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Abstract: As an important research direction of human–computer interaction technology, gesture
recognition is the key to realizing sign language translation. To improve the accuracy of gesture
recognition, a new gesture recognition method based on four channel surface electromyography
(sEMG) signals is proposed. First, the S-transform is applied to four channel sEMG signals to enhance
the time-frequency detail characteristics of the signals. Then, multiscale singular value decomposition
is applied to the multiple time-frequency matrix output of S-transform to obtain the time-frequency
joint features with better robustness. The corresponding singular value permutation entropy is
calculated as the eigenvalue to effectively reduce the dimension of multiple eigenvectors. The gesture
features are used as input into the deep belief network for classification, and nine kinds of gestures
are recognized with an average accuracy of 93.33%. Experimental results show that the multiscale
singular value permutation entropy feature is especially suitable for the pattern classification of the
deep belief network.

Keywords: surface electromyography; S-transform; multiscale singular value decomposition;
permutation entropy; deep belief network; gesture recognition

1. Introduction

Gesture recognition, which uses a computer to convert hand movement information
into a specific target application, has become a research focus in the field of human–
computer interaction and rehabilitation medicine [1,2]. Sign language (SL) is an action set
composed of many gestures that have meaning. Therefore, gesture recognition is the key
to SL translation. SL translation contributes to the smooth communication between the
deaf/mute and normal hearing/speaking people and greatly improves the deaf/mute’s
social participation, which will bring gospel to many deaf/mute communities around
the world.

Surface electromyography (sEMG) is a kind of bioelectrical signal [3–5] that reflects the
neuromuscular system activity collected from the muscle surface and contains abundant
information related to gesture action. As sEMG signal acquisition is simple and non-
invasive, gesture recognition based on sEMG [6,7] is favored by an increasing number of
researchers at home and abroad. Gesture recognition is the main approach to achieving
SL translation. At present, more than 5300 Chinese SL words exist [8,9], and hundreds
of common SL words are used in daily life. Recognizing SL words individually and in
isolation will require heavy training and calculation. In fact, SL actions can be decomposed
into several standardized gestures and movement trajectories, and the translation of SL
words will be transformed into the recognition of several specific gestures. An sEMG signal
is produced with the contraction of muscle and can be obtained as long as the related
muscle is sound. Different gesture actions need the cooperation of different muscles to
drive the action. Therefore, the collected sEMG signal contains spatial pattern information
related to the muscle position. The corresponding gesture can be recognized by analyzing
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the pattern information of multiple muscles. Yang et al. [9] realized the recognition of eight
gestures (corresponding to 150 words) using four channel sEMG signals, with an average
accuracy of 87.02%. Zhang et al. [10] used four forearm and one palmar sEMG signals to
classify 18 independent Chinese SL words, reaching an accuracy of 91.4%. Zhang et al. [11]
used five channel sEMG signals to classify 72 words, with an accuracy of 90.2%. Increasing
the layout of sensors improves the recognition accuracy, but also increases the complexity
of the recognition system. This paper attempts to analyze four channel sEMG signals to
recognize nine standardized gestures.

The sEMG signal is weak, time-varying, and non-stationary. Performing feature
analysis on signals is the key to improving the recognition accuracy. Han et al. [12] used
a short-time Fourier transform (STFT) to analyze sEMG signals, effectively improving
the recognition rate of action. In [13,14], wavelet transform was used to decompose
sEMG signals into multiscale and achieved good experimental results. Xu et al. [15] used
the Wigner Ville distribution to analyze sEMG signals to predict the knee joint torque.
Time-frequency analysis methods, such as STFT, wavelet transform, and the Wigner Ville
distribution, cannot achieve high resolution in the time and frequency domains at the same
time [16], so the detailed features of signals cannot be effectively enhanced. However,
S-transform (ST) is the improvement of the STFT and wavelet transform, which overcomes
the defect of the STFT window function and effectively improves the resolution of the time-
frequency feature [17,18]. ST exhibits excellent performance in analyzing time-varying
signals. The time-frequency matrix (TFM) output of ST contains rich time-frequency
information. TFM’s singular value effectively reflects the global characteristics of the
matrix but contains more redundant information, so the details and local characteristics
are insufficient [19–21]. Therefore, the TFM is locally divided along the time and frequency
axes, and the multiscale singular value decomposition (SVD) of the global and local sub
matrices are performed separately, which has a positive effect on feature extraction.

