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Obstetric electronic medical records (EMRs) contain massive amounts of medical data and health information. The information
extraction and diagnosis assistants of obstetric EMRs are of great significance in improving the fertility level of the population.
The admitting diagnosis in the first course record of the EMR is reasoned from various sources, such as chief complaints,
auxiliary examinations, and physical examinations. This paper treats the diagnosis assistant as a multilabel classification task
based on the analyses of obstetric EMRs. The latent Dirichlet allocation (LDA) topic and the word vector are used as features
and the four multilabel classification methods, BP-MLL (backpropagation multilabel learning), RAkEL (RAndom k labELsets),
MLkNN (multilabel k-nearest neighbor), and CC (chain classifier), are utilized to build the diagnosis assistant models.
Experimental results conducted on real cases show that the BP-MLL achieves the best performance with an average precision up
to 0.7413± 0.0100 when the number of label sets and the word dimensions are 71 and 100, respectively. The result of the
diagnosis assistant can be introduced as a supplementary learning method for medical students. Additionally, the method can be
used not only for obstetric EMRs but also for other medical records.

1. Introduction

Since family planning was issued as one of the fundamental
state policies in China, late marriage and late childbirth have
indeed benefited the country. However, it has also led to the
increasing proportion of older pregnant women especially
those who are over 35 years old. The problem is exacerbated
with the implementation of the Universal Two-child Policy
in 2016. Later pregnancies are associated with higher risks
of fetal abnormality and other complications, which are
challenges for obstetricians [1]. Since the National Health
and Family Planning Medical Affairs Commission issued
the Basic Norms of Electronic Medical Records (Trial) [2]
in 2010, medical institutions have accumulated many
obstetric EMRs (electronic medical records). EMR data are
big data in the medical field. They contain medical data and
a large amount of patients’ health information. Currently,

one urgent task is how to achieve clinical information
decision support with these resources in order to improve
clinical treatments.

EMRs are the detailed records of medical activities writ-
ten by the medical staff, in which free text (semistructured
or unstructured) is one of the most important forms [3].
Using natural language processing technology to structure
EMRs and extract information is a crucial step to ensure that
the best possible information is contained in the EMRs. As
artificial intelligence develops, automatic medical diagnosis
becomes possible. In EMRs, the first course record is stored
in a textual format and includes the chief complaints, physi-
cal examinations, auxiliary examinations, and other informa-
tion, which can provide the foundation for admitting
diagnosis. Generally, admitting diagnosis in obstetric EMRs
includes more than one single diagnosis but includes normal
obstetric diagnosis, medical diagnosis, and complications.
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The problem can be transformed into a multilabel classifica-
tion task in machine learning, in which the different diagno-
ses can be regarded as the variable labels.

Based on the analysis of the structure and content of
Chinese obstetric EMRs, the first course records are cleaned
and structured in this paper. The collected Chinese obstetric
EMRs are divided into complaints, physical examinations,
obstetrical examinations, and auxiliary examinations. Then,
the latent Dirichlet allocation (LDA) topic model is utilized
to extract the features. The word vectors trained by the
Skip-gram model are regarded as the features. Several multi-
label classification methods are employed to diagnose the
obstetric EMRs, which is an initial attempt for a diagnosis
assistant based on Chinese obstetric EMRs.

2. Related Works

Each instance belongs to only one label in both the conven-
tional binary class task and multiclass task, while each
instance can belong to more labels in the multilabel classifica-
tion. For example, the diagnosis from a doctor for one patient
is usually a variety of mixed results rather than a single one.
Multilabel classification has often been applied in the fields
of text classification [4–6], emotional classification [7, 8],
image and video classification [9–11], bioinformatics [12–
15], and medical classification [16–20]. Recently, there were
three research works which focus on multilabel learning
(MLL). The first one improves or proposes new classification
or sorting models. Zhang et al. [21] changed the original
error function and proposed the BP-MLL (backpropagation
multilabel learning) method on the basis of the traditional
multilayer feed-forward neural networks. Li et al. [22]
improved the classifier chain (CC) method and named it
the ordered classifier chain (OCC). It can effectively utilize
the dependency relationship among different labels. The sec-
ond focus improves or proposes new feature selection
models. Duan et al. [23] defined the lower approximation
and dependency and designed a neighborhood rough set
based on a feature selection algorithm for multilabel classifi-
cation. The third focus applies MLL to new areas. Liu et al.
[24] applied an MLL to choose symptoms from a Chinese
coronary heart disease dataset.

