.expasy.org/compute_pi/)

[58]. Information for each FvNAC was retrieved from the F. vesca version 1.1 database. The

FvNAC genomic sequences and CDS sequences extracted from PlantTFDB were compared

using the online GSDS 2.0 software (http://gsds.cbi.pku.edu.cn/) [59] to infer the exon/intron

organization of the FvNAC genes. The conserved motifs of the FvNAC genes were obtained

from the online Multiple Expectation Maximization for Motif Elicitation (MEME) (Suite ver-

sion 4.11.2; http://meme-suite.org/tools/meme).

NAC family in woodland strawberry
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Quantitative RT-PCR evaluation of retrotransposon expression

Total RNA was isolated using an RNAprep Pure Plant Kit (TIANGEN, China, Cat. DP441) and

the concentration and purity were evaluated by NanoDrop 2000c (Thermo Scientific, USA).

Reverse transcription was implemented using 1 μg total RNA of each sample with a FastQuant

RT Kit (With gDNase; TIANGEN, China, Cat. KR106-01). Expression of FvNAC genes by quanti-

tative real-time PCR (qRT-PCR) analysis, performed in an Applied Biosystems QuantStudioTM 6

Flex Real-Time PCR System using the UltraSYBR mixture from Beijing CoWin Biotech (Cat.

CW2601M). The reaction mixture was as follows: 1 μL cDNA template, 10μL 2 × PCR Mix, 0.5μL

forward and reverse primers each (10μM), and 8μL ddH2O. PCR reactions were carried out with

a denaturing step (95˚C 10 min) and 40 cycles of denaturing at 95˚C for 10 s, followed by anneal-

ing at 56˚C for 30 s, and elongation at 72˚C for 32 s. Primers with high specificity and efficient

amplification on the basis of a dissociation curve analysis and agarose gel electrophoresis were

used to conduct the quantification analysis. The relative expressions of the target genes were deter-

mined using the 2–ΔΔCt method [60]. Actin-7 gene (LOC101313051) was used as an internal refer-

ence gene for all the quantitative real-time PCR analyses in this study [61]. The primers used for

qRT-PCR are listed in S1 Table. All experiments were conducted three times with three biological

replicates for qRT-PCR analyses. Relative expression levels greater than 2-fold (2-fold higher than

control) were considered up-regulated, whereas relative expression levels that were expressed less

than 0.5 fold (2-fold lower than control) were considered down-regulated.

Results

Genome-wide identification of NACs in the woodland strawberry

A total of 37 FvNAC genes were identified in the woodland strawberry genome as putative mem-

bers of the NAC family from PlantTFDB v4.0 and Phytozome v12, and were designated as

FvNAC01-FvNAC37. The characteristic parameters of all predicted FvNAC proteins are listed in

S2 Table, including chromosome location, protein length, molecular weight, theoretical pI and

intron numbers. The 37 FvNAC proteins ranged from 64 (FvNAC23) to 1, 317 (FvNAC02)

amino acid residues with an average of 426.3 aa, and the pIs ranged from 4.53 (FvNAC16) to 9.40

(FvNAC32) with 25 members showing pI<7, 67.57% and others, pI>7, 32.43% (S2 Table).

Phylogenetic analysis of woodland strawberry NACs

To study the evolutionary relationships between woodland strawberry NAC proteins and

known NACs from Arabidopsis and rice, an unrooted neighbor-joining phylogenetic tree was

constructed with the amino acid sequences of the NAC family proteins from the woodland

strawberry, Arabidopsis, and rice. The results indicated that 37 FvNACs could be divided into

13 groups (A to M) together with their orthologs of Arabidopsis and rice (Fig 1, S3 Table). Phy-

logenetic analysis also showed that there were some closely related orthologous NACs between

the woodland strawberry and Arabidopsis (FvNAC01 and RD26, FvNAC28 and ATAF1,

FvNAC09 and NAC1, FvNAC35 and ANAC042, FvNAC19 and ANAC035, FvNAC32 and

ANAC065, FvNAC03 and ANAC076, FvNAC30 and ANAC010, FvNAC33 and ANAC073,

FvNAC08 and ANAC008) and between the woodland strawberry and rice (FvNAC22 and

ONAC019, FvNAC14 and ONAC116, FvNAC23 and ONAC082), suggesting that FvNACs are

closely associated with the proteins from Arabidopsis.

