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.e automatic diagnosis of various retinal diseases based on fundus images is important in supporting clinical decision-making.
Convolutional neural networks (CNNs) have achieved remarkable results in such tasks. However, their high expression ability
possibly leads to overfitting. .erefore, data augmentation (DA) techniques have been proposed to prevent overfitting while
enriching datasets. Recent CNN architectures with more parameters render traditional DA techniques insufficient. In this study,
we proposed a new DA strategy based on multimodal fusion (DAMF) which could integrate the standard DA method, data
disrupting method, data mixing method, and autoadjustment method to enhance the image data in the training dataset to create
new training images. In addition, we fused the results of the classifier by voting on the basis of DAMF, which further improved the
generalization ability of the model. .e experimental results showed that the optimal DA mode could be matched to the image
dataset through our DA strategy. We evaluated DAMF on the iChallenge-PM dataset. At last, we compared training results
between 12 DAMF processed datasets and the original training dataset. Compared with the original dataset, the optimal DAMF
achieved an accuracy increase of 2.85% on iChallenge-PM.

1. Introduction

Pathologic myopia (PM) is one of the major causes of
visual impairment worldwide [1–3]. As myopia deepens, it
is often accompanied by deforming changes in the pos-
terior pole of the eye [3]. .ese changes are usually
manifested as sclerotic atrophy, choroidal atrophy, and
growth of the ocular axis, which may be associated with
various complications of the eye, such as amblyopia,
glaucoma, cataracts, vitreous clouding, and retinal de-
tachment [1]. Complications of pathological myopia are
considered to be the main reasons for visual impairment
and blindness today, particularly in East Asia [4, 5].
Pathological myopia causes visual impairment due to
various pathologies of the macula, peripheral retina, and
optic nerve. Structural deformities of the eye, including

posterior sclerite uveitis, may accelerate the progression of
these diseases [1, 3, 6–9].

According to a summary of 145 studies regarding the
global prevalence of myopia and PM, there are approxi-
mately 1950 million people with myopia (accounting for
28.3% of the global population) and 277 million people with
PM (accounting for 4.0% of the global population), and these
numbers are predicted to increase to 4758 million (ac-
counting for 49.8% of the global population) for myopia and
938 million (accounting for 9.8% of the global population)
for PM by 2050 [5].

.e prevalence of high myopia and pathological myopia
shows an increasing yearly trend due to the changes in
environmental factors and lifestyle [10–14]. In China, the
number of ophthalmologists differs significantly from that in
developed countries, but the demand for ophthalmologists
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in China is already huge; with the growth of social aging, the
number of ophthalmologists has been rising in recent years
[10, 12, 14]. In consequence, the visual impairment caused
by pathological myopia complications will become in-
creasingly serious in the coming decades. .e people’s
growing medical needs contrast sharply with the increas-
ingly deficient medical resources in the current medical field.

On the one hand, the problem of “difficult and expensive
access to medical care” still exists, which is mainly caused by
the severe scarcity of talented physicians and the long
training period for doctors. On the other hand, with the
health problems gradually worsening, people are paying
more and more attention to their health, which aggravates
the demand for medical services. .is is a social problem to
which AI technology can offer the medical industry a so-
lution [15–18].

Over the past two decades, with the development of
imaging techniques, such as optical coherence tomography,
frequency-domain OCT, and 3D magnetic resonance im-
aging, the complications associated with high myopia have
been well known [16, 19–23]. For example, the optic nerve,
macula, and neoplastic lesions can be magnified by OCT to
extraordinary resolution for evaluation. In addition, myopic
retractile macular lesions and domed macular lesions can be
utilized in the same way. .e advent of new therapies, in-
cluding antineovascular drug therapies and vasectomy, has
led to an improved prognosis for some of the complications
associated with high myopia.

Medical artificial intelligence (AI) technologies have
been well developed in recent years [20]. A case in point is
the application of machine learning-based AI technology to
ophthalmology [20, 21]. .e diagnosis of many eye diseases
relies heavily on the results of ophthalmic examinations,
most of which are built on imaging studies. Eye images are
delicate, complex, and informative, and diagnostic results
are heavily dependent on the doctor’s knowledge and clinical
experience, which makes diagnosis subjective and time-
consuming [24, 25]. .e development of medical AI has
significantly improved the efficiency of ophthalmic disease
diagnosis in clinical work and reduced the burden on
ophthalmologists [20–22].

CNNs, which are data-driven and can automatically
extract relevant features, have secured better results in image
recognition than traditional methods [26]. .erefore, it is
considered to be a new choice to introduce CNN techniques
into medical image processing. Lately, many studies have
been conducted on this matter and applied CNNs to fundus
image recognition, whose results generally surpass those
based on traditional recognition ways [19, 26–31].

Although the CNN-based fundus image recognition
method outperforms traditional methods to a certain extent,
there are still some problems. For example, the amount of
medical image data is large, while the number of positive
samples is small. Nevertheless, a common fact is that the
training process of the model mainly depends on the dataset,
namely, the training effect of themodel can be well improved
by the dataset after DA processing [32].

Furthermore, with the continuous development of deep
learning in the field of images, CNNs have been increasingly

complicated. Each model has its unique advantages, but it is
not guaranteed that every aspect of the model will perform
well. For instance, the model’s lack of expressive ability will
lead to the weakness in the recognition of some rare lesion
images [32]. To address this problem, researchers have
proposed optimized neural network models from different
perspectives and achieved effective results. However, there
are a lot of difficulties in enhancing the existing models. For
example, when the researchers optimize the models (such as
widening and deepening models), they cannot predict the
effectiveness of the models but just observe whether the
optimization operation improves the performance of the
original models through the training results. Besides, even if
such optimization is effective, it may be computational and
time-intensive or needs a long development cycle, so it
cannot address the problem effectively [33–35].

In order to deal with these issues, the main contributions
of this paper are described as follows:

(1) 12 DAMFs will be designed based on the iChallenge-
PM dataset. To our knowledge, these DA methods
cover all the operations used in the current DA. .e
purpose is to increase data characteristics, suppress
sample imbalance, and effectively improve the
quality of datasets.

(2) Based on AlexNet, VGG-16, GoogLeNet, and
ResNet-50 models, different optimizers, loss func-
tions, and learning rates are constructed. .en, the
model with the highest accuracy will be adopted as
the primary learner and trained based on 12 datasets.
.e generalization ability of the model will be en-
hanced through this method.

(3) .e abovementioned primary learner prediction will
be used as a new input and put into the secondary
learner, namely, the hard voting model, and then the
fusion model is trained to form the final model.

(4) .e model optimized by the above operations ach-
ieves high accuracy without transfer learning. More
importantly, by using the augmented dataset and the
model fusionmethod, we effectively avoid overfitting
and improve the generalization ability of the model
when processing various data, which further im-
proves the expressive ability of the model. As a result,
the accuracy of the model in recognizing complex
and rare case images will be effectively improved.

2. Literature Review

In this section, we mainly reviewed the related literature on
automatic disease diagnosis from fundus photography and
DA.

2.1. Automatic Disease Diagnosis from Fundus Photography.
Most of the conventional ophthalmic diseases can be ex-
amined from fundus photography, including PM, age-re-
lated macular degeneration (AMD), diabetic retinopathy
(DR), and glaucoma. Conventional diagnosis methods tre-
mendously depend on doctors’ professional experience and
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knowledge, which results in a high misdiagnosis rate and a
huge waste of medical data [36, 37]. .e deep integration of
ophthalmology and AI offers potential for revolutionizing
current disease diagnosis patterns and generating a signif-
icant clinical impact. As for PM classification, Freire et al.
employed Xception as the baseline architecture with
ImageNet pretrain weights to diagnose PM from fundus
images [38]. Zhang et al. used the feature selection of PM
valuable information in the images to improve the training
effect of the model [31]. .ey demonstrated that the new
method was much efficient by using less than 25% of the
initial candidate feature set. Not only in the field of image
classification but DA also occupies a highly important po-
sition in the field of target detection. Sun et al. put forward
two new DA modules consisting of channel-wise random
Gamma correction and channel-wise random vessel aug-
mentation [27]. .ey argued that their method could
ameliorate the performance and robustness of a classic CNN
architecture. However, most medical imaging samples are
unbalanced. Although there may be a large number of
samples, the types of samples are limited. Different from
previous works, in this paper, we focused on the first stage of
deep learning, which was DA. And by means of this strategy,
the defect of data imbalance could be effectively solved and
the overfitting in the training process could be suppressed.

2.2.DataAugmentation. DAhighlights the characteristics of
image data and prevents overfitting in the training effect
[33]. In existing studies, researchers divide DAmethods into
the standard method, data disrupting method, data mixing
method, DA method based on reinforcement learning, and
fusion-based image augmentation method.

(1) Standard Data Augmentation Method. AlexNet [39]
preprocesses the data using random cropping and
horizontal flipping, and it has been verified on
CIFAR-10. Random cropping prevents CNN from
overfitting specific features by changing the obvious
features in the image. Facebook artificial intelligence
research uses another color translation method,
called color dithering, to improve the process of
ResNet [40]. Color dithering randomly changes the
brightness, contrast, and saturation of the image.
.ese DA techniques play an important role in the
training of a model. Fu et al. performed extensive
experimentation on a large set of images with varying
illuminations [41]..e performance is analyzed both
quantitatively and qualitatively. However, as the
number of parameters increases, the risk of over-
fitting also increases. Many studies have proposed
more complex CNNs. .erefore, more powerful DA
strategies are particularly important.

(2) Data Disrupting Method. [42] Contrary to (1), a data
disrupting method produces unnatural images by
destroying images’ features. Dropout on the input
layer is a DA technique that disturbs and masks the
original information of given data by dropping
pixels. Pixel dropping functions as injection of noise

into an image. It makes the CNN robust to noisy
images and contributes to generalization rather than
enriching the dataset, randomly erasing a region in
an image at every training step. It is an extension of
dropout, where the masking of regions behaves like
injected noise and makes CNNs robust to noisy
images. Under this condition, CNNs need to learn
other parts that are usually ignored.

(3) Data Mixing Method. .is is a special case of (2),
where a mixup alpha blends two images to construct
a new training image [43]. Mixup can train CNNs on
convex combinations of pairs of training samples
and their labels and enables CNNs to favor a simple
linear behavior in-between training samples. .is
behavior makes the prediction confidence transit
linearly from one class to another class, thus pro-
viding smoother estimation and margin maximiza-
tion. .erefore, the mixup makes CNNs robust to
adversarial examples and stabilizes the training of
generative adversarial networks.

(4) Data Augmentation Method Based on Reinforcement
Learning [44]. Autoenhancement is a framework
based on reinforcement learning to explore the
optimal augmentation combination [45]. Hence, it is
not a DA method but is an external framework. It
achieves significant results during the CIFAR-10
classification and proves the contribution of rein-
forcement learning to DA research.

(5) Fusion-Based Image Augmentation Method. Fusion
is preferred to the direct application of traditional
techniques since it involves an amalgamation of
traditional techniques, rather than the application of
a single technique. Fusion can be done in various
ways, out of which multiscale fusion has proved to be
one of the best. Parihar et al. presented a detailed
analysis of image enhancement techniques based on
multifusion, thereby giving an insight into the al-
gorithm used in each method, along with its
implementation framework [36, 42].

In this paper, we adopted the concept of (5) and inte-
grated the image enhancement techniques of (1), (2), and (3),
aiming to enlarge the features of images from the perspective
of color, direction, shape, and so on.

3. Materials and Methods

In this session, we first introduced the dataset of iChallenge-
PM [46] composed of 1200 annotated retinal images. In
another part of this section, we introduced the primary
learner, which included some classical convolutional neural
networks and corresponding components. .ese frame-
works have become general arrangements for image clas-
sification and have been extensively utilized in different
computer vision tasks.

3.1. iChallenge-PM. .e iChallenge-PM dataset contained
1200 annotated color fundus photos with non-PM (50%)
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and PM (50%) cases. Specifically speaking, the dataset
contained 400 images in the training set, validation set, and
test set, respectively, while the test set was not public. We
reclassified the 800 public image data and divided the val-
idation set into a new validation set and a test set according
to the ratio of 50% : 50%. All images data were reshaped to a
size of 224 ∗ 224 before using DA. Under the partitioning of
iChallenge-PM, the reference standard of PM presence was
obtained from the health records, which was not based solely
on fundus image but also took OCT, visual test, and other
factors into consideration. For the training data, PM, HM,
and normal labels were reflected in the image file names,
with 0 denoting normal cases while 1 denoting abnormal
cases. However, we did not utilize any human-annotated
labels during network training. To evaluate the effectiveness
of our method, we employed accuracy and loss rate as the
evaluation indices. Accuracy was often the most important
index for doctors and patients.

3.2. Classifiers and Components

(1) AlexNet. .e AlexNet network proposed by Kriz-
hevsky et al. was the first to use five convolutional
layers and three fully connected expenses to achieve
the classification of 1000 classes of images, thus
becoming the seminal breakthrough in image clas-
sification based on deep learning. Compared with
other traditional convolutional neural networks,
AlexNet applied various methods to improve deep
convolutional networks. For example, the rectified
linear unit (ReLU) nonlinear activation function was
used to speed up the training of the network, multi-
GPU convolutional operations were implemented to
address the limitations of insufficient graphic card
resources at the time, and the DropOut random
inactivation strategy was introduced to reduce
overfitting at the full connection layer. Furthermore,
strategies such as local response normalization,
overlap pooling, as well as augmentation, were
proposed by AlexNet to improve the classification
and generalization capabilities of the model.

(2) VGG. .e VGG network was proposed by Simonyan
et al., in which filters of 5 ∗ 5 and 7 ∗ 7 were replaced
by filters of 3 ∗ 3. It was a basic idea embodied by
VGG that the receptive fields of multiple small
convolutional layers in series could be in the same
size as that of a large convolutional layer. For ex-
ample, two 3 ∗ 3 convolutional fields in sequences
had the same field size as one 5 ∗ 5 convolutional
field, and their convolutional effects were the very
same. However, multiple small convolutional layers
concatenated together had fewer parameters and
more nonlinear transformations. .is was most ef-
fective in better learning the features. At the same
time, VGG also increased the network structure to 16
or 19 layers. As the number of layers increased, the
network enjoyed better feature representation and

better model classification. Being simple and effec-
tive, VGG was still commonly used in the field of
computer vision for image classification, detection,
segmentation, super-resolution, and image styling.

(3) GoogLeNet. Google made a significant contribution
to the development of deep convolutional neural
networks through the proposed inception family.
.e most significant contribution of Inception-V1
(GoogLeNet) was to propose the inception structure
while deepening the depth of the convolutional
neural network. .e structure increased the width of
the network by concatenating multiple convolu-
tional blocks of different sizes, which allowed the
convolutional blocks to acquire information from
discrete receptive fields. In addition, the structure
took full advantage of the 1 ∗ 1 convolutional code to
reduce a large number of network parameters,
thereby improving the efficiency of computing re-
sources. Inception-V2 proposed an excellent regu-
larization method, namely, batch normalization,
which made the data undergo a back normalization
process before each convolution and was now the
standard for deep convolutional networks. .is
approach was an excellent solution to the training
problem of multilayered networks. .e evolution of
the inception structures is shown in Figure 1.

(4) ResNet. Kaiming He et al. established a deep residual
network, namely, ResNet [14], which increased the
network depth to 152 layers while ensuring the
network accuracy and then further increased the
depth to 1000 layers. .eoretically, the deeper the
network was, the higher the accuracy should be.
However, the authors experimentally found that
blindly increasing the depth would lead to the
degradation of the network when the depth reached a
certain level. .e gradient explosion and gradient
disappearance of deep networks failed to train the
model correctly and led to poor network perfor-
mance. Inspired by highway network, the authors
proposed the residual structure by adding a jump
connection between the input and output of the
convolutional block, which enabled the input to be
passed directly to the output. .e residual structure
was essentially designed to learn a constant mapping
with the nonlinear layer portion of the stack learning
another mapping. As shown in Figure 2, if the re-
sidual structure was zero, we could easily train a
constant mapping. In short, if a network could
achieve the desired result by simply setting param-
eters manually, it was not difficult to train the net-
work to converge to that result so that the added
residual structure would at least not degrade the
overall performance of the network. ResNet’s re-
sidual module reduced the difficulty in training deep
networks, solved the degradation problem well, and
maximized the depth potential of convolutional
networks. Eventually, ResNet outperformed human
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performance in terms of the ImageNet classification
task for the first time.

(5) Optimizer. SGD [47] experienced difficulty exploring
gorges. For example, territories, where the surface
bent considerably more steeply in one measurement

than in another, were basically around neighborhood
optima. In these situations, SGD swayed over the
gorge’s slants and slowly advanced along the valley
floor towards the local optimal direction, as indi-
cated in Figure 3(a). .e energy was a technique that
quickened SGD and hose motions in a pertinent way,
as shown in Figure 3(b). As suggested by formula (1),
it achieved this by including a part c of the update
vector of the past time venture to the current update
vector.

vt � cvt− 1 + η∇θJ(θ), where θ � θ − vt. (1)

.e energy term c was usually set to 0.9 or a
comparative value. In general, when utilizing energy,
we pushed a ball down a slope. .e ball collected
energy as it moved downhill, getting quicker and
quicker in transit (until it arrived at its max speed, if
there was air obstruction, for example, c< 1).
Something very similar happened to our boundary
refreshing: the momentum term increases for the
latitude where the gradient points in the same di-
rection, while for the dimension where the gradient
changes direction, the momentum term will decrease
and update. Accordingly, we increased quicker
union and diminished swaying.
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Figure 1: Evolution of inception structures: (a) Inception-V1 chart; (b) Inception-V2 chart; (c) Inception-V3 chart.
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Journal of Healthcare Engineering 5



(6) Optimizer..e logistic loss could be calculated by the
following formula:

loss � − Labels∗ log(sigma(X)) − (1 − Labels)∗ log(1 − sigma(X)), where sigma(x) �
1

1 + exp(− x)
. (2)

After applying it to the above calculation, we got
logistic loss formula as follows:

loss � X − X
∗Labels + log(1 + exp(− X)). (3)

In order to calculate stability and prevent over-
flowing, the loss function would be calculated using
the following formula:

loss � max(X, 0) − X
∗Labels + log(1 + exp(− |X|)).