In the field of medical research [16–20], Shao et al. [16]
proposed an algorithm called hybrid optimization-based
multilabel (HOML) to select features. HOML combined the
relatively strong global optimization ability of the simulated
annealing algorithm, the genetic algorithm, and the strong
local optimization capability of greedy algorithm. They
adopted the multilabel classifier to model coronary heart dis-
ease in traditional Chinese medicine (TCM), which signifi-
cantly improved the performance. Zhang et al. [18] used
multilabel learning by exploiting label dependency (LEAD)
subsequently to the tongue image classification in TCM.
Xu et al. [19] combined the random forest algorithm and
the MLL algorithm. They then used it to select symptoms
of excess chronic gastritis and establish classification
models. Goldstein et al. [25], using data from I2B2 of
2008, trained one specialist classifier per class and classified
obesity and its comorbidities using the MLL method. The

previous research was mainly conducted on normalized
public dataset or real records that included a relatively small
number of labels.

In the field of diagnosis assistants, Jiang et al. [26] pre-
sented a novel computational model for the aided diagnosis
of subhealth. The dataset was divided into the training set
and the test set. Based on the rough set and fuzzy mathemat-
ics, the training set was used to extract important features
and generated fuzzy weight matrixes. Then, the features
and fuzzy weight matrixes were used to assist the diagnosis
of subhealth. Tiwari et al. [27] presented the LTEM-PCA-
ANN (LAW texture energy measures (LTEM), principle
component analyses (PCA), and artificial neural network
(ANN)) approach which can improve results with an overall
accuracy of 93.34%. Then, the computational model was used
to design an adequate computer-aided diagnosis (CAD)
system for the classification of brain tumors to assist inexpe-
rience radiologists in the diagnosis process. Jiang et al. [28]
proposed a three-layer knowledge-based model (disease-
symptom-property) to diagnose a disease, which significantly
reduces the dependencies between attributes and improves
the accuracy of predictions.

However, very few studies have been conducted on the
diagnosis assistant of the complicated Chinese obstetric
EMRs up to now. Chinese is a logographic language and
the Chinese EMRs are free narrative texts, which will
bring challenges to a diagnosis assistant. Furthermore,
the obstetrical diagnosis types are complicated, and some
of their features are not easy to directly extract, which also
makes it more difficult to conduct the research on a diag-
nosis assistant for the complicated obstetrics EMRs. In this
paper, the LDA topic model and Skip-gram model are
used to carry out feature selection. The methods of BP-
MLL [21], RAkEL (RAndom k labELsets) [29], MLkNN
(multilabel k-nearest neighbor) [30], and CC [31] multilabel
classification are employed to study the automatic diagnosis
of obstetric EMRs.

3. Materials and Data Preprocessing

3.1. Materials. This paper takes more than 10,000 copies of
Chinese obstetric EMRs as a research dataset. These data
were randomly selected from 15 hospitals. Under the guid-
ance of the Basic Specification of Electronic Medical Records
(trial) [2], the written forms of EMRs in different hospitals
vary slightly according to the actual situations in China.
Charts and free text are the major forms of EMRs, and the
unstructured free text is one of the main information extrac-
tion research objects. The obstetric EMR mainly includes the
two parts, the course records and the discharge summary. In
addition, there will be preoperative summaries, operation
records and postoperative course records if a surgery is
performed, and there will be newborn case records if a
baby was born. In general, one course record includes
one first course record, one or more daily course records
(also known as ward-round records), superior doctors’
ward-round records, and one discharge summary. We focus
on analyzing the content and characteristics of the first
course records. The first course record usually includes the
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recorded time, chief complaints, admitting physical examina-
tions, obstetric practice, auxiliary examinations, admitting
diagnosis, diagnostic basis, differential diagnosis, and treat-
ment plan. An example of the first course record is shown
in Figure 1.

In the first course record, the admitting diagnosis is
made by the obstetricians who comprehensively analyze the
patient’s conditions. As is shown in Figure 1, the admitting
diagnosis “宫内孕 28+2 周 (intrauterine pregnancy 28+2
weeks)” can be calculated from the date of the last menstrual
period in chief complaints or obtained directly from the
result of auxiliary examinations, and the diagnosis “孕 3 产
1 (pregnancy 3, production 1)” can be extracted from the
chief complaints in the admitting records. The rest of the four
diagnoses can be inferred from the features contained in
the chief complaints or the previous examinations. There-
fore, the admitting diagnosis in the first course record can
be regarded as a multilabel classification according to the
explicit or implicit features contained in the complaints
or examinations.

3.2. Data Preprocessing. Since the collected EMRs are real
cases, it is necessary to protect patients’ privacy and it is
inevitable that they contain some noisy data. Deidentification
and data cleansing are the necessary steps for the processing
of EMRs. In the process of analyzing the extracted records,
the private information, such as mentions of patients, hospi-
tals, doctors, patient’s ID, location, and phone number, have
all been removed from the records. Then, the essential pre-
processing of the EMR data is conducted, including data
cleansing, data structuration, word segmentation, and data
standardization, which are described below.

3.2.1. Data Cleansing. There are problems such as redun-
dancy, missing information, and disordering due to deficien-
cies in the existing HIS (hospital information system). For
redundant records, the records are filtered through automat-
ically string matching. In particular, when more than one
first course record is detected in one EMR, the correct one
will be chosen according to the integrity of information and
record time, and the others will be removed. For a missing
first course record, the EMR will be deleted from the dataset.
For temporal disordering, an algorithm is designed to detect
the temporal error records according to the temporal logic of
the obstetric treatment, and the records that include tempo-
ral errors are also removed from the dataset. Finally, the data-
set contains 11,303 copies of first course records.

3.2.2. Data Structuration. All content in one original EMR
text is mixed together. To facilitate data analysis, the first
course records are formatted in accordance with the chief
complaints, admitting physical examinations, obstetric
practice, auxiliary examinations, admitting diagnosis, diag-
nostic basis, differential diagnosis, and treatment plan, which
form the experimental dataset in this paper. The record in
Figure 1 is arranged according to the section of content
after structuring.

3.2.3. Word Segmentation. In this paper, chief complaints,
physical examinations, obstetric examinations, and auxiliary
examinations are used to predict the admitting diagnosis.
The admitting diagnosis and the other parts extracted
from the EMRs have been cleaned and structured by using
the aforementioned methods, from the experimental data-
set. We regard the first four parts as features and regard

Recorded time

Chief complaints

Admitting physical
examinations

Obstetric practice

Auxiliary examinations

Admitting diagnosis

Diagnostic basis

Differential diagnosis 

Treatment plan 

Figure 1: The example of the first course of disease record.
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the admitting diagnosis as labels. The word segmentation
tool ICTCLAS (Institute of Computing Technology, Chi-
nese Lexical Analysis System) (https://codeload.github.
com/NLPIR-team/NLPIR-ICTCLAS/zip/master) is put to
use to segment the word in the dataset. Medical terminol-
ogy and drug names obtained from the Internet and liter-
ature [32] are added to the ICTCLAS dictionary in order
to improve the segmentation accuracy.