To further realize the feature transformation of multiscale singular values while
effectively reducing the dimensions of multiple eigenvectors, the entropy of multiscale
singular values of multiple muscles is calculated. Given the limitations of weak anti-
noise ability and complex data preprocessing, approximate entropy and sample entropy
can hardly extract the detailed characteristics of the sEMG signal itself effectively [22].
Permutation entropy (PE) takes the change in sorting mode as an important feature of time
series, which has the advantages of fast calculation and strong anti-noise ability. Given the
difference between the number of motor units involved in muscle activities and the nerve
conduction velocity of action potential under different gesture actions, the complexity of
sEMG signal is different. The vector volatility information reflected by PE is a complexity
measure of the vector volatility model. Combined with the matrix singular values arranged
in descending order, PE is selected to reflect the intrinsic complex characteristics of the
sEMG signal.

The multiscale analysis method for the time-frequency features of multiple muscles
ensures the integrity of the feature information of sEMG signals, but it greatly increases
the design difficulty and training load of the gesture recognition classifier. A deep belief
network [23–26] (DBN) is a deep learning model with an excellent feature learning ability.
A DBN is composed of several restricted Boltzmann machines (RBMs), which can alleviate
the problem of multi-layer neural network training. PE and RBMs are probability distri-
bution models that facilitate the full absorption and learning of PE features by the DBN
compared with other methods, making the PE features suitable for the pattern classification
of the DBN. Figure 1 is the framework of gesture recognition methods designed in this pa-
per. In the paper, the four channel sEMG signals are collected and then transformed by ST.
The multiple TFM output of ST is processed by multiscale SVD to obtain the time-frequency
joint features with strong robustness. The multiscale singular value PE eigenvalues of
multiple muscles are calculated as the feature vector and used as input into the DBN for
classification. Finally, nine kinds of gestures are recognized. The results show that the
combination of sEMG signal multiscale singular value PE and the DBN can achieve better
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recognition accuracy of 93.33% without increasing the number of sEMG channels and
signal types. This method is effective for improving the accuracy of gesture recognition.
The comparison of methods is shown in Table 1, it can be found that this method is superior
to other comparison methods. Due to the non-stationary characteristics of sEMG signal,
multiscale singular value PE analysis is carried out. The multiscale signal features make
the classification more accurate, and the PE feature of sEMG signal is easier to fully absorb
and learn by the DBN, so better recognition accuracy is achieved.
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Table 1. Description of comparison of methods.

No. Papers Number of
Channels Types of Signal Method Accuracy

1 Reference [9] 4 sEMG, accelerometer, gyroscope Optimized tree-structure classification 87.02%
2 Reference [10] 5 sEMG, accelerometer Linear discriminant analysis 91.4%
3 Reference [11] 5 sEMG, accelerometer Multi-stream hidden Markov models 90.2%
4 This paper 4 sEMG Combination of multiscale singular value PE and DBN 93.33%

2. Materials and Methods
2.1. Muscle Selection

In this paper, the Trigno Wireless sEMG acquisition system (Delsys Ltd., Boston, MA,
USA) is used to collect multichannel sEMG signals of forearm muscles. The execution of
different gestures is driven by specific muscles, so the selection of target muscle is related
to the accuracy of gesture recognition. The muscles studied in [9–11] are mainly extensor
carpi radialis (ECR), extensor carpi ulnaris, extensor digitorum (ED) and palmaris longus.
Through the decomposition of SL gestures, we can see that there are many kinds of finger
movements in gestures. Therefore, it is necessary to increase the muscles related to finger
movements in the analysis process. Thus, four groups of muscles, namely ECR, ED, Flexor
digitorum superficialis (FDS) and extensor pollicis brevis (EPB), were selected as signal
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acquisition objects. The sEMG signal acquisition sensors are arranged at the positions of
these four groups of muscles, and the specific positions are shown in Figure 2.
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Table 2. Description of nine kinds of gestures. 

No. Name of Gesture Category Abbreviation Chinese SL Words 1 Example 

1 Five fingers extended FFE Dajia 2; Xianzai 3; Kaixin 4 Figure 3a 

2 Five fingers closed FFC Gongzuo 5; Jiayou 6 Figure 3b 

3 Extend thumb ET Hao 7; Youyi 8 Figure 3c 

4 Flexion of thumb FT Xiexie 9 Figure 3d 

5 Extend index finger EIF Ni 10; Yi 11; Shuohua 12 Figure 3e 

6 Extend index and middle finger EIMF Chang 13; Er 14 Figure 3f 

7 Extend thumb and index finger ETIF Lv 15; Ba 16; Gong 17 Figure 3g 

8 Extend thumb and pinkie ETP Dianhua 18; Qu 19; Liu 20 Figure 3h 

Figure 2. Position of surface electromyography (sEMG) signal acquisition sensors: (1) is the position
of extensor digitorum (ED); (2) is position of extensor pollicis brevis (EPB); (3) is position of extensor
carpi radius (ECR); and (4) is position of Flexor digitorum superficialis (FDS).

2.2. Gesture Category

According to the analysis and induction of Chinese SL [8], the gestures of common SL
words are decomposed into nine standardized gestures, as shown in Figure 3. The specific
gesture description is shown in Table 2.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 16 

 

movements in gestures. Therefore, it is necessary to increase the muscles related to finger 
movements in the analysis process. Thus, four groups of muscles, namely ECR, ED, Flexor 
digitorum superficialis (FDS) and extensor pollicis brevis (EPB), were selected as signal 
acquisition objects. The sEMG signal acquisition sensors are arranged at the positions of 
these four groups of muscles, and the specific positions are shown in Figure 2. 

(1)

(2)

(3)

(4)

Palm sideBack of hand side

 
Figure 2. Position of surface electromyography (sEMG) signal acquisition sensors: (1) is the 
position of extensor digitorum (ED); (2) is position of extensor pollicis brevis (EPB); (3) is position 
of extensor carpi radius (ECR); and (4) is position of Flexor digitorum superficialis (FDS). 

2.2. Gesture Category 
According to the analysis and induction of Chinese SL [8], the gestures of common 

SL words are decomposed into nine standardized gestures, as shown in Figure 3. The 
specific gesture description is shown in Table 2. 

 

(a) 

 

(b)  
(c) 

 
(d) 

 
(e) 

 

 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

Figure 3. Schematic diagram of nine kinds of gestures: (a) five fingers extended; (b) five fingers closed; (c) extended thumb; 
(d) flexion of thumb; (e) extended index finger; (f) extended index and middle finger; (g) extended thumb and index finger; 
(h) extended thumb and pinkie; (i) flexion of thumb and index finger. 

Table 2. Description of nine kinds of gestures. 

No. Name of Gesture Category Abbreviation Chinese SL Words 1 Example 
1 Five fingers extended FFE Dajia 2; Xianzai 3; Kaixin 4 Figure 3a 
2 Five fingers closed FFC Gongzuo 5; Jiayou 6 Figure 3b 
3 Extend thumb ET Hao 7; Youyi 8 Figure 3c 
4 Flexion of thumb FT Xiexie 9 Figure 3d 
5 Extend index finger EIF Ni 10; Yi 11; Shuohua 12 Figure 3e 
6 Extend index and middle finger EIMF Chang 13; Er 14 Figure 3f 
7 Extend thumb and index finger ETIF Lv 15; Ba 16; Gong 17 Figure 3g 
8 Extend thumb and pinkie ETP Dianhua 18; Qu 19; Liu 20 Figure 3h 

Figure 3. Schematic diagram of nine kinds of gestures: (a) five fingers extended; (b) five fingers closed; (c) extended thumb;
(d) flexion of thumb; (e) extended index finger; (f) extended index and middle finger; (g) extended thumb and index finger;
(h) extended thumb and pinkie; (i) flexion of thumb and index finger.

Table 2. Description of nine kinds of gestures.

No. Name of Gesture Category Abbreviation Chinese SL Words 1 Example

1 Five fingers extended FFE Dajia 2; Xianzai 3; Kaixin 4 Figure 3a
2 Five fingers closed FFC Gongzuo 5; Jiayou 6 Figure 3b
3 Extend thumb ET Hao 7; Youyi 8 Figure 3c
4 Flexion of thumb FT Xiexie 9 Figure 3d
5 Extend index finger EIF Ni 10; Yi 11; Shuohua 12 Figure 3e
6 Extend index and middle finger EIMF Chang 13; Er 14 Figure 3f
7 Extend thumb and index finger ETIF Lv 15; Ba 16; Gong 17 Figure 3g
8 Extend thumb and pinkie ETP Dianhua 18; Qu 19; Liu 20 Figure 3h
9 Flexion of thumb and index finger FTIF Gui 21; Lianxi 22; San 23 Figure 3i
1 The Pinyin of Chinese characters, and will be explained here. 2 Everybody. 3 Now. 4 Happy. 5 Work. 6 Come on. 7 Well. 8 Friendship.
9 Thanks. 10 You. 11 One. 12 Talk. 13 Often. 14 Two. 15 Green. 16 Eight. 17 Public. 18 Phone. 19Go. 20 Six. 21 Expensive. 22 Contact. 23 Three.
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2.3. ST of sEMG Signal

ST is a reversible time-frequency analysis method proposed by R.G. Stockwell [27,28].
Its basic idea is to add a Gaussian window whose width is inversely proportional to
frequency, and then Fourier transform the signal.

For a continuous time signal h(τ), its ST of S(τ, f ) is defined as [29,30]:

S(τ, f ) =
∫ ∞

−∞
h(t)w(τ − t, f )e−i2π f tdt (1)

where, w(t, f ) is the Gaussian window function and τ is the translation factor controlling
the position of the Gaussian window on the time axis.

Let R(α, f ) be the Fourier transform of S(τ, f ) from time τ for frequency α. According
to the convolution theorem, we get the following formula:

R(α, f ) = H(α + f )e−2π2α2/ f 2
, ( f 6= 0) (2)

When τ → jT (T is the sampling period and N is the data length), the discrete form
of ST can be obtained as follows:

S
[
jT, n

NT
]
=

N−1
∑

m=0
H
[m+n

NT
]
e
−2π2m2

n2 e
i2πmj

n2 , (n 6= 0)

S[jT, 0] = 1
N

N−1
∑

m=0
h
[ m

NT
]
, (n = 0)

(3)

Therefore, ST can be regarded as a STFT with a variable window function, which
has variable time-frequency resolution, and can meet the analysis requirements of differ-
ent frequency domain signals. The output TFM of ST is a complex matrix, so the TFM
mentioned below is the matrix after modular operation. Figure 4 is a comparison of the
results of the sEMG signal processed by the ST and the STFT, respectively. Considering that
the main frequency bands of sEMG are distributed in the range of 10~500 Hz [14,31], the
spectrum analysis range of ST and STFT is 0~500 Hz, as shown in Figure 4b,c; it is obvious
that the resolution of ST is better than that of STFT. The TFM diagram of ST and STFT
are shown in Figure 4d,e respectively. The abscissa of the matrix is the time vector, which
represents the change of signal amplitude with frequency under a certain time; the ordinate
is the frequency vector, which represents the change of signal amplitude with time under a
certain frequency; the amplitude intensity is represented by color depth. Figure 4e shows
that the areas outside the frequency point of 300 Hz are filtered out relatively cleanly (in-
cluding useful signals), which is not conducive to the analysis of the detailed characteristics
of signals.

Figure 5 is a 3D time-frequency-amplitude diagram of the signal in Figure 4a after the
ST and STFT operation, which is more convenient for analysis and observation. It can be
clearly found that the time-frequency resolution of ST is greatly improved compared with
STFT, which is more conducive to the analysis of the signal details.
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2.4. Multiscale Singular Value PE

SVD is an important matrix decomposition method, which is widely used in signal
feature extraction. The singular value not only contains important matrix characteristic
information, but also is insensitive to the disturbance of matrix elements [19], and has
relative stability in feature extraction. Therefore, SVD is applied to the TFM, and its singular
value characteristics are analyzed.

In SVD theory, any matrix A of m× n order can be decomposed into:

A = UΛVT (4)

where U and V are orthogonal matrices of m × m and n × n order, respectively, and
Λ = diag(λ1, λ2, · · · , λk). (where k = rank(A)) is a diagonal matrix. Its diagonal elements
are singular values of matrix A which arranged in descending order.
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Since Λ is a diagonal matrix, matrix A of m× n order with rank k can be expressed as
the sum of k sub matrices of m× n order with rank 1.

A = UΛVT =
k

∑
i=1

λiuivi =
k

∑
i=1

λi Ai (5)

where ui, vi is the column i singular value vector of U and V respectively, and Ai is the
sub matrix containing ui and vi. In practical application, the matrix A represents the time-
frequency information of the sEMG signal, the corresponding ui and vi represent the time
and frequency information, respectively, and the size of the singular value represents the
amount of information in the time-frequency range. The matrix is decomposed into a series
of time-frequency subspaces corresponding to singular values and singular value vectors,
and the signal feature types can be distinguished by judging the size of singular values.

SVD is applied to the whole matrix, and the obtained singular values reflect the global
characteristics of the matrix, so the detailed and local characteristics are not sufficiently
described [20,21]. In order to extract signal features more comprehensively and effectively,
this paper proposes a signal feature extraction method of local SVD as a supplement.
Firstly, the whole TFM is divided into a sub matrix along the time axis and frequency axis.
Then, SVD is applied to each sub matrix. Since the original matrix is locally divided, more
effective detail features can be obtained. The specific steps are as follows:

(1) The TFM A is obtained by ST of the sEMG signal.
(2) Calculate the global singular value eigenvector λA = [λ1, λ2, · · · , λk] of matrix A.
(3) A is divided into q sub matrices along the time axis and p sub matrices along the

frequency axis. The division method is shown in Figure 6.
(4) SVD is applied to the p + q sub matrix to obtain the corresponding singular value

sequence.
(5) Since the singular value sequence of each sub matrix decays rapidly in numerical

value, the largest singular value of each sub matrix is selected to construct eigenvec-
tors, that is λt = [λtmax,1, λtmax,2, · · · , λtmax,q] and λ f = [λ f max,1, λ f max,2, · · · , λ f max,p].

Sensors 2020, 20, x FOR PEER REVIEW 7 of 16 

 

Since   is a diagonal matrix, matrix A of nm  order with rank k can be 

expressed as the sum of k sub matrices of nm order with rank 1. 

i

k

i

iii

k

i

i AvuVUA 
==

 ===
11

  (5) 

where ii vu ,
 
is the column i singular value vector of U and V respectively, and iA  is the 

sub matrix containing iu  and iv . In practical application, the matrix A represents the 

time-frequency information of the sEMG signal, the corresponding 
iu  and iv

 
represent 

the time and frequency information, respectively, and the size of the singular value 

represents the amount of information in the time-frequency range. The matrix is 

decomposed into a series of time-frequency subspaces corresponding to singular values 

and singular value vectors, and the signal feature types can be distinguished by judging 

the size of singular values. 

SVD is applied to the whole matrix, and the obtained singular values reflect the 

global characteristics of the matrix, so the detailed and local characteristics are not 

sufficiently described [20,21]. In order to extract signal features more comprehensively 

and effectively, this paper proposes a signal feature extraction method of local SVD as a 

supplement. Firstly, the whole TFM is divided into a sub matrix along the time axis and 

frequency axis. Then, SVD is applied to each sub matrix. Since the original matrix is locally 

divided, more effective detail features can be obtained. The specific steps are as follows: 

(1) The TFM A is obtained by ST of the sEMG signal. 

(2) Calculate the global singular value eigenvector ],,,[ 21 kA  =  of matrix A. 

(3) A is divided into q  sub matrices along the time axis and p  sub matrices along the 

frequency axis. The division method is shown in Figure 6. 

(4) SVD is applied to the qp+  sub matrix to obtain the corresponding singular value 

sequence. 

(5) Since the singular value sequence of each sub matrix decays rapidly in numerical 

value, the largest singular value of each sub matrix is selected to construct 

eigenvectors, that is ],,,[ max,2max,1max, qtttt  =
 
and 

],,,[ max,2max,1max, pffff  = . 

where •max,t  is the maximum singular value of q
 
sub matrices divided along the time 

axis, and •max,f  is the maximum singular value of p
 
sub matrices divided along the 

frequency axis. 

 
(a) 

 
(b) 

Figure 6. Schematic diagram of sub matrix division: (a) sub matrix divided along the frequency 

axis and (b) sub matrix divided along the time axis. 

(6) PE is performed on multiscale singular values. As a nonlinear dynamic method based 

on complexity measurement, PE has been gradually applied to the analysis of 

A1,1 A1,2 ... A1,q

A2,1 A2,2 ... A2,q

... ... ... ...