(4)

3.3. Voter Model. Voting was a combination strategy aimed
at classification problems in ensemble learning. .e basic
idea was to select the class with the highest output among all
machine learning algorithms..ere were two types of output
judging from a machine learning classification algorithm:
one was the direct output of class labels and another was the
output of class probabilities. Using the former for voting was
called majority/hard voting while using the latter for classi-
fication was called soft voting. Hard voting selected the label
with the most output of the algorithm. If the number of labels
was equal, the selection was made in ascending order. Soft
voting used the class probabilities output by each algorithm to
select a class. If the weight was input, a weighted average of the
class probabilities of each class would be obtained, and the
class with a large value would be selected. In this paper, our
experiment used the hard voting mechanism.

3.4. Data Augmentation Strategy. Binary coding was used to
represent positive and negative samples in this paper.
Existing common DA methods consisted of randomly
flipping the image (horizontally or vertically), randomly
adding noise, rotating the image, changing the brightness,
contrast, and saturation of the image, randomly cropping the
image, randomly scaling/stretching the image, and ran-
domly changing the clarity of the image. All these methods
belonged to (1), (2), and (3) of Section 2.2. Based on these

DA methods, we performed 12 different DAMF combina-
tions and made 12 new datasets, as listed in Table 1. Spe-
cifically, third-party DA libraries were used in the 11th
DAMF and 12th DAMF, respectively. As shown in Figure 4,
all the images in the original dataset represented images
without corresponding augmentation. .e enhanced images
were displayed following each original image. Figure 4(b)
shows the randomly rotated operation, with the rotation
angle at 90/180/270/360 degrees. Figure 4(d) shows the
consequence of randomly adding Gaussian white noise to
the original operation. Figure 4(f) describes the operation
after random adjustment of brightness, saturation, and
contrast built on the original image. Figure 4(h) describes
the random cropping and stretching based on the original
image. Figure 4(j) displays the image after randomly
adjusting the sharpness. Figure 4(l) displays the image after
randomly adjusting the contrast, saturation, and brightness
on the original image and adding random Gaussian white
noise. Figure 4(n) shows a randomly rotated, cropped, and
stretched image built on the original image. Figure 4(p)
shows the effect of randomly superimposing the images after
all operations on the original images. Figure 4(r) shows the
effect of utilizing the third-party library imaging to mutate
the image. Figure 4(t) shows the effect of randomly
superimposing all the above special effects.

3.5. Primary Learner Model. AlexNet, GooLeNet, VGG-16,
and ResNet-50 were used as the primary learners in this
paper. .e experiment set the learning rate to 0.001 and
utilized the optimizer and loss function described above.
Each model was formed for 30 epochs, with each epoch
covering all images in the training set.

.e highest accuracy of each model was selected after
comprehensive training, and the corresponding model pa-
rameters were saved. .en, the convolution layer of all
primary learners would be frozen, which meant that the data
could only be transmitted forward instead of backward after
entering the primary learners.

(a) (b)

Figure 3: Source: Genevieve B.Orr: (a) SGD without momentum; (b) SGD with momentum.
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3.6. Staking Model Integration Strategy and Hard Voting
Model. Staking, as a hierarchical model integration
framework, was one of the main strategies widely used in
model integration. Taking two layers as an example, the first
layer consisted of multiple base learners, and the original
training set was the input of the primary learners..e output
of the primary learners was treated as the secondary learners’

input, which was the training set of secondary learners. .e
secondary learners continued training on the above training
set to obtain the complete staking model.

As shown in Algorithm 1, processes 1–3 constructed the
trained primary learners. Processes 5–9 were the prediction
results of the training set using the trained primary learners,
and this prediction was used as the training set for the

Table 1: 12 DAMFs.

No. Training set name DA method Quantity
1 PALM-Training800-overturning Original dataset + random flip (4 directions: up, down, left, and right) 800
2 PALM-Training800-noise Original dataset +Gaussian white noise 800

3 PALM-Training800-color Original dataset + randomly changing colors (brightness, contrast,
saturation) 800

4 PALM-Training800-cropping Original dataset + random cropping 800

5 PALM-Training800-deforming Original dataset + random scaling, stretching (stretched into a square by
the length or width of the images) 800

6 PALM-Training800-dimming Original dataset + change clarity 800

7 PALM-Training1600-overturning-noise-
color

Randomly stack method 3 or 4 (serial number) on the basis of PALM-
Training800-overturning 1600

8 PALM-Training1600-overturning-cropping-
deforming

Randomly stack method 5 or 6 (serial number) on the basis of PALM-
Training800-overturning 1600

9 PALM-Training1600-overturning-dimming Randomly stack method 7 (serial number) on the basis of PALM-
Training800-overturning 1600

10 PALM-Training3200-overturning-noise-
color-cropping-deforming-dimming

Randomly superimpose method 5 or 6 or 7 (serial number) on the basis of
PALM-Training800-overturning-noise-color 3200

11 PALM-Training800-imgaug1 Original dataset + random cropping with 0–50 pixels around, 50%
probability horizontal flip, Gaussian blur (sigma� 0 to 3.0) 800

12 PALM-Training1600-overturning-dimming-
imgaug2

PALM-Training800-overturning-dimming dataset +multiple mixed
random overlay 1600

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t)

Figure 4: DA effect (original dataset imagex: different images in the original dataset: (r), (s), and (t) were mutated from (q)). (a) Original dataset
image1. (b) Randomly change direction. (c) Original dataset image2. (d) Randomly add Gaussian noise. (e) Original dataset image3. (f) random
color. (g) Original dataset image4. (h) Random stretching. (i) Original dataset image5. (j) Randomly adjust the sharpness. (k) Original dataset
image6. (l) Randomly flip, adjust colors, and add Gaussian noise. (m) Original dataset image7. (n) Randomly flip, adjust colors, and add
Gaussian noise. (o) Original dataset image8. (p) Random stretching and cropping. (q) Original dataset image9. (r) Random cropping with 0–50
pixels around, 50% probability horizontal flip, and Gaussian blur (sigma� 0 to 3.0). (s) Original dataset image. (t) Randomly stack all
operations.
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secondary learners. Process 11 used the prediction results of
the primary learners to train the secondary learners to get the
fusion model.

.e design facilitated the extension of the model. In
other words, the hard voting model could be replaced with
other secondary learners based on different datasets.
Figure 5 displays the framework of the fusion model in
this paper. First, the training set normalized the data
through the input layer, namely, processed it into a format
of the same size (224 ∗ 224). Next, the images were input
into each classifier, respectively, in the primary learner.
.e classifier performed 30 times epoch supervised
training on the image according to the label of all inputs
and then used the training result as the input of the

secondary learning, and the final classification result was
obtained after voting.

4. Results

4.1. Lab Environment. Hardware environment is as follows:
CPU 4 cores, RAM 32GB, GPU v100, video memory 16GB,
and disk 100GB.

Environment configuration is as follows: Python version
python3.7 and framework version PaddlePaddle 1.8.0.

4.2. Evaluation Indices. .e primary reference record was
the accuracy of the model forecast. In this paper, recall rate,
specificity, and sensitivity were not used as evaluation

Input layer

VGG-16

AlexNet

GoogLeNet

ResNet-50

Primary learner Secondary learner Output layer

Dataset

Figure 5: Logic diagram of the fusion model.
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Model input:
Training set D� {(x1, y1), (x2, y2), . . ., (xm, ym)}

Primary learner £1, £2, . . ., £T
Secondary learner £

Process:
1: for t� 1, 2, . . ., T do
2: ht � £T (D)
3: end for
4: D�Ø;
5: for t� 1, 2, . . ., m do
6: for t� 1, 2, . . ., T do
7: Zit � ht (xi);
8: end for
9: Dj � DjU ((zi1, zi2, . . ., ziT), yi)
10: hj � (Dj)
11: end for
Output: H (x)� hj (h1 (x), h2 (x), h3 (x), . . ., hT (x))

ALGORITHM 1: Logic diagram of the model fusion algorithm.

Table 2: VGG-16 training results on 13 datasets.

No. Dataset Accuracy Loss
1 PALM-Training1600-overturning-dimming-imgaug2 0.95858336 0.18674079
2 PALM-Training3200-overturning-noise-color-cropping-deforming-dimming 0.95550001 0.27185006
3 PALM-Training1600-overturning-cropping-deforming 0.95266668 0.16523545
4 PALM-Training800-color 0.95033336 0.17019135
5 PALM-Training800-dimming 0.94875002 0.17919912
6 PALM-Training800-cropping 0.94625 0.18303553
7 PALM-Training1600-overturning-dimming 0.94525003 0.23124305
8 PALM-Training1600-overturning-noise-color 0.94008333 0.21350351
9 PALM-Training800-overturning 0.93858335 0.20894363
10 PALM-Training800-deforming 0.93708334 0.20814224
11 PALM-Training800-noise 0.93608335 0.26124661
12 PALM-Training800-imgaug1 0.93391667 0.19876853
13 PALM-Training400 0.93016667 0.19310093
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indices..e classification performance was mainly evaluated
by the classification accuracy, which was defined as follows:

accuracy �
TP + TN

TP + TN + FP + FN
, (5)

where TP, TN, FP, and FN denoted the true positive, the true
negative, the false positive, and the false negative,
respectively.