3.2.4. Data Standardization. The diagnoses such as preg-
nancy X+Y weeks and pregnancy Z production U are the
results of a calculation or complaint, so they will not be
accepted as class labels. The rest of the diagnoses are accepted
as class labels in the multilabel classification and form label
set L1 that includes 737 labels. Through the analysis of the
class label set, it is found that there is more than one written
form for the same category since the EMRs are extracted
from different medical institutes and the doctors have per-
sonalized writing habits. For example, in set L1, “胎盘前置
状态 (state of placenta previa)” and “前置胎盘 (placenta
previa)” are different writing forms, but they are the same
diagnosis. In this case, based on the naming rules of
ICD10 (International Classification of Diseases 10) disease,
after the segmentation of the diagnosis results, the similarity
of labels is calculated based on the semantic method (https://
my.oschina.net/twosnail/blog/370744#comment-list). The
similarity Ss is defined as follows:

Ss =
S1 × S2

S1 × S2
, 1

where S1 and S2 are the semantic vector representations of the
two diagnosis labels.

Depending on the similarity calculation result, medical
professionals standardize the class labels and merge the labels
that have the same diagnostic results but different expres-
sions. Finally, we get the label set L2 that contains 233 class
labels. The frequency statistics are shown in Figure 2.

The number of diagnosis labels that appear once is 80,
which accounts for 34% of the total. The number of diagnosis
labels that appear in 2–10 is 82, which accounts for 35% of
the total. The total frequency of diagnosis labels is 26,772 in
the dataset. The minimum number of diagnosis labels in
one instance is 1, while the maximum is 8.The average num-
ber of labels in one instance is 2.67.

4. Method

Figure 3 is the workflow of the diagnosis assistant process.
Data processing has been described in Section 3.2. Feature
extraction and the multilabel classification are as follows.

4.1. Feature Extracting. The most important stage in MML,
and any classification problem, is the feature extraction in
which the data are represented in a low dimensional space
by the most descriptive features that maximize and charac-
terize the interclass differences. From Figure 1, we see that
there are many numerical data in EMRs, but the main written
form is still free narrative text. In this paper, we utilize two
methods, the LDA and Skip-gram models, to obtain features.
The three-layer structure of the LDA can effectively extract
the textual features of narrative texts, and Skip-gram is an
efficient method for learning high-quality distributed vector
representations that capture a large number of precise syn-
tactic and semantic word relationships.

4.1.1. LDA. The LDA was proposed by Blei et al. [33]. It is a
three-layer Bayesian model, which has been widely applied
to feature extraction. The input of the LDA model is a seg-
mented document set D, and the output is the probability
distribution for each document d under each topic k.

Each document d can be seen as an N-word composition
and a k-topic composition, and the word is the basic unit in
the topic. For document d, we choose a topic k from the doc-
ument topic distribution θ, and then select a word w from the
corresponding subdistribution φ in the topic k. It can form a
document containing N words by repeating the above steps
that are shown as follows:

p θ, z, w∣α, β = p θ∣α ∏
N

n=1
zn∣θ p wn∣zn, β 2

The document topic distribution

34%

35%

15%

4%
12%

1
2–10
11–50

51–100
>100

Figure 2: The frequency distribution of diagnoses.

Data processing

Cleansing

Structuring

Segmenting

Standardizing

Feature extracting

EMRs

LDA 
topics

Word
vector

Multilabel classifications

Figure 3: The workflow of the diagnosis assistant.
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p k∣d = Cdk + α

〠K

k=1Cdk + Kα
3

and the word subject distribution

p k∣w = Cwk + β

〠K

k=1Cwk + Kβ
4

can be obtained by LDA, where Cwk is the number of times
the word w is given the subject k, and Cdk is the number of
times the document d is given the subject k.