Gene structure and conserved motifs of woodland strawberry NACs

The diversification of gene structure during the evolution of multigene families facilitated the

evolutionary co-option of genes for new functions in order to adapt to changes in the

NAC family in woodland strawberry
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environment. To further examine the structural features of FvNAC genes, intron/exon distri-

bution and conserved motifs were analyzed according to their phylogenetic relationships (Fig

2A). Gene structure analysis (Fig 2B) indicated that the number of introns of FvNACs varied

from 1 (FvNAC23, FvNAC36) to 16 (FvNAC18), and it was found that 16 of the 37 FvNAC
genes had 2 introns, while 7 of the 37 FvNAC genes had 3 introns. Most of the FvNAC mem-

bers in the same group exhibited similar exon-intron structure. The conserved intron numbers

in each subfamily supports their close evolutionary relationship and group classification.

To further examine the structural diversity of FvNACs, 17 conserved motifs were predicted

using Multiple Em for Motif Elicitation (MEME) and subsequent annotation with InterPro

(Fig 2C, S1 Fig). The FvNACs identified in this study possessed conserved features of the NAC

Fig 1. Phylogenetic analysis of NAC proteins from woodland strawberry, rice, and Arabidopsis. The full-length amino acid sequences of

NAC genes from woodland strawberry (FvNACs), Arabidopsis (ANACs), and rice (ONACs) were aligned using ClustalX 2.0, and the

phylogenetic tree was constructed using the neighbor-joining method with 1000 bootstrap replicates with MEGA 6.06.

https://doi.org/10.1371/journal.pone.0197892.g001

NAC family in woodland strawberry
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family. Interestingly, it was found that most of the conserved motifs were located in the N-ter-

minal of the NAC proteins that are highly conserved for DNA-binding, indicating that these

motifs may be essential for the functioning of NAC proteins. However, the FvNAC18 motifs

were located in the C-terminal. FvNAC02 and FvNAC14, lacking motif, and FvNAC34 and

FvNAC15, with only a domain, were excluded from further analysis as they cannot be used to

construct acceptable phylogenies. In general, the NAC proteins clustered into the same groups

and shared similar motif compositions, indicating functional similarities among members of

the same group.

FvNACs expression profiles in different organs

To determine the biological roles of NACs in the woodland strawberry, the distribution of the 37

FvNACs transcripts were surveyed in 5 major organs (leaf, stem, root, flower, full reddening fruit)

under non-stress conditions. As shown in Fig 3, 10 FvNAC genes (FvNAC-04, -07, -12, -22, -28,

-29, -30, -33, -34, and -35) showed lower transcript abundance in leaves than in the stems, roots,

flowers, and full reddening fruit. All 37 FvNAC genes showed transcripts in different tissues, in

which 24 (64.9%), 16 (43.2%), 29 (78.4%), and 23 (62.1%) genes exhibited high transcriptional

abundance (value>2-fold) in the stems, roots, flowers, and full reddening fruit tissues, respec-

tively. FvNAC13 and FvNAC18 did not show any transcripts in the roots (S4 Table).

FvNACs expression profiles upon exposure to cold, heat, drought and salt

To examine the response of FvNAC genes to cold (4˚C), heat (40˚C), drought, and salt stresses

at the transcriptional level, the transcripts of FvNAC genes under these treatments were

Fig 2. Phylogenetic relationships, exon-intron structure, and motif compositions of FvNAC genes. (a) The unrooted phylogenetic

tree was constructed using full-length protein sequences of 37 FvNAC genes by the neighbor-joining method using 1000 bootstrap

replicates. (b) Exon-intron structure analyses of FvNAC genes were performed by using the online tool GSDS 2.0. Lengths of exons and

introns of each FvNAC genes were exhibited proportionally. (c) The motif composition related to each FvNAC protein. The motifs

numbered 1–17 are displayed in different colored boxes. The sequence information for each motif is provided in S1 Fig.