.e loss function in the model was measured by the
root mean square error, namely, a risk metric corre-
sponding to the expected value of the squared (quadratic)
error or loss. If 􏽢yi was the predicted value of the i-th
sample and yi was the corresponding true value, then the
mean squared error (MSE) estimated over nsamples was
defined as follows:

MSE(y, 􏽢y) �
1

nsamples
􏽘

nsamples − 1

i�0
yi − 􏽢yi( 􏼁

2
. (6)

4.3. Primary Learner Training Process and Results. As shown
in Figure 6, firstly, VGG-16 was used as a dataset filter, and
training was conducted on all datasets. Each dataset was
trained for 30 epochs. Each epoch would traverse all the
datasets once to form the corresponding trained models on
different datasets. .ese 13 datasets were adopted to make
predictions on the test set, and the final results are listed in
Table 2. According to Table 2, the overall accuracy of the
enhanced dataset was higher than that of the original dataset.
To go into detail, the average accuracy of PALM-Training1600-
overturning-dimming-imgaug2, PALM-Training3200-over-
turning-noise-color-cropping-deforming-dimming, PALM-
Training1600-overturning-cropping-deforming, and PALM-

Training800-color exceeded 95%. .erefore, these 4 datasets
were selected to be the candidate datasets. GoogLeNet, Alex-
Net, and ResNet-50 were also trained on these 4 datasets. Each
model was trained on each dataset for 30 epochs, and then the
training model was tested on the test set.

Follow-up training was made on the candidate datasets,
and the results are shown in Table 3. We used the same
parameters during the process of training. It could be seen
from Table 3 that the optimal DAMF datasets also varied
because of the differences in the expression ability of dif-
ferent models. To be specific, GoogLeNet and ResNet-50
were both trained on the PALM-Training3200-overturning-
noise-color-cropping-deforming-dimming dataset. AlexNet
and VGG-16 had the highest scores on the PALM-Train-
ing1600-overturning-dimming-imgaug2 dataset. .e above
four models with the highest accuracy were used as primary
learners.

In this paper, the accuracy rate was the average of the
accuracy rate results of 30 epochs of training. .e highest
accuracy of the model training set reached 100% (Figure 6).
Table 2 still shows the comparison between applying DAMF
and not applying DAMF, in which the 13th dataset is the
original dataset. We can see that the results of all the datasets
processed by DAMF were better than the results of the 13th
dataset, and the best DAMF corresponding to the first group
of results is 2.84% higher than the 13th group, reached
95.85%. .is improvement is obvious. Similarly, we have
observed AlexNet, GoogLeNet, and ResNet-50. From the
results for training, the accuracy rates of these were, re-
spectively, 95.76%, 96.24%, and 95.60%, which are highly
similar to the best training results of VGG-16, i.e., all exceed
95.00%. .e above results could show that DAMF is
universal.

Input_1: Input_layer

Model 1: AlexNet Model 3: GoogLeNetModel 2: VGG-16 Model 4: ResNet-50

Flag = sigmoid (logits)

flag >0.5

1,... 0,...

Y : 1
N : 0
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1,... 0,... 1,... 0,... 1,... 0,...
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1,... 0,...

1,... 0,...

Figure 8: Logic diagram of the fusion model.
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Figure 7 displays the loss trend during the training process
of VGG-16. Taking the loss rate of the training original dataset
as a baseline for comparison, we could find that although some
DAMF loss rates were higher than 0.19, the highest loss rate was
0.27, which means the loss rate was acceptable. Among them,
the loss rate corresponding to the best DAMF is 0.19, which was
the same as the original dataset, whichmeans that the enhanced
data did not cause additional loss.

4.4. Fusion Model Training Process and Results. Figure 8
displays the logic diagram of the fusion model, with the
most accurate models (AlexNet, GoogLeNet, ResNet-50, and
VGG-16) used as the primary learners. .e predictions of all
primary learners were used as the training dataset for sec-
ondary learners. Meanwhile, the original dataset label was
treated as the label of the new dataset to build the training set of
the secondary model. After the primary model, the hard voting
model was inserted as a classifier to form the framework of the
secondary learners. In the secondarymodel, the four prediction
results (AlexNet result, GoogLeNet result, ResNet-50 result,
and VGG-16 result) in each sample were counted as the final
prediction results. After 30 epochs of training, the model was
saved and validated on a test set. .e final accuracy of the
fusion model reached 97.25% (average accuracy), with a
maximum accuracy of 98.00%.

5. Discussion

First, 12 DAMF strategies were implemented on the
iChallenge-PM dataset, resulting in the formation of 13
datasets, including the original one. .en, the experiment

used VGG-16 as a dataset picker to train each of these 13
datasets for 30 epochs, each epoch covering all the data once.
.e accuracy of the model after training on each dataset was
obtained on the validation set. As universally agreed, the
four datasets with the best accuracy were selected as the
preselected datasets to be used in the training of all
remaining models. At the end of the training, the model with
the highest prediction accuracy on the validation set was
chosen as the primary learner.

.rough this experiment, the advantages of DA were
evident, and the data augmented datasets generally obtained
higher accuracy than that of the original dataset..e average
accuracy of the VGG-16 models trained by the four pre-
selected datasets mentioned above was 95.85%, which was
2.84% higher than that of the original dataset.

.is study adopted the strategy of model integration..e
experiment retrained the output of the first-level model. .e
average accuracy of the first-level model was 95.86%, and the
prediction accuracy of the fusion model was once again
improved by 1.39%. Particularly, the greater significance of
the fusion model was that the shortcomings of each primary
learner were balanced. .erefore, the generalization per-
formance and expression of the model were effectively
improved.

We could observe the performance of DAMF in the
primary learners again. Figure 9 displays the training process
of AlexNet, GoogLeNet, and ResNet-50 on the four optimal
DAMF datasets. .e details were expressed as follows: the
solid line part in each subfigure referred to the accuracy, the
dotted line part referred to the loss rate, the abscissa rep-
resented the training epoch, and the ordinate represented
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Figure 9: .e accuracy and loss rate of three primary learners in training process. Four best training results of (a) AlexNet; (b) GoogLeNet;
(c) ResNet-50.
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the percentage (%). It was worth noting that the accuracy of
each model could reach about 95% at the end of training
without model fusion, which meant that DAMF played a
highly favorable role.

We compared all DAMFs during the training process of
VGG-16 by making them learn from all 13 datasets. Fig-
ure 10 exhibits the training effect of VGG-16 on the passing
accuracy and loss rate of each dataset. It was believed that
DAMF should not be as complicated as possible. .e best
result appeared in PALM-Training1600-overturning-dim-
ming-imgaug1. When DAMF got complicated, the effect
would decrease instead. Excessively complex processing of
images might destroy valuable features in the image. .is
meant that DA was a process rather than formula and that
we needed to locate the DAMF dataset that best fit each
dataset in the dynamic process.

We compared the classification results under different
strategies on a fixed dataset (iChallenge-PM). Fully con-
sidering the differences of research studies, part of the

research focused on the optimization of the network
structure, while others focused on the DA..e overall idea of
the research is to start from the optimization of the network
model and DA direction, with the ultimate goal of model
accuracy. Table 4 displays the accuracy of different studies on
the iChallenge-PM dataset in recent years. .e results
showed that although our accuracy rate is not the highest, it
is also encouraging. In particular, our calculation cost was
low. All training took 19 hours and 56minutes, and no
expensive calculationmethods such as transfer learning were
used.

6. Conclusion

.e in-depth analysis of the discussed image DA techniques
based on fusion has taken PM images as the research object
and convincingly displayed their wide variety of applica-
tions. DAMF has the advantage of effectively improving the
accuracy of model training, and the optimal enhanced set of
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Figure 10: Distribution of accuracy and loss rate of VGG-16 under different MF.

Table 3: Training results of VGG-16, AlexNet, GoogLeNet, and ResNet-50 on the filtered datasets.

Primary learner
PALM-Training800-

color

PALM-Training1600-
overturning-cropping-

deforming

PALM-Training3200-
overturning-noise-color-
cropping-deforming-

dimming

PALM-Training1600-
overturning-dimming-

imgaug2

Accuracy Loss rate Accuracy Loss rate Accuracy Loss rate Accuracy Loss rate
AlexNet 0.946083 0.162323 0.950833 0.160698 0.954667 0.197096 0.957583 0.157773
GoogLeNet 0.909 0.203461 0.9395 0.169759 0.962417 0.13617727 0.947917 0.170418
ResNet-50 0.9395 0.219571 0.953583 0.151836 0.955917 0.156737 0.95125 0.166358
VGG-16 0.9503 0.17019 0.95267 0.16523 0.9555 0.27185 0.95858 0.18674

Table 4: Results on the iChallenge-PM dataset.

Accuracy (%) Methods
Siying Dai [28] 81.82 Optimize network structure +DA
InstDis [48] 95.32 Optimize network structure +DA
Contrastive [49] 96.94 Optimize network structure +DA
Invariant [50] 97.30 Optimize network structure +DA
Xiaomeng Li [51] 98.65 Optimize network structure +DA
Ours 97.25 Optimize network structure +DA
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different datasets can be matched through this strategy. By
analyzing the image DA method proposed in this paper,
DAMF proves to be better and more effective than other
methods. .e experiment results have shown that DA still
has an optimal complexity in the combination of DAMF.
Otherwise, too much complexity may destroy the original
features. DAMF can effectively find the best combination of
DA which well retains the characteristics of the input images
and provides better contrast through 11 contrast combi-
nations. It has also been observed that DAMF can train the
model to satisfactory results without using transfer learning
or other methods. Arguably, DAMF can be used as an ef-
fective DA method during the training of CNNs in the field
of fundus image processing.
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