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Abstract: The optical constant of bulk metal is used to determine the dispersion of the local
field under one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) confinement.
3D confinement, expressed as εmic

2 (ω3D), corresponds to the dielectric loss spectra of spherical particles
with a diameter, d, much less than the wavelength of the beam used to measure the spectrum (d << λ).
Excellent agreement with the results of Mie theory and experimental data for solid colloids within
alkali halide crystals was observed. The function expressed as εmic

2 (ω1D) allows the measurement
of spectral micro-characteristics in the frequency range of the longitudinal collective motion of the
free electrons. This corresponds to the spectrum of dielectric losses of bulk plasma oscillations.
The function εmic

2 (ω2D) describes the spectra of the dielectric losses of surface plasma oscillations in
thin metal films. It is shown that the peak positions of εmic

2 (ω3D), εmic
2 (ω2D) and εmic

2 (ω1D) spectra
for simple metals, viz. alkali metals as well as Al, Be, Mg, Ga, In, Sn and Si, are in agreement with
experimental results from electron-energy-loss spectroscopy and various optical techniques.

Keywords: metal nanoparticles; volume plasmons; surface plasmons; localized surface plasmons;
solid colloids; dispersive local field approach

1. Theoretical Considerations

1.1. Intermolecular Interactions in a Condensed Medium

Intermolecular interactions (IMIs) play an important role in the determination of the physical
properties of various condensed media, their nanoparticles and composites. Studies of the spectral
characteristics of these media, both in bulk and in the form of thin films and the corresponding
nanocomposites, play an important role in engineering materials with unique optical properties.
A targeted search for promising optical media should be informed by a deep understanding of the
characteristics of their interactions with light at the microscopic level. Naturally, this necessitates
a more detailed analysis of the influence of the IMIs on the optical characteristics of these media.
IMIs are a consequence of the universal van der Waals interactions that exist in any condensed
medium, as well as specific intermolecular interactions such as, for example, a hydrogen bond.
We exclude from consideration the specific IMIs that manifest themselves in liquids and solutions of
polar molecules. When considering solid media, crystals, dielectrics and metals, we confine ourselves
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to the classical oscillator model and the dipole approximation, according to which a harmonic oscillator
or dipole is compared to each energy level of a condensed molecular medium. The interaction of these
dipoles at the resonant frequency is considered. The basis of the experimentally recorded response of
a condensed medium to the electromagnetic field of the optical frequency, E(ν), is a result of averaging
the elementary interactions of its constituent atoms, or molecules, with a local effective field of the
light wave Eeff(ν) [1,2].

The role of the local field in IMI spectroscopy can be clearly understood based on the formation
of the Hamiltonian (H), the energy operator of the condensed medium. Considering the interaction
between the molecules of the medium, the IMI potential of the medium, to a first approximation,
can be described as two additions to the operator of the energy of noninteracting molecules:

H = H0 + H1 + H2, (1)

where the operator H1 characterizes the contribution of the external field E(ω), considered as a weak
perturbation. In the dipole approximation, this contribution is defined as H1 = µEeff(ω), where µ is the
matrix element of the dipole moment of the energy transition under consideration. The probability of
the transition, in accordance with Einstein’s expression, is determined by the square of this dipole
moment as

B jk =
(
8π3/3h2

)∣∣∣µ jk
∣∣∣2, (2)

where Bjk is the Einstein integral coefficient, which determines the total probability of transition j–k
with a unit integral density of the effective field ueff in accordance with the following expression [3]

αjk = Bjk ueff.

The third term in Equation (1), H2 = µ
∣∣∣Ee f f (ν)

∣∣∣2, takes into account the change in the potential of
the IMI forces due to the nonlinear effects observed in powerful optical fields. In this paper, we consider
the external field E(ν) acting on a condensed medium as a weak perturbation and the influence of an
IMI on the absorption spectra of condensed media will be limited to a linear optics approach. It will be
shown later that the dipole term H1 can be represented as a sum of two terms, one of which considers
the contribution of resonant dipole–dipole interactions of like oscillators, while the other takes into
account the interactions of the oscillator with non-absorbing environmental molecules, known as
induction–dipole interactions. Estimation of the potential of the full interaction of the molecule with
the environment, considering pair potentials of dispersion, induction and resonance interactions [4],
is a difficult task. It is possible to apply a simpler method to consider the IMI in general by replacing
the real interaction of a given molecule with the environmental molecules with a local effective field
acting upon it. This approach, developed in [5,6], has been very successful in analysing the spectral
manifestations of resonant dipole–dipole interactions of various condensed media, including liquids,
dielectrics and metals [7–13].

1.2. The Manifestation of the Spectral Differences of the Effective and Average Fields in a Condensed Medium

According to the ideas presented in [5,7], the spectral probability density of the absorption
quantum transition α(ν) can be represented from both a micro and macro point of view in the form

α(ν) = B(ν) u’eff (ν) = K(ν) c uav(ν)/(Nhν), (3)

where ν is the wave number in cm−1, B(ν) is the spectral density of the specific probability of the
transition in question, u’eff(ν) = Eeff(ν)2/8π and uav(ν) = Eav(ν)2/8π are the bulk spectral energy densities
of the effective and average fields, K(ν) is the absorption coefficient in cm−1, h is Planck’s constant, c is
the speed of light in vacuum, and N is the concentration of absorbing centers in cm−3.
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Polarization of the condensed medium, accompanied by dipole–dipole interactions of the
constituent molecules at resonant frequencies, means that the volume spectral densities u’eff(ν) and
uav(ν), corresponding to the squares of the effective and average fields, are not equal. This is reflected in
the expression, which follows from Equation (3) and reflects the relationship between the macroscopic
and microscopic characteristics of the absorption resonance under consideration:

B(ν) = K(ν)n(ν)c
∣∣∣θ(ν)∣∣∣/(Nhν), (4)

where θ(ν) is the local field factor, bearing in mind differences in the strength of the effective and mean
fields at a given frequency. Since the square of the modulus of the effective field factor in the region of
strong absorption bands is spectrally sharp, the spectroscopic characteristics of a condensed medium
may differ significantly from the characteristics of the corresponding quantum transitions.

Expression (4) was the basis of the so-called dispersion of effective field method (DEF) [5,6],
developed more than half a century ago. This method is based on a comparison of the experimental
absorption spectrum of a condensed medium in the region of the absorption band and the corrected
spectrum B(ν) obtained from Expression (4). The DEF method allows a visual analysis of the role of
dipole–dipole interactions in distinguishing the frequencies and integrated intensities of condensed
media from the characteristics of the microscopic oscillators responsible for their absorption. It was
shown later that data obtained by the DEF method are in good agreement with the results of calculations
performed using the theory of IMI. Subsequent studies have shown that the concepts discussed above
regarding the microcharacteristics of condensed media are valid not only for individual molecular
oscillators, but also for nanoparticles or clusters with characteristic sizes much shorter than the length
of the probe radiation. As shown in [11], the absorption of these particles is determined by the optical
characteristics of the bulk material of the medium under dielectric confinement conditions, i.e., in the
absence of polarization of the medium at the frequency of the resonant absorption considered. It is
more convenient to express Equation (5) in the form

NhB(ν)/2π = ε2(ν)θ(ν), (5)

where ε2(ν) is the dielectric loss spectrum of the condensed medium, the imaginary part of its dielectric

constant ε(ν) = ε1(ν) − iε2(ν), and θ(ν) =
∣∣∣Eav(ν)/Ee f f (ν)

∣∣∣2 is the Lorentz polarization correction,
taking into account the spectral differences of microscopic, Eeff(ν), and macroscopic, Eav(ν), fields in the
condensed medium.

As shown in [12], the left-hand side of (5) can be considered as a microscopic component of the
dielectric loss spectrum of a condensed medium. Thus, Expression (5), which relates the dielectric loss
spectrum of a condensed medium and its corresponding microscopic analog, takes the form

εmic
2 (ν) = ε2(ν)θ(ν). (6)

This method shows good agreement between the frequencies of the maxima of the εmic
2 (ν)

spectra and the natural frequencies of vibration of an alkali halide crystal lattice, calculated both
from their elastic characteristics and observation of the absorption spectra of their microcrystals [9].
For three-dimensional confinement, the εmic

2 (ν) spectrum characterizes the dielectric loss spectrum of
an isolated spherical crystal particle, with dimensions much smaller than the wavelength of the probe
radiation. Similar results were obtained for nanoparticles of noble metals [13]. Therefore, Equation (6)
corresponds to the spectral characteristics of an isotropic micro-object of size d satisfying the conditions
amolec << d << λ, where amolec is the size of molecules and d is the size of so-called mesomolecules
(microregions of the system under consideration) [12,14].
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1.3. Consideration of the Differences between the Effective Eeff(ν) and the Average Eav(ν) Fields in
a Condensed Medium

From Equations (4) and (5), the most important condition for the applicability of the approach
under consideration here is a true determination of the local field factor. As shown earlier [5,6],
the effective local field factor can be expressed in terms of the experimental optical characteristics (the
refractive index, n(ν), and absorption index, k(ν)) using one of the models (Lorentz or Onsager) from
the theory of polarisation of dielectrics. From the Lorentz model, the expression for the effective field
factor for non-polar isotropic condensed matter and for two-atom cubic crystals is

∣∣∣θ(ν)∣∣∣−1/2
=

(ε(ν) