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1 | INTRODUCTION

| Yiqiao Xing | Yin Shen

Abstract

Background: This study aimed to identify the gene variants and molecular etiolo-
gies in 76 unrelated Chinese families with retinitis pigmentosa (RP).

Methods: In total, 76 families with syndromic or nonsyndromic RP, diagnosed on the
basis of clinical manifestations, were recruited for this study. Genomic DNA samples from
probands were analyzed by targeted panels or whole exome sequencing. Bioinformatics
analysis, Sanger sequencing, and available family member segregation were used to vali-
date sequencing data and confirm the identities of disease-causing genes.

Results: The participants enrolled in the study included 62 families that exhibited
nonsyndromic RP, 13 that exhibited Usher syndrome, and one that exhibited Bardet—
Biedl syndrome. We found that 43 families (56.6%) had disease-causing variants in
15 genes, including RHO, PRPF31, USH2A, CLRN1, BBS2, CYP4V2, EYS, RPEGS,
CNGAI, CNGBI1, PDE6B, MERTK, RPI1, RP2, and RPGR; moreover, 12 families
(15.8%) had only one heterozygous variant in seven autosomal recessive RP genes,
including USH2A, EYS, CLRN1, CERKL, RPI, CRBI, and SLC7A14. We did not
detect any variants in the remaining 21 families (27.6%). We also identified 67 po-
tential pathogenic gene variants, of which 24 were novel.

Conclusion: The gene variants identified in this study expand the variant frequency
and spectrum of RP genes; moreover, the identification of these variants supplies

foundational clues for future RP diagnosis and therapy.
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(Hartong, Berson, & Dryja, 2006). Typical symptoms include
progressive night blindness, loss of vision, and tunnel vision.

Retinitis pigmentosa (RP; OMIM # 268000) is a clinically and
genetically heterogeneous inherited retinal dystrophy (Huang,
Wu, Lv, Zhang, & Jin, 2015; Lee & Garg, 2015). It is char-
acterized by the progressive loss of rod and cone photorecep-
tors, which leads to severe visual dysfunction in bilateral eyes

The prevalence of RP is approximately one in 750-9000 indi-
viduals (Na et al., 2017); RP affects approximately 2.5 million
people worldwide (Dias et al., 2018). Affected individuals can
inherit RP in one of the following patterns: autosomal domi-
nant (adRP, 15%-25%), autosomal recessive (arRP, 5%—-20%),
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X-linked (xIRP, 5%—15%), or unknown (40%—-50%) (Ferrari
et al., 2011; Lipinski, Thake, & MacLaren, 2013; Oishi et al.,
2014). RP is categorized as either of two types: nonsyndromic
or syndromic. Approximately 20%—-30% of patients are pre-
sumed to exhibit syndromic RP (Dias et al., 2018). Variants
in genes that are primarily expressed in retinal cells result in
nonsyndromic RP; conversely, variants in genes expressed
in a variety of cells or tissues lead to syndromic RP (Waters
& Beales, 2011; Wheway, Parry, & Johnson, 2014), such as
Usher syndrome or Bardet-Biedl syndrome.

Thus far, 98 genes (33 for syndromic RP and 65 for non-
syndromic RP) and 9 loci (3 for syndromic RP and 6 for non-
syndromic RP) are known to cause RP. More than 3,000 gene
variants are responsible for nonsyndromic RP (Guadagni,
Novelli, Piano, Gargini, & Strettoi, 2015). The underlying mo-
lecular etiologies involve the phototransduction cascade and ret-
inal transcription factors associated with the phototransduction
cascade, as well as ribonucleic acid splicing machinery, retinal
metabolism, retinal cell structure, ciliary structure, and ciliary
function (Veleri et al., 2015). Most genes associated with RP
are expressed in rod photoreceptors, whereas a small number
are expressed in retinal pigment epithelium (Koch et al., 2012).
Next-generation sequencing (NGS) technology in bioinformat-
ics and computing technologies has undergone rapid develop-
ment; accordingly, low-cost, high-throughput, highly efficient
DNA sequencing has enabled accurate diagnosis and precise
assessment of patient prognosis. Inherited genetic diseases
are increasingly diagnosed accurately using NGS technology
(Bamshad et al., 2011; Bell et al., 2011; Neuhaus et al., 2017,
Yang et al., 2013). However, it remains a considerable chal-
lenge to identify disease-causing genes with NGS technology
(Bainbridge et al., 2008). Inherited gene variants are reportedly
responsible for only 60% of known cases of RP (Huang et al.,
2017; Xu et al., 2014; Zhang, 2016); thus, the disease-causing
gene is unknown in a substantial proportion of affected individ-
uals. It is imperative to determine the genetic etiology of RP and
provide guidance for efficient molecular diagnosis.

In this study, we enrolled 76 families with syndromic or
nonsyndromic RP. All probands were evaluated using NGS
technology. Through functional prediction, Sanger sequenc-
ing, and segregation analysis, we found that 43 families
(56.6%) had disease-causing variants in 15 genes, while 12
families (15.8%) had only 1 heterozygous variant in 7 arRP
genes. We also identified 67 potential pathogenic gene vari-
ants, of which 24 have not been previously described.

2 | MATERIALS AND METHODS

2.1 | Ethical compliance

The research protocol was approved by the medical ethics
committee of Renmin Hospital of Wuhan University and

carried out in accordance with the tenets of the Declaration of
Helsinki. Written informed consent was obtained from each
participant or their guardian (for participants who were chil-
dren) prior to the study. All participants were consecutively
recruited in Renmin Hospital of Wuhan University (Hubei,
China), which is located in central China.

2.2 | Clinical testing

A detailed family history was obtained from the proband
or the proband's family members. All participants received
comprehensive ophthalmological examinations, including
best-corrected visual acuity, refractive error measurement,
slit lamp examination, intraocular pressure measurement,
and funduscopy. Participants who agreed to additional
ophthalmological examinations underwent fundus photog-
raphy, visual field assessment, optical coherence tomog-
raphy (OCT), and full-field electroretinography (ERG).
High-resolution fundus photographs were obtained with a
digital fundus camera VISUCAM 200 (Carl Zeiss Meditec
AG, Jena, Thuringia, Germany). Visual field assessment
was performed using a Humphrey HFA II-750 (Carl Zeiss
Meditec AG). OCT was performed using an AngioVue®
Imaging System (Optovue). ERG was recorded using an
Espion system (Diagnosys) in accordance with the stand-
ards and methodology of the International Society for
Clinical Electrophysiology of Vision (Mcculloch et al.,
2015). Participants who exhibited hearing loss or car-
ried gene variants indicative of Usher syndrome under-
went hearing examinations using an ITERA sonometer
(Otometrics, DK-2630).

2.3 | Targeted panel sequencing and whole
exome sequencing

Genomic DNA was analyzed with targeted panel sequenc-
ing (each of six panels containing 70, 316, 78, 370, 429,
and 386 genes) or whole exome sequencing (WES). Genes
included in the panels are listed in Text S1; these genes
are primarily responsible for inherited retinal dystrophy.
Genomic DNA was isolated from leukocytes of venous
blood samples using the QIAamp DNA Blood Midi Kit
(Qiagen) or TIANamp Blood DNA Midi Kit (TTANGEN
Biotech), in accordance with the manufacturer's stand-
ard protocol. Library preparation was performed using
the Ion AmpliseqTM Library Kit 2 or SureSelect Exome
V5 Capture library, in accordance with the manufactur-
er's instructions (Biswas et al., 2017; Chen et al., 2013;
Javadiyan et al., 2018). Sequencing was performed on an
Ion Torrent PGM (Life Technologies) or HiSeq (Illumina)
platform.
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2.4 | Data analysis

The variant nomenclature used in this study complied with
the recommendations of the Human Genomic Variation
Society (HGVS, http://www.hgvs.org/) (Wang et al.,
2018). Sequence alignments were performed using the
Torrent Suite or Burrows-Wheeler Aligner (Li & Durbin,
2010). Variant calling and annotation were conducted in
accordance with a previously published protocol (Liu et
al., 2015; Siggs et al., 2017). The raw reads were filtered
as clean reads and then aligned to the GRCh37 (hgl9)
human reference sequence. Variants were preferentially
selected for further analysis and validation if they met the
following criteria: (a) their minor allele frequency <0.01
in the 1,000 Genomes Project database (http://www.inter
nationalgenome.org/), Exome Aggregation Consortium
database (ExAC, http://exac.broadinstitute.org/), Genome
Aggregation database (gnomAD, http://gnomad.broad
institute.org/), Single Nucleotide Polymorphisms data-
base (dbSNP, https://www.ncbi.nlm.nih.gov/snp), and in-
house database with exomes of Chinese individuals; (b)
they were nonsynonymous; (c) they were located in exon
or intron regions that affected RNA splicing; (d) they were
predicted to be damaging or deleterious variants using
Polymorphism Phenotyping (PolyPhen2, http://genet
ics.bwh.harvard.edu/pph2/) (Adzhubei et al., 2010) and
Sorting Intolerant From Tolerant (SIFT, http://sift.jcvi.
org/) (Kumar, Henikoff, & Ng, 2009). Variant annotation
in this study complied with the guidelines of the American
College of Medical Genetics (ACMG, https://www.acmg.
net/) (ACMG Board of Directors, 2016; Richards et al.,
2015). Conservation of each amino acid substitution
was calculated using PhyloP in Mutation Taster (http://
www.mutationtaster.org/) (Schwarz, Cooper, Schuelke,
& Seelow, 2014). A PhyloP value between —14 and +6
was considered indicative of amino acid is conservation
among different species. Molecular modeling of wild-
type and mutant protein sequences were computed by
a SWISS-MODEL server homology modeling pipeline
that relies on ProMod3, an in-house comparative mod-
eling engine based on OpenStructure (Bertoni, Kiefer,
Biasini, Bordoli, & Schwede, 2017; Bienert et al., 2017;
Waterhouse et al., 2018).

2.5 | Sanger sequencing and
segregation analysis

Raw reads were filtered and the selected variants were sub-
jected to validation and segregation analyses. Polymerase chain
reaction was used to amplify gene fragments that included the
variants. Primers were designed with Primer3 (http://prime
r3.ut.ee/); primers used for Sanger sequencing are listed in
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Table S2. The amplicons were sequenced using 3500xL Dx
Genetic Analyser (Applied Biosystems, Foster City, CA, USA)
with ABI BigDye Terminator v3.1 Cycle Sequencing kit. The
proband sequences and corresponding consensus sequences
(obtained from the NCBI Human Genome Database https://
www.ncbi.nlm.nih.gov/) were analyzed using the SeqMan II
software of the Lasergene software package (DNASTAR).
DNA samples of all probands and their available family mem-
bers were subjected to Sanger sequencing and segregation anal-
ysis based on the inheritance pattern.

3 | RESULTS

3.1 | Clinical manifestations

In total, 76 Chinese families of Han ethnicity were consecu-
tively enrolled in the study. All probands complained of night
blindness, constricted vision field, and impaired vision, with the
exception of proband 12, who was very young. Four probands
who exhibited RP beginning in childhood had complained of
strabismus and nystagmus. Most probands exhibited fundus
signs typical of RP, including bone spicule pigmentation, retinal
vascular stenosis, and waxy-pale optic disc. The fundus photo-
graphs of probands with novel variants are shown in Figure S1.
Visual field analyses showed that probands had a constricted
visual field with increased mean deviation. OCT revealed se-
vere thinning of the retinal nerve fiber layer, outer nuclear layer,
and epiretinal membranes. Full-field ERG demonstrated extin-
guished or severely reduced dark-adapted and light-adapted re-
sponses, with significant reductions of a and b waves. Typical
visual field, OCT, and ERG are shown in Figure S2. Clinical
features of the 43 probands with disease-causing genes are
listed in Table 1.

In total, 15 probands harbored USH2A (OMIM * 608400)
compound heterozygous or homozygous variants, while 1 pro-
band harbored CLRNI (OMIM * 606397) homozygous vari-
ants and 3 probands harbored USH2A heterozygous variants.
Thirteen probands (11 probands with compound heterozygous
or homozygous variants and two probands with USH2A het-
erozygous variants) were diagnosed with Usher syndrome. Six
probands (five probands with USH2A compound heterozygous
or homozygous variants and one proband with USH2A hetero-
zygous variants) did not complain of hearing loss and did not
exhibit hearing impairment in hearing examinations; they were
diagnosed with nonsyndromic RP. Proband 28 had a compound
heterozygous BBS2 (OMIM * 606151) variant and was diag-
nosed with Bardet-Biedl syndrome; he exhibited fourth toe
brachydactyly in both feet, which was more severe in the right
foot. The proband exhibited obesity, with a body mass index
of 28.2 kg/mz; he refused further examinations (e.g., sperm or
genital gland). Notably, he did not exhibit obvious bone spicule
pigmentation in the fundus and showed no mental retardation.
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TABLE 2

Exon/ Hom/

Variant
type

No.

<]

ACM!

Het/Hem Polyphen2 SIFT PhyloP Reference

Intron

Amino acid change

Nucleotide change

Gene

Disease Panel

ID

Novel

15 Het

splice

c.845-1G>A
c.1169T>A

Panel 6 MERTK

RP

168

LP
LP
P

1.547  Novel

3.619

PrD D

Het

E8

missense

p-(Val390Asp)

MERTK

Panel 6 RPI1

Medicine

Novel

E4 Het

deletion

p-(Tyr1636Argfs*2)
p-(11e2061Serfs*12)

p-(Ile137del)

¢.4905_4906delGT
c.6181delA

157 RP

PMID:30027431

0.277

E4 Het

deletion

RP1

RP2

RP2
Panel 2 RPGR

WES

PMID:10937588 P

4.494
5.5

Hem

E2

deletion

c.409-411delATT

c.353G>A
¢.2006G>A
¢.2293delG
c.818A>G

Panel 1

RP

12
79
15
68

PMID:10937588 LP

Hem PrD

E2

missense

p-(Argl18His)
p-(Trp669+*)

Panel 1

RP

LP
LP
LP

Novel

1.007
0.138
4.289

Hem

nonsense E15

RP

Novel

Hem

E15
E8

deletion

p-(Glu765Argfs*50)

p-(GIn273Arg)

RPGR

RP

Novel

D

PrD

Hem

missense

Panel 6 RPGR

176 RP

Abbreviations: B, benign; Bietti, Bietti crystalline corneoretinal dystrophy; D, Deleterious; E, Exon; Hem, hemizygous; Het, heterozygous; Hom, homozygous; I, Intron; LP, Likely pathogenic; N, Neutral; P, pathogenic; PoD,

Open Access,

possibly damaging; PrD, probably damaging; RP, retinitis pigmentosa; Usher, Usher syndrome; UVS, uncertain significance; WES, whole exome sequencing.

DAN ET AL.

Five probands with CYP4V2 (OMIM * 608614) compound
heterozygous or homozygous variants were diagnosed with
Bietti crystalline corneoretinal dystrophy. They exhibited typ-
ical RP fundus performance with salt-and-pepper-like retinal
degeneration.

3.2 | NGS results

Based on bioinformatics, Sanger sequencing validation,
and segregation analysis, we found that 43 families (56.6%)
had disease-causing variants in 15 genes, including RHO
(OMIM * 180380), PRPF31 (OMIM * 606419), USH2A,
CLRNI, BBS2, CYP4V2, EYS (OMIM * 612424), RPE65
(OMIM * 180069), CNGAI (OMIM * 123825), CNGBI1
(OMIM * 600724), PDE6B (OMIM * 180072), MERTK
(OMIM * 604705), RP1 (OMIM * 603937), RP2 (OMIM *
300757), and RPGR (OMIM * 312610). Segregation analy-
sis was available for 24 of the 43 families, and the variants
were segregated with the disease, except for Family 15 and
Family 176. Two genes were associated with adRP in three
families with heterozygous variants; 11 genes were associ-
ated with arRP in 35 families with homozygous variants (10
families) or compound heterozygous variants (25 families);
and 2 genes were associated with xIRP in 5 families with
hemizygous variants. The gene most frequently found in the
study is USH2A (19.7%), followed by CYP4V2 (6.6%). The
gene variants of these probands are described in Table 2. The
genomic information is shown in Table S3. In addition, we
found that 12 families (15.8%) had only one heterozygous
variant in seven arRP genes, including USH2A, EYS, CLRNI,
CERKL (OMIM * 608381), RPI1, CRBI (OMIM * 604210),
and SLC7A14 (OMIM * 615720); these heterozygous vari-
ants are described in Table 3. We did not detect any vari-
ants in the remaining 21 families (27.6%). The proportions of
genes associated with RP in this cohort are shown in Figure
la.

In total, we identified 67 potential pathogenic gene vari-
ants; these included 38 missense variants (52.2%), 10 non-
sense variants (16.4%), 1 small indel variant (1.5%), 10 small
deletion variants (14.9%), 2 small insertion variants (3.0%),
and 6 splice variants (9.0%). The proportions of all types of
variants are shown in Figure 1b. Of these 67 potential patho-
genic variants, 24 were novel. The pedigrees of the probands
with novel variants are shown in Figure S3; the sequencing
chromatographs of novel variants and corresponding wild-
type alleles are shown in Figure S4. Schematic representa-
tions of the genomic structures of genes with novel variants
are shown in Figure 2a. The eight USH2A novel variants were
distributed irregularly among the exons of USH2A; these
variants presumably affect specific domains of the USH2A
protein (Figure 2b). The topology and molecular models of
seven novel variants showed molecular alterations in proteins
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caused by mutations, except in the PDE6B variant c.622G>A,
p-(Val208Met) (Figure 3).

4 | DISCUSSION

Despite the advent of the personalized medicine era, tradi-
tional sequencing has not been able to achieve precise ge-
netic diagnosis (Neveling et al., 2013). NGS technology is
regarded as a powerful and effective tool for the detection
of pathogenic gene variants underlying genetic RP (Gilissen,
Hoischen, Brunner, & Veltman, 2011; Lovric et al., 2014;
Riera et al., 2017; Wang et al., 2019). In this study, we used
NGS technology, bioinformatics prediction, Sanger sequenc-
ing validation, and available family member segregation; we
identified 43 families (56.6%) with disease-causing gene var-
iants, whereas the detection rates were 63.5%, 50%, and 58%
in previous studies (Huang et al., 2018; Neveling et al., 2012;
Xu et al., 2015). The detection rate of gene variants in pa-
tients with RP was higher with targeted panel sequencing and
whole exome sequencing than with microarray genotyping
(Avila-Fernandez et al., 2010; Blanco-Kelly et al., 2012), tar-
geted-capture sequencing (Fu et al., 2013; Wang et al., 2014),
or individual gene sequencing (Sweeney, McGee, Berson,
& Dryja, 2007). In the present study, the detection rates of
Usher syndrome, Bardet-Biedl syndrome, and Bietti crys-
talline corneoretinal dystrophy were 17.1% (13 probands),
1.3% (1 proband), and 6.6% (5 probands), respectively. In
these targeted panels, panel 5 was the most informative in
Chinese patients with RP due to its relatively high detection
rate (71.4%). The detection rate of novel variants among all
identified variants was 35.8%, whereas the detection rates
were 72.7% and 67% in previous studies (Huang et al., 2018;
Xu et al., 2014). The higher novel detection rate observed in
the prior studies was potentially because probands without
identified gene variants were enrolled in those studies. The
detection rate of variants in USH2A, the causative gene most
frequently identified in this study, was 19.7% (15 probands).
Among families with nonsyndromic RP, variants in USH2A
were identified in 8.1% (five probands), which was higher
than the rate in a study of North American families (7%)
(Seyedahmadi, Rivolta, Keene, Berson, & Dryja, 2004) and
the rate in a study of Spanish families (7%) (Avila-Fernandez
et al., 2010). Variants ¢.8559-2A>G and c.11156G>A in
USH2A were recurrent, as they were found in five and four
probands, respectively. We presume that these variants are
founder variants.

In the study, we did not find a disease-causing variant
in 21 families (27.6%), whereas we found only one het-
erozygous variant of arRP genes in 12 families (15.8%).
Possible reasons for these results are as follows. First,
targeted panels sequencing and WES cannot capture vari-
ants in the noncoding regions of corresponding genes, nor
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FIGURE 1
Proportions of all types of variants

(b) small
insertion splice
variant variant
3.0% 9.0%
small indel

variant
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nonsense
variant
16.4%

missense
variant
55.2%

Spectrograms of genes and variants for RP probands. (a) Proportions of genes associated with retinitis pigmentosa (RP). (b)
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4 7 of genes showing locations of novel
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B (Sinas1Hle) pLyssTer) corresponding exon numbers. Parts of exons
p.(GIn159*) | p.(Cys673Ser) p-(Lys1770lle) p.(Pro3530Thr) | p.(Arg3905Pro) . . .
are omitted. (b) Schematic representation
of USH2A protein showing locations of
NH2 COOH

I :Signal peptide

I :Laminin G-like jellyroll fold domain
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novel variants. Notably, the PDZ-binding
ET—— domain in the last section of the schematic
representation in green is difficult to identify

because it constitutes two amino acids
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(a) CYP4V2 CYP4V2 c.413G>A (b) RPE65 RPE65 ¢.1403C>T
wild-type model p.(Ser138Asn) model wild-type model p.(Ser468Leu) model

(c) CNGB1 CNGB1 ¢.2921T>G (d) PDE6B PDEG6B c.622G>A
wild-type model p.(Met974Arg) model wild-type model p.(Val208Met) model

(e) PDEGB PDEGB ¢.2435A>T (f) RPGR RPGR ¢c.818A>G
wild-type model p.(Asp812Val) model wild-type model p.(GIn273Arg) model

(9) SLC7A14 SLC7A14 ¢c.524G>A
wild-type model p.(Gly175GIu) model

FIGURE 3 Topology and molecular models of seven novel variants. (a) CYP4V2 protein molecular alteration caused by CYP4V2 variant
c.413G>A, p.(Ser138Asn). These models were predicted using 6¢94.1. Compared to the wild-type model, serine is replaced by aspartic acid,
which creates H-bonds (green dash line) between residues in the mutant model. (b) RPE65 protein molecular alteration caused by RPE65 variant
¢.1403C>T p.(Ser468Leu). These models were predicted using 4£30.1. Compared to the wild-type model, the number of H-bonds (green dash
line) between residues in the mutant model markedly decreased. (c) CNGB1 protein molecular alteration caused by CNGB1 variant ¢.2921T>G
p.(Met974Arg). These models were predicted using 5h30.1. Compared to the wild-type model, the number of H-bonds (green dash line) between
residues in the mutant model markedly decreased. (d) PDE6B protein molecular alteration caused by PDE6B variant c.622G>A p.(Val208Met).
These models were predicted using 6mzb.1. There was no major difference between the wild-type and mutant models. () PDE6B protein
molecular alteration caused by PDE6B variant ¢.2435A>T, p.(Asp812Val). These models were predicted using 6mzb.1. Compared to the wild-type
model, the last helix is divided in the mutant model. (f) RPGR protein molecular alteration caused by RPGR variant c.818A>G, p.(GIn273Arg).
These models were predicted using 4jhn.1. Compared to the wild-type model, the number of H-bonds (green dash line) between residues in the
mutant model markedly decreased. (g) SLC7A14 protein molecular alteration caused by SLC7A14 variant ¢.524G>A, p.(Gly175Glu). These
models were predicted using 6f34.1. Compared to the wild-type model, glycine is replaced by glutamic acid, which changes the direction of beta

strand folding in the mutant model

can they detect variants comprising gross deletions, gross of coverage was insufficient to accurately call all variants,
insertions, or complex rearrangements (Broadgate, Yu, especially those located in regions with high GC content.
Downes, & Halford, 2017). Second, the sequencing depth Third, variants of novel genes in patients with RP may have
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been filtered out in raw data analysis (Daiger, Sullivan, &
Bowne, 2013). Fourth, other mild and moderate systemic
clinical manifestations of syndromic RP may have been ne-
glected (Xu et al., 2014). Fifth, small indel, large structural,
copy number, or duplication variants in patients with Usher
syndrome are not readily identified with NGS technology
(Bonnet et al., 2016; O'Donnell-Luria & Miller, 2016).
Whole genome sequencing may be a comprehensive alter-
native strategy because it partially resolves these problems
(Carrigan et al., 2016).

In this study, we also detected two novel hemizygous
RPGR variants ¢.2006G>A, p.(Trp669*) and c.818A>G,
p-(GIn273Arg). These variants did not segregate with the
disease in family Family 15 and Family 176. Both of the
probands’ biological parents exhibited wild-type geno-
types without histories of bone marrow transplant surgery.
The lack of segregation was possibly because the variants
were de novo or because the probands’ mothers exhibited
chimerism. Other examinations (e.g., high-depth DNA se-
quencing of oral mucosa and urinary sediment for somatic
cell chimerism, or of an ovum for gonad chimerism) are
needed to definitively determine the statuses of the pro-
bands’ mothers.

This study identified the gene variants in a cohort of Chinese
probands with RP; however, there were some limitations. Some
panels did not allow analysis of all RP genes. Furthermore,
some families could not undergo segregation analysis. We plan
to perform WES or whole genome sequencing to capture more
genes and include patients in future research.

In conclusion, we enrolled a cohort of 76 families who
exhibited RP. We identified 43 families (56.58%) with dis-
ease-causing variants in 15 genes and 12 families (15.79%)
with only one heterozygous variant in arRP genes. We also
detected 67 potential pathogenic gene variants, of which 24
have not been previously described. These results will provide
useful data for clinicians to make accurate genetic diagnosis,
prognosis estimation, and genetic counseling; moreover, they
will provide further support for researchers to explore RP
pathogenesis.
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