https://doi.org/10.1371/journal.pone.0197892.g002

NAC family in woodland strawberry
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Fig 3. Expression profiles of FvNAC genes in different organs of the woodland strawberry. The expression profiles

were generated by qRT-PCR and visualized as heat map. The heat map was constructed using HemI 1.0 software. The

color scale represents log2 expression values, with green indicates low expression and red indicates high expression.

https://doi.org/10.1371/journal.pone.0197892.g003

NAC family in woodland strawberry
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determined using quantitative real-time PCR. As shown in Fig 4 (S5 Table), the steady expres-

sion of 6 FvNAC genes under cold stress at all treated time points was observed, with FvNAC03
and FvNAC31 being up-regulated, and FvNAC02, FvNAC06, FvNAC09, and FvNAC32 being

down-regulated. As shown in Fig 5 (S6 Table), 23 FvNAC genes (FvNAC-02, -06, -07, -09, -10,

-12, -13, -14, -16, -17, -18, -19, -21, -22, -23, -24, -25, -30, -32, -33, -34, -35, and -37) were down-

regulated under heat stress, while no FvNAC genes were up-regulated. As shown in Fig 6 (S7

Table), 21 FvNAC genes (FvNAC-02, -04, -07, -08, -09, -10, -12, -13, -15, -16, -17, -18, -19, -21,

-22, -23, -32, -33, -35, and -37) were down-regulated under conditions of drought stress. Addi-

tionally, as shown in Fig 7 (S8 Table), FvNAC04 and FvNAC29 were mostly up-regulated

under salt stress, while 20 FvNAC genes (FvNAC-02, -03, -06, -10, -11, -12, -13, -15, -16, -17,

-18, -19, -22, -23, -25, -26, -27, -31, -33, and -34) were mostly down-regulated.

FvNACs expression profiles upon exposure to H2O2, ABA, melatonin and

rapamycin

To examine the response of FvNAC genes to H2O2, ABA, melatonin, and rapamycin stress at

the transcriptional level, the transcripts of the FvNAC genes under these treatments were deter-

mined by quantitative real-time PCR. As shown in Fig 8 (S9 Table), the steady expression of 7

FvNAC genes was observed under H2O2 stress, with FvNAC03, FvNAC04 and FvNAC29 being

up-regulated, and FvNAC02, FvNAC14, FvNAC17 and FvNAC20 being down-regulated. As

shown in Fig 9 (S10 Table), the steady expression of 4 FvNAC genes was documented under

ABA stress, with FvNAC30 being up-regulated, and FvNAC18, FvNAC20 and FvNAC23 being

down-regulated. As shown in Fig 10 (S11 Table), 18 FvNAC genes (FvNAC-02, -07, -08, -09,

-12, -13, -14, -15, -16, -17, -18, -20, -21, -23, -32, -33, -35 and -37) were down-regulated under

melatonin stress, while no FvNAC genes were up-regulated. Moreover, as shown in Fig 11 (S12

Table), the steady expression of 8 FvNAC genes was observed under rapamycin stress, with

FvNAC04 being up-regulated, and FvNAC15, FvNAC18, FvNAC19, FvNAC22, FvNAC23,

FvNAC32 and FvNAC34 being down-regulated. Notably, FvNAC18 tended to be down-regu-

lated under all 4 stress treatments.

FvNACs expression profiles in response to C. gloeosporioides and R.

solanacearum infection

To investigate the possible role of FvNAC genes in plant-pathogen interactions, quantitative

real-time PCR was used to analyze the response of woodland strawberry leaf infected with C.

gloeosporioides and R. solanacearum in comparison to a control. As shown in Fig 12 (S13

Table), the steady expression of 6 FvNAC genes occurred under C. gloeosporioides infection,

with FvNAC04, FvNAC28 and FvNAC29 being up-regulated, and FvNAC09, FvNAC18 and

FvNAC20 being down-regulated. As shown in Fig 13 (S14 Table), FvNAC genes (FvNAC-02,

-13, -14, -21, -26, and -32) were steadily expressed under R. solanacearum infection and were

found to be down-regulated, while no FvNAC genes were steadily up-regulated. However,

FvNAC01, -03, -04, -18, -28, -29, -34, 36 and -37 tended to be up-regulated (value>10-fold) at 1

d post-infection.