Ap,1 Ap,2 ... Ap,q

t

f

A1,1 A1,2 ... A1,q

A2,1 A2,2 ... A2,q

... ... ... ...

Ap,1 Ap,2 ... Ap,q

t

f

Figure 6. Schematic diagram of sub matrix division: (a) sub matrix divided along the frequency axis
and (b) sub matrix divided along the time axis.

Where λtmax,• is the maximum singular value of q sub matrices divided along the
time axis, and λ f max,• is the maximum singular value of p sub matrices divided along the
frequency axis.

(6) PE is performed on multiscale singular values. As a nonlinear dynamic method
based on complexity measurement, PE has been gradually applied to the analysis
of complex bioelectrical signals [32]. PE is mainly used to analyze the changes of
nonlinear time series, and its basic principles are defined as follows:

An arbitrary time series {x1, x2, · · · xl} is given, where l is the data length.
Xt = [xt, xt+τ , · · · , xl+(m−1)τ ] is obtained by reconstructing its phase space, where m

is the embedding dimension and τ is the delay time.
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Xt is arranged in descending order, and each vector in m dimensional space is mapped
to one of all m! sorting patterns.

For any sequence π, let T denote the times it appears in time series analysis, then its
relative probability distribution is as follows:

pi(π) =
T

N − (m− 1)τ
, i ≤ m! (6)

Then the definition of PE [30,31] is as follows:

H(m) = −
m!

∑
i=1

pi(π) ln pi(π) (7)

The volatility information of the m-dimensional vector reflected by PE is actually a
complexity measure of m dimensional vector volatility pattern.

The singular value entropy eigenvector is obtained by a PE operation on the singular
values λt, λ f and λA in the above steps, which is recorded as F = [Et, E f , EA]. Where Et is
the maximum singular value PE of the local division of the time axis, E f is the maximum
singular value PE of local division of frequency axis, and EA is the global singular value PE
of matrix A. Thus, the multiscale singular value entropy eigenvector is constructed from
the global to the local, and the signal characteristics are described comprehensively.

2.5. Gesture Classification

The DBN was proposed by Geoffrey Hinton in 2006 [25], which promotes the rapid
development of deep learning, and improves the generalization ability and adaptive ability
of the training process. It has better performance than the shallow network structure in
complex classification, and it has been widely used in image recognition, speech recognition
and the biological signal processing fields [33,34].

The DBN is a multi-layer probabilistic machine learning model combining unsuper-
vised learning and supervised learning. It is composed of a multi-layer unsupervised RBM
and a one layer supervised classifier, as shown in Figure 7. In the first stage, the greedy
unsupervised learning algorithm is used to initialize the parameters of deep network
structure layer by layer. The output of the previous RBM is taken as the input of its higher
RBM, and each RBM is trained from bottom to top.

The RBM is a probability distribution model based on energy. In Figure 7, the energy
function (v, h), composed of a visible layer and a hidden layer is [35]:

E(v, h|θ) = −
n

∑
i=1

aivi −
m

∑
j=1

bihi −
n

∑
i=1

m

∑
j=1

wijvihj (8)

where θ =
(
wij, ai, bj

)
is the parameter of the RBM model, ai and bj are the offsets of visible

cell vi and hidden cell hj respectively, wij is the connection weight between visible cell
vi and hidden cell hj, and n and m are the number of visible cell vi and hidden cell hj
respectively.

From Equation (8), we can get the joint probability distribution of the given (v, h) as
follows:

P(v, h|θ) = 1
Z(θ)

exp(−E(v, h|θ)) (9)

where Z(θ) = ∑
v

∑
h

exp(−E(v, h|θ)) is the normalization coefficient.
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Figure 7. The DBN structure and its training process.

The states of the hidden cells in the RBM are independent of each other. When visible
vi is given, the probability of hidden cell hi being activated (set to 1) is as follows:

P
(
hj = 1

∣∣v, θ
)
= sigmoid

(
bj +

n

∑
i=1

wijvi

)
(10)

Similarly, when the state of the hidden cell hi is determined, the probability of visible
cell vi is activated is as follows:

P(vi = 1|h, θ) = sigmoid

(
ai +

m

∑
j=1

wijhj

)
(11)

where sigmoid(•) is the activation function and its value will be mapped to the (0, 1)
interval.