4.1.2. Word Vector. Distributed representations of words in
a vector space help learning algorithm achieve better per-
formance in natural language processing tasks by grouping
similar words.Word2vec is an implementation of the model
proposed by Mikolov et al. [34] that can be used to quickly
and effectively express words as word vectors. It contains
two kinds of training models, which are the CBOW (con-
tinuous bag-of-words) model and the Skip-gram model
[35]. There are three layers, including the input layer, pro-
jection layer, and output layer. In this paper, we use the
Skip-gram model to obtain the features. The CBOW model
generates word vectors by using the contextual information
to predict the current word. Meanwhile, the Skip-gram
model generates word vectors in the opposite way by gener-
ating word vectors that utilize the current word vector to pre-
dict the word vector of possible context. In this paper, we
choose the Skip-gram model to train the word vector. For
the skip model, the training goal of the Skip-gram model is
to maximize the value:

1
T
〠
T

t=1
〠

−c≤j≤c,j≠0
log p wt+j∣wt , 5

where c is the size of the training context, and T is the size of
the training text. The basic Skip-gram model calculates the
conditional probability:

p wO∣wI =
exp vwO

TvwI

〠W

w=1exp vw
TvwI

, 6

where vw and vw′ are the input and the output vector repre-
sentations of w, respectively, and W is the number of words
in the vocabulary.

After the word vector is obtained through the Skip-gram
model, the document vector can be calculated by averaging
the vectors of the words contained in the document.

4.2. Multilabel Classification. In the training set f x1, Y1 ,
x2, Y2 ,… , xm, Ym , each instance xi is a d-dimensional
feature and Yi ⊆ y is the set of labels associated with this
instance. The original error function of the traditional multi-
layer feed-forward neural networks is defined as follows:

E = 〠
m

i=1
Ei = 〠

m

i=1
〠
Q

j=1
cij − dij

2
, 7

where Ei is the error of the network on xi, c
i
j = cj xi is the

actual output of the network on xi on the jth class, and dij is
the desired output of xi on the jth class. In (7), it is assumed
that each class label is independent and the relationships
between labels are not considered. Zhang et al. [21] changed
the original error function and changed the traditional mul-
tilayer feed-forward neural networks to the BP-MLL. The
new error function is shown as follows:

E = 〠
m

i=1
Ei = 〠

m

i=1

1
Yi Yi

〠
m

k,l ∈Yi×Yi

exp − cik − dil , 8

where Yi is the complementary set of Yi in y and |·| measures
the cardinality of a set. Specifically, cik − cil measures the differ-
ence between the outputs of the network on one label belong-
ing to xi (k ∈ Yi) and one label not belonging to it (l ∈ Yi)
[21]. Therefore, the minimization of (8) will lead the system
to output larger values for labels belonging to the training
instance and smaller values for those not belonging to it.

5. Experiments

5.1. Experimental Design and Evaluation. In this paper, the
LDA model and Skip-gram model are employed to select
features. From Section 4.1, the document topic model distri-
bution acquired from the LDA model and the word vector
obtained from the Skip-gram model are regarded as the fea-
tures of multilabel classification. The selected BP-MLL is
compared to the RAkEL, MLkNN, and CC classification
algorithms, and the effects of three factors on the experimen-
tal results are, respectively, considered.

First, as shown in Figure 2, the frequency of diagnostic
labels has an uneven distribution, and the proportion of
low-frequency labels is high. Therefore, the experiments are
performed on different frequency label sets. Second, the
LDA is used to extract features, and the number of different
features has an impact on the experimental results. There-
fore, LDAs with different topics are investigated. Third, the
number of the word vector dimensions in the Skip-gram also
influences the experimental results. Therefore, experiments
with different word dimensions are also conducted.

There are three groups of experiments in this section.
In the first group, the topic number of the LDA is set to
120, and the word vector dimension is set to 100. The
experiments are conducted to compare the classification per-
formance of the different numbers of the label set. In the sec-
ond and the third treatments, the size of the diagnostic label
set remains 71. The second group of experiments compares
the results of different topics in the LDA method, and the
third compares the results of various numbers of vector
dimensions in the Skip-gram model.

Hamming loss, one-error, coverage, ranking loss, and
average precision are used as evaluation indicators. Ham-
ming loss (HL) is defined as follows:

hlosss h = 1
p
〠
p

i=1

1
Q

h xi ΔYi 9
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It evaluates the error rate between the real mark of the
instance and the resulting mark of the system. It is that the
instance has the possibility of marking Yi but not being iden-
tified or not having the token Yi being misjudged. A smaller
HL indicates a better classification effect.

One-error (OE) is defined as follows:

one‐error f = 1
p
〠
p

i=1
arg max

y∈Y
f xi, y ∉ Yi 10

It evaluates the likelihood that the highest ranked marker
is not the true markup of the instance in the category sorting
sequence of the sample. In single label learning, it evolves
into a general classification error rate. A smaller OE indicates
a better classification effect.

Coverage (C) is defined as follows:

coverage f = 1
p
〠
p

i=1
max
y∈Yi

rank f xi, y − 1 11

It evaluates the average number of search depths in the
category sorting sequence of the instance to cover proper
labels of the instance. A smaller C indicates a better clas-
sification effect.

Ranking loss (RL) is defined as follows:

rlosss f =
1
p
〠
p

i=1

1
Yi ∣Yi∣

f xi, y1 ≤ f xi, y2 , y1, y2 ∈ Yi × Y1

12

It evaluates the likelihood of a sorting error in the cat-
egory sort sequence of the sample. It is likely that the
sample has a mark on it that is lower than the ranking
of the marker that it does not have. A smaller RL indicates
a better classification effect. Average precision (AP) is defined
as follows:

avgprecs f =

1
p
〠
p

i=1

1
Yi

〠
y∈Yi

rank f xi, y′ ≤ rank f xi, y , y′ ∈ Yi

rank f xi, y

13

It evaluates the case where the marker with a large mem-
bership value is still an associated mark in the category sort
queue of the sample. It reflects the average accuracy of
the predictor class. A higher AP indicates a better classifi-
cation effect.

5.2. Experimental Results on the Different Sizes of the Label
Set. In this group of experiments, LDA topic number K is
set as 120 and the word vector dimension T is set as 100.
First, the size of label set L2 is set as 233. It includes all class
labels in the data set. The results are shown in Table 1. In
the table, for each criterion, “↓” indicates “the smaller the bet-
ter,” while the “↑” indicates “the bigger the better.” It can be
seen that in all indicators, the experiments using word vector
feature obtain the best results. MLkNN is the best result in
HL, OE, and AP indicator. BP-MLL presents the best results
for RL and C. Moreover, BP-MLL also ranks second in terms
of the other three indicators.

As seen from Table 1, MLkNN using word vector feature
obtains the best result, but its AP is only 0.7272± 0.0081.
According to the results shown in Figure 2, there are 80 diag-
nostic labels whose frequency is only 1, and 82 diagnostic
labels whose frequency is between 2 and 10. This adds up
to a total of 162. The analysis of these labels reveals that there
are three different situations. First, as the EMRs have not
been classified, the labels are taken in all obstetric hospitaliza-
tion of patients. Some obstetric diagnoses are atypical, such
as obesity, allergic dermatitis, and others. Second, because
of different writing habits, some doctors may write the diag-
nosis, such as “single pregnancy,” which may rarely be writ-
ten in the normal record by most doctors. Third, some of
the results are relatively rare, such as “fetal nasal bone loss.”

These labels appear only once in a data set of 11,303
instances, which to a certain extent causes the data sparse-
ness. Therefore, these labels are deleted, and the remaining
labels form label set L3, which contains 153 class labels.
The experimental results are shown in Table 2. It can be seen
that MLkNN and BP-MLL still have the best performance in
each of the evaluation indicators, and the AP of BP-MLL has
increased by nearly 3 percent.

We try to further reduce the sparseness of data and the
labels whose frequencies are less than 10 by deleting them
from the label set. The remained labels form the label set
L4, which contains 71 class labels. The experimental results
are shown in Table 3. It can be seen that MLkNN and BP-

Table 1: Results with |L2| = 233, K= 120, and T= 100.

Method Feature HL↓ C↓ OE↓ RL↓ AP↑

RAkEL
LDA 0.0085± 0.0002 124.5190± 2.9857 0.3479± 0.0192 0.2874± 0.0092 0.5727± 0.0090

Word vector 0.0078± 0.0002 127.1671± 2.4166 0.2902± 0.0173 0.2984± 0.0104 0.5906± 0.0109

MLkNN
LDA 0.0078± 0.000 15.5416± 0.7277 0.2425± 0.0127 0.0292± 0.0009 0.6571± 0.0087

Word vector 0.0067± 0.0002 13.6120± 0.6596 0.2015± 0.0101 0.0240± 0.0007 0.7272± 0.0081

CC
LDA 0.0093± 0.0002 109.6586± 2.9200 0.4908± 0.0150 0.2430± 0.0078 0.5073± 0.0097

Word vector 0.0088± 0.0001 90.2732± 2.8796 0.4427± 0.0109 0.1960± 0.0070 0.5408± 0.0074

BP-MLL
LDA 0.0341± 0.0058 14.6960± 1.0139 0.2426± 0.0136 0.0276± 0.0020 0.6264± 0.0114

Word vector 0.0244± 0.0012 12.7561± 0.7484 0.2431± 0.0136 0.0225± 0.0009 0.6588± 0.0091
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MLL have still the best performance in each of the evaluation
indicators, and AP of BP-MLL is as high as 0.7413± 0.0100
by using the word vector feature.

In general, with the decrease of the label set size, the
results keep increasing. MLkNN and BP-MLL have the best
performance in each of the indicators. Whether the size of
the label set is 233,153 or 71, the experimental results using
the word vector as a feature are all better than those using
LDA topics. Wemay get some reasons from the working pro-
cess of the LDA model and Skip-gram model. The word rep-
resentations computed using the Skip-gram model are very
interesting since the learned vectors explicitly encode many
linguistic regularities and patterns, while LDA topic model
is a bag-of-words model that may ignore the relationships
between words.

5.3. Experiment Results on Different Number of Topics. As
seen from the Section 4.1.1, the number of topics K must be
given before the LDA model is trained. Since the number of
topics selected in the above experiments is 120, K should be
around 120 approximately. Thus, 100, 110, 130, and 140
are selected and they will be individually compared with K
when it is 120. The purpose of this experiment is to study
the effect of the topic number on the classification of the
LDA. In the case of AP, the abscissa is the number of different
topics, and the ordinate is the average precision of each
method under different themes. It can be seen from
Figure 4 that as the number of topics in the LDA continues
to grow, the other three algorithms tend to be roughly the
same. The exception is that the average precision of CC
drops, reaching the highest point when the number of topics
is approximately 120. The overall effects of MLkNN and BP-

MLL are better than the other two algorithms. MLkNN is
better than BP-MLL on both sides of the polyline, but in
the middle part, BP-MLL is better than MLkNN.

5.4. Experiment Results on Different Number of Word Vector
Dimensions. If the vector dimensions are not the same, it will
affect the result. The different vector dimensions T of 10, 100,
200, 300, 400, and 500 are selected. The results are shown in
Figure 5. In the case of AP, the abscissa is the word vector
dimension, and the ordinate is the average precision of each
method under different dimensions.

Table 2: Results with |L3| = 153, K= 120, and T= 100.

Method Feature HL↓ C↓ OE↓ RL↓ AP↑

RAkEL
LDA 0.0120± 0.0003 67.4355± 1.5205 0.3044± 0.0125 0.2317± 0.0057 0.6205± 0.0074

Word vector 0.0114± 0.0003 74.6069± 1.7410 0.2636± 0.0147 0.2527± 0.0088 0.6228± 0.0068

MLkNN
LDA 0.0113± 0.0002 11.3434± 0.5319 0.2511± 0.0074 0.0347± 0.0016 0.6650± 0.0065

Word vector 0.0101± 0.0002 11.7522± 0.4557 0.2015± 0.0101 0.0318± 0.0015 0.7289± 0.0086

CC
LDA 0.0136± 0.0003 71.7498± 3.5310 0.4942± 0.0107 0.2533± 0.0142 0.5108± 0.0098

Word vector 0.0134± 0.0002 61.0079± 1.8989 0.4427± 0.0109 0.2050± 0.0075 0.5430± 0.0075

BP-MLL
LDA 0.0362± 0.0043 10.2577± 0.5443 0.2531± 0.0087 0.0302± 0.0022 0.6522± 0.0149

Word vector 0.0276± 0.0011 10.6332± 0.4318 0.2417± 0.0140 0.0283± 0.0009 0.6751± 0.0091

Table 3: Results with with |L4| = 71, K= 120, and D= 100.

Method Feature HL↓ C↓ OE↓ RL↓ AP↑

RAkEL
LDA 0.0244± 0.0004 26.3255± 1.1150 0.2799± 0.0123 0.1870± 0.0081 0.6575± 0.0090

Word vector 0.0237± 0.0004 29.9007± 0.8173 0.2391± 0.0113 0.2074± 0.0071 0.6595± 0.0082

MLkNN
LDA 0.0241± 0.0003 9.2824± 0.2916 0.2498± 0.0112 0.0631± 0.0026 0.6697± 0.0085

Word vector 0.0214± 0.0005 9.0997± 0.4973 0.2014± 0.0103 0.0547± 0.0033 0.7356± 0.0088

CC
LDA 0.0288± 0.0006 34.4526± 1.4447 0.4850± 0.0220 0.2729± 0.0130 0.5228± 0.0125

Word vector 0.0285± 0.0004 30.4830± 0.7443 0.4427± 0.0109 0.2301± 0.0068 0.5509± 0.0069

BP-MLL
LDA 0.0458± 0.0046 7.4636± 0.4216 0.2521± 0.0128 0.0462± 0.0030 0.7081± 0.0098

Word vector 0.0349± 0.0014 7.4289± 0.4688 0.2325± 0.0131 0.0413± 0.0028 0.7413± 0.0100
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Figure 4: Experimental results on different number of topics.
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It can be seen from Figure 5 that as the vector dimen-
sion continues to grow, the AP of RAkEL, MLkNN, and
BP-MLL tend to increase and the AP of CC drops. When
the dimension is more than 100, the curve becomes gentle,
but the time consumption will greatly increase. The overall
effects of MLkNN and BP-MLL are better than the other
two algorithms. MLkNN is better than BP-MLL on both
sides of the polyline, but in the middle part, BP-MLL is better
than MLkNN. Taking both the effectiveness and the effi-
ciency into consideration, they are better when the vector
dimension is 100.

6. Conclusion

In this paper, on the basis of the analysis of obstetric EMRs,
the diagnosis assistant is regarded as a multilabel classifica-
tion task. The LDA topic and the word vector trained by
the Skip-gram model are adopted as the features and four
methods; BP-MLL, RAkEL, MLkNN, and CC are utilized
for multilabel classification. It also discusses the influence
of the size of the label set, LDA topics, word vector dimen-
sions and different, classifications on the experimental
results. In general, the results using word vectors as features
are slightly better than using LDA topics. The best result is
achieved by BP-MLL with the word vector feature method.
Its AP is up to 0.7413± 0.0100, when the label set size is 71
and the dimension of word vector is 100. The result of the
diagnosis assistant can be introduced as a supplementary
learning method for medical students. In this paper, the
experiments are conducted on real cases of Chinese obstetric
EMRs. The methods can be used for all kinds of medical
records. Furthermore, the method proposed in this paper
can be applied to English EMRs by treating the diagnosis
assistant as multilabel classification.

From the discussion in this paper, the different features
and classification methods in varying extent impact the
experimental results. In the future work, we will focus more
on mixing the extracted indicators with the help of the clini-
cian to improve model performance. As for the multilabel

classification, we will carry on the theoretical analysis of the
performance differences between classifications and then
propose the pertinent methods to get better results. It is
expected that the result of the diagnosis assistant can provide
an efficient assistant for the clinicians.
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