Discussion

Woodland strawberries face severe destruction from various abiotic and biotic stresses (partic-

ularly C. gloeosporioides and R. solanacearum) during the growth and developmental stages. In

order to address this, farmers and researchers have been increasing the cultivation area and

improving cultivated techniques. However, the effects of this appear to be very limited [62,63].

NAC family in woodland strawberry
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Fig 4. Expression profiles of FvNAC genes in leaves under cold stress. The cold stress treatment was performed by

transferring the plants to a low temperature (4˚C) for 48 h following recovery. Log2 based values from cold stress of

qRT-PCR data were used to create the heat map.

https://doi.org/10.1371/journal.pone.0197892.g004

NAC family in woodland strawberry
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Fig 5. Expression profiles of FvNAC genes in leaves under heat stress. The heat stress treatment was performed by

transferring the plants to a high temperature (40˚C) for 4 h following recovery. Log2 based values from cold stress of

qRT-PCR data were used to create the heat map.

https://doi.org/10.1371/journal.pone.0197892.g005

NAC family in woodland strawberry
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Fig 6. Expression profiles of FvNAC genes in leaves under drought stress. The drought stress treatment was

simulated by irrigating potted woodland strawberry plants with 200 mM mannitol. Log2 based values from cold stress

of qRT-PCR data were used to create the heat map.

https://doi.org/10.1371/journal.pone.0197892.g006

NAC family in woodland strawberry

PLOS ONE | https://doi.org/10.1371/journal.pone.0197892 June 13, 2018 11 / 26

https://doi.org/10.1371/journal.pone.0197892.g006
https://doi.org/10.1371/journal.pone.0197892


Fig 7. Expression profiles of FvNAC genes in leaves under salt stress. The salt stress treatment was simulated by

irrigating potted woodland strawberry plants with 100 mM NaCl. Log2 based values from cold stress of qRT-PCR data

were used to create the heat map.

https://doi.org/10.1371/journal.pone.0197892.g007
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Fig 8. Expression profiles of FvNAC genes in leaves under H2O2 stress. The H2O2 stress treatment was performed by

spraying the woodland strawberry leaves with a solution containing 10 mM H2O2. Log2 based values from cold stress

of qRT-PCR data were used to create the heat map.

https://doi.org/10.1371/journal.pone.0197892.g008
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Fig 9. Expression profiles of FvNAC genes in leaves under ABA stress. The ABA stress treatment was performed by

spraying the woodland strawberry leaves with a solution containing 0.1 mM ABA. Log2 based values from cold stress

of qRT-PCR data were used to create the heat map.

https://doi.org/10.1371/journal.pone.0197892.g009
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Fig 10. Expression profiles of FvNAC genes in leaves under melatonin stress. The melatonin stress treatment was

performed by spraying the woodland strawberry leaves with a solution containing 0.5 mM melatonin. Log2 based

values from cold stress of qRT-PCR data were used to create the heat map.

https://doi.org/10.1371/journal.pone.0197892.g010
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Fig 11. Expression profiles of FvNAC genes in leaves under rapamycin stress. The rapamycin stress treatment was

performed by spraying the woodland strawberry leaves with a solution containing 0.01 mM rapamycin. Log2 based

values from cold stress of qRT-PCR data were used to create the heat map.

https://doi.org/10.1371/journal.pone.0197892.g011
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Fig 12. Expression profiles of FvNAC genes in leaves under C. gloeosporioides infection. The C. gloeosporioides
infection stress was performed by spraying the conidiospores (1×106 conidiospores/mL) to woodland strawberry

leaves surface. Log2 based values from cold stress of qRT-PCR data were used to create the heat map.

https://doi.org/10.1371/journal.pone.0197892.g012
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Fig 13. Expression profiles of FvNAC genes in leaves under R. solanacearum infection. The R. solanacearum
infection stress was irrigating pathogenic bacteria suspension (1×108 CFU) woodland strawberry seedlings.

https://doi.org/10.1371/journal.pone.0197892.g013
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Considering the common involvement of NACs in the plant stress response, FvNACs were

chosen as candidate genes for further investigation for their potential use in genetic breeding

in woodland strawberries. Overall, 37 FvNACs were identified from across the genome and the

phylogenetic evolution of these genes was also revealed. Using quantitative real-time PCR

analysis, the comprehensive expression profiles of the 37 FvNACs were assessed. To our knowl-

edge, this is the first study to extend our understanding of the FvNAC gene family. Generally,

the expression profiles could be divided into 2 sections. The first involves the expression of 37

FvNACs at different developmental stages, or in different tissues, and comprises the basic

information of this gene family. We discovered that the transcripts of some FvNACs have

strong expression levels for specific tissue and developmental stage, indicating their possible

roles in specific growth or developmental stages, such as in the flowers or fruit. The other sec-

tion involves gene expression in response to various abiotic and biotic stresses, which intends

to identify several candidate genes commonly regulated by various stresses for stress-related

genetic breeding.

In this study, multiple abiotic and biotic stress-responsive FvNACs were identified, and

were in accordance with previous studies of the NAC gene family in other plant species,

including Arabidopsis [7], O. sativa [7], Nicotiana tabacum [37], P. trichocarpa [38], V. vinifera
[39], S. italic [40], G. raimondii [41], M. acuminate [42], C. arietinum [43], M. esculenta [44], Z.

mays [45], M. notabilis [46], C. melo [47], and S. lycopersicum [48].

ANAC042, which showed a high degree of similarity with FvNAC35, was previously

reported to be involved in the regulation of camalexin biosynthesis, and oxidative and heat

stress resistance [24,32]. FvNAC28 shared high similarity with ATAF1/ANAC002, which was

previously shown to be involved in abiotic (drought, salt, and ABA) and biotic (necrotrophic

pathogen B. cinerea) stress responses [8]. These results provide firm evidence of the protective

roles of plant NACs in abiotic and biotic stress responses.

Cold stress is a major environmental factor affecting crop productivity and plant growth,

development [64]. In Arabidopsis, ANAC053 and ANAC017 were found to be induced by cold

stress [65]. In rice, 16 NAC genes (ONAC007, -010, -015, -027, -028, -039, -045, -059, -067, -068,

-073, -074, -085, -103, -122 and -132) showed up-regulation under cold treatment [66]. In our

study, under cold treatment following recovery, FvNAC03 and FvNAC31 were up-regulated at

all treated time points, and constituted the most highly induced genes (over 15-fold at 4 time

points, respectively; Fig 4, S5 Table).

In tea (Camellia sinensis) plants, 7 CsNAC genes (CsNAC02, CsNAC17, CsNAC26,

CsNAC29, CsNAC30, and CsNAC32) showed up-regulation under heat (40˚C) stress at 24 h

[67]. Similarly, FvNAC15 and FvNAC31 were up-regulated at 2 h, and FvNAC36 between 2 d

and 14 d, constituting the most highly induced genes (over 15-fold; Fig 5, S6 Table).

Under drought treatment, FvNAC36 showed significant induction between 2 h and 3 d (Fig

6, S7 Table). In Arabidopsis, rice, maize, chickpea, and apple, 6 ANAC genes [19,20,68,69], 4

OsNAC genes [22,23,49,21,70], 8 ZmNAC genes [71], 14 CaNAC genes [43], and 12 MdNAC
genes [72], were up-regulated under drought treatment, respectively.