For the RBM model with a given number of visible and hidden cells, the parameter θ
needs to be determined by training. The training goal is to make the reconstructed data of
the RBM model consistent with the given training sample data as far as possible. Because
the distribution function Z(θ) of RBM is difficult to calculate by the naive method, this
paper uses Hinton’s contrastive divergence algorithm [36] to train the unsupervised RBM
and to solve for the optimal value of θ.

In the second stage, the supervised algorithm is used to fine-tune the network pa-
rameters after initialization. The last layer of the DBN is set as the Softmax classifier, the
weight obtained from pre-training is taken as the initial weight of the DBN network, and
the whole model is fine-tuned from top to bottom. This learning method overcomes the
problems encountered in deep network training, and makes the deep network learning
more efficient.

3. Results and Discussion
3.1. Feature Extraction Experiment

Eight healthy volunteers (five males and three females) aged from 20 to 40 were re-
cruited and trained with the nine kinds of gestures. During the experiment, each volunteer
sat and performed these nine gestures, which were repeated five times from gesture 1
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(FFE), gesture 2 (FFC) to gesture 9 (FTIF). The sEMG signals of ECR, ED, FDS and EPB
muscles were simultaneously recorded through Trigno. A total of 40 groups of sEMG data
of four muscles were collected. Among them, 20 groups were training samples and the
other 20 groups were test samples. Figure 8 shows the sEMG signals of ECR, ED, FDS and
EPB muscles during FFE gesture execution.
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Figure 8. Collected original sEMG signals: (a) sEMG signal of ECR; (b) sEMG signal of ED; (c) sEMG
signal of FDS; (d) sEMG signal of EPB.

Four sets of TFM diagrams are obtained by ST of four channel sEMG signals, as shown
in Figure 9. In the figure, the abscissa is the time vector, the ordinate is the frequency vector,
and the amplitude intensity is represented by color depth.
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diagram of FDS; and (d) TFM diagram of EPB.

Singular value implies the important information of the matrix. In this paper, mul-
tiscale analysis of the TFM output by ST can effectively obtain more detailed features of
the matrix. SVD is applied to the four sets of TFMs in Figure 9 and the singular values
are calculated. As shown in Figure 10c, the singular value sequence of the matrix decays
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rapidly in numerical value, so only the first 20 singular values are listed in the figure. The
TFM is divided into 16 sub matrices along the time axis and the frequency axis respectively.
Each sub matrix is SVD, and the maximum singular value of each sub matrix is taken as
the eigenvalue, as shown in Figure 10a,b.
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The entropy eigenvector of four muscles is constructed by PE operation on the mul-
tiscale singular value of Figure 10, and the vector dimension is greatly reduced. The
multiscale singular value PE of 20 groups of training samples were calculated, and the char-
acteristic distribution was represented by a scatter plot. Figure 11a–d shows the multiscale
singular value PE eigenvalues of ECR, ED, FDS and EPB muscles, respectively. In these
figures, the x-, y- and z-axis represent the local singular value PE of time axis division, local
singular value PE of frequency axis division and global singular value PE, respectively.
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Through observation and analysis, the features of gestures FFE, FFC, EIMF ETIF and
FTIF in Figure 11a are obviously different. The distance between classes of gestures ET
and FT in Figure 11c is large, and gestures EIF and ETP can also be obviously classified
in Figure 11b. Then, with the aid of the features in Figure 11d, the classification of the
nine kinds of gestures is feasible. The multiscale singular value PE eigenvalues describe
the signal characteristics comprehensively, which lays the foundation for the successful
classification of various gestures.

3.2. Classification Experiment

In this paper, the multiscale singular value PE eigenvalue of four muscles are input into
the DBN for the classification experiment. In Figure 7, (F1, F2, F3, F4) are the inputs of the
network, which represent the eigenvectors of ECR, ED, FDS and EPB muscles, respectively.
(Y1, Y2, · · · , Y9) are the output of the network, representing nine kinds of gestures such
as FFE, FFC, . . . and FTIF. The network structure of the DBN system directly affects the
performance of the deep network, but there is no unified theoretical standard [35]. Thus,
the experimental analysis is carried out respectively under the condition of the fixed hidden
layer number and the hidden cell number.

The number of hidden layers in the DBN system has an important impact on the
accuracy of the system. If the depth of the system is too deep, the parameter optimization
will fall into local optimization, and if the depth is too shallow, the input features cannot
be fully trained. Therefore, under the condition that the number of hidden cells in each
layer is fixed at 200, the influence of the number of hidden layers on the accuracy is
studied, as shown in Figure 12a. It can be seen from the figure that the accuracy does
not always increase with an increase of system depth. When the depth of a hidden layer
is 3, the accuracy of the DBN system reaches the maximum. With the increase of depth,
the generalization ability of the DBN system is affected, and the over fitting phenomenon
appears, which not only reduces the accuracy but also increases the training time.
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Figure 12. Accuracy of the deep belief network (DBN) system: (a) relationship between hidden layers and accuracy; (b)
relationship between hidden cells and accuracy; and (c) relationship between training samples and accuracy.

The number of hidden cells plays an important role in the learning ability and training
time of the system. In the DBN system, too many hidden cells will lead to overload, and
the redundant cells will increase the complexity of the training process and reduce the
overall accuracy. If the number of hidden cells is too small, the connection between the
neurons will be reduced, thus ignoring the feature information and reducing the ability of
feature learning and training. In this paper, a DBN system with a depth of 3 was selected
to study the influence of hidden cell change on accuracy. It can be seen from Figure 12b
that the accuracy does not increase with the number of hidden cells. When the number
of hidden cell is 300, the input features are fully absorbed, and the accuracy reaches the
maximum of 93%.

After the network structure of the DBN system is determined, the recognition accuracy
is closely related to the number of training samples. The more training samples, the higher
the accuracy, as shown in Figure 12c. In this paper, 20 groups of training samples of feature
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extraction experiment are used to train the DBN, and then 20 groups of test samples (180
cases) are used for gesture classification. In order to fully illustrate the advantages of
the gesture recognition algorithm based on the combination of multiscale singular value
PE and DBN, the gesture features are input into SVM, BP, DBN and CNN respectively
for comparison. The results are shown in Table 3. In order to facilitate comparison and
analysis, Figure 13 lists the correct recognition of the each gesture in detail under SVM, BP,
DBN and CNN classifiers.

Table 3. Comparison of accuracy of different classification methods.

Number Feature Extraction Classifier Accuracy Time Cost

1 Multiscale singular value PE SVM 87.22% (157/180) 1.24 s
2 Multiscale singular value PE BP 82.77% (149/180) 1.82 s
3 Multiscale singular value PE DBN 93.33% (168/180) 2.17 s
4 Multiscale singular value PE CNN 90.55% (163/180) 3.49 s
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Figure 13. The correct recognition number of each gesture.

After research and analysis, it is found that although the calculation time of this
method is moderate, the average accuracy is the highest (93.33%). Compared with CNN,
the RBM optimization of each layer in the DBN system only achieves the optimal weight of
its own layer, which improves the efficiency of the deep learning network by selecting an
appropriate initial value. Compared with BP and SVM, the traditional shallow learning
algorithm only absorbs the extracted features on the surface, and the accuracy of learning
depends on the detail of feature extraction.

The DBN system constructed in this paper has little effect on the accuracy after the
training of the optimal samples. It fully illustrates that the DBN system with its own
characteristics of unsupervised learning and supervised fine-tuning, shows the advantages
in deep data mining that traditional shallow learning does not have.

4. Conclusions

Gesture recognition is an important research direction of human-computer interaction.
In this paper, a gesture recognition method based on multiscale singular value PE and DBN
is discussed. Firstly, the four channel sEMG signals are collected in the process of gesture
execution, and the time-frequency resolution of sEMG signals is improved by ST. Then, the
multiscale SVD of the TFM is carried out, and the multiscale singular value PE is calculated
as the eigenvalue. Gesture features are input into the DBN for classification, and nine
kinds of gestures are recognized, with an average accuracy of 93.33%. The experimental
results show that the multiscale singular value PE feature is especially suitable for pattern
classification of DBNs. In addition, this method provides a certain reference value for
bioelectrical signal processing.

At present, the research method in this paper is only tested on healthy people. In the
next step, we will cooperate with the rehabilitation hospital to do further experiments and
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research, and test this method on a group of deaf mute patients receiving physical therapy.
In future work, this method of gesture recognition will be coupled with the trajectory
recognition system of gesture motion, and we will try to transplant it to the real-time
system. Gesture recognition technology based on sEMG signals not only has important
academic value, but also has a wide application prospect.
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