Furthermore, under salt treatment, FvNAC04 and FvNAC29 showed significant up-regula-

tion at all treated time points (Fig 7, S8 Table). In Arabidopsis, 10 ANAC genes [8,15,19,73–

78], 21 OsNAC genes [21,66,79], 4 CsNAC genes [67], and 8 MdNAC genes [72] were up-regu-

lated under drought treatment. These studies indicate that NAC family genes may be positively

involved in the salt stress response.

Under H2O2 treatment, FvNAC03, FvNAC04, and FvNAC29 showed significant up-regula-

tion at all treated time points (Fig 8, S9 Table). In Arabidopsis, some evidence suggests that

NAC genes, including ANAC013, ANAC042, and ANAC059/ORS1, play a positive role in the

response to oxidative stress.
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Under ABA treatment, FvNAC30 tended to be up-regulated at all treated time points. In

addition to FvNAC18, FvNAC20, and FvNAC23, all FvNAC genes tended to be up-regulated at

the 1 d time point (over 2-fold; Fig 9, S10 Table). In Arabidopsis, several ANAC genes have

been shown to regulate ABA mediated processes [14,69,73,77,80–83]. Among them, FvNAC30
and ANAC010, FvNAC28 and ATAF1/ANAC002, FvNAC17 and ANAC012, and FvNAC28 and

ATAF1/ANAC002 were found to be closely related and orthologous. Furthermore, the rice

gene OsNAC19 has been shown to regulate ABA mediated processes [34]. However, FvNAC22
and OsNAC19 were found to be closely related orthologs. The response of woodland straw-

berry NAC genes to ABA treatment suggested a possible role for FvNAC genes in ABA

signaling.

Melatonin is a widely investigated, endogenously produced molecule in all plant species

[84]. Previous reports have demonstrated the protective effects of melatonin to alleviate biotic

and abiotic stresses [84]. FvNAC03, FvNAC24, FvNAC29, FvNAC30 at 2 h, FvNAC03,

FvNAC27, FvNAC31 at 12 h, and FvNAC24 at 1 d constituted the most highly induced genes

(over 10-fold). On the contrary, 18 FvNAC genes under melatonin stress were found to be

down-regulated (Fig 10, S11 Table). Thus, FvNAC family genes may be positively or negatively

involved in the melatonin stress response.

Rapamycin, as an antifungal agent against pathogenic fungi, plays a crucial role in plant

growth and metabolism [85–89]. Under rapamycin treatment, FvNAC04 was up-regulated at

all treated time points, and FvNAC03 and FvNAC28 tended to be up-regulated at 1 h to 2 d.

However, 7 FvNAC genes were found to be down-regulated at all treated time points (Fig 11,

S12 Table).

Plant NACs are involved in plant-pathogen interactions [25,29,31,90–92]. The Arabidopsis
ATAF1 is a regulator of the defense response against B. cinerea, Blumeria graminis f.sp. hordei,
and P. syringae pv. Tomato [26]. Additionally, HvSNAC1 has been found to be important for

the resistance of barley inoculated with Ramularia leaf spot [93]. Under C. gloeosporioides
infection, FvNAC04, FvNAC28, and FvNAC29 tended to be up-regulated (Fig 12, S13 Table);

meanwhile, under R. solanacearum infection, FvNAC01, -03, -04, -18, -28, -29, -34, -36, and -37
tended to be up-regulated (over 10-fold) at 24 h (Fig 13, S14 Table). Moreover, ATAF1 and

FvNAC28 were found to be closely related orthologs. This suggests that FvNAC28 exhibits a

similar function to ATAF1. Therefore, the NACs in the woodland strawberry are regulators of

the defense response against C. gloeosporioides and R. solanacearum.

In conclusion, this study is the first to examine the FvNAC gene family along with their spe-

cific expression profiles, which may be used as potential candidates for further studies to dis-

sect the function of FvNAC in response to stress stimuli.

The gene expression profiles obtained during 4˚C, 40˚C, drought, salt, H2O2, ABA, melato-

nin, rapamycin, C. gloeosporioides and R. solanacearum infection, and phytohormone treat-

ments suggest that several woodland strawberry NAC genes could play important roles in

environmental stress adaptation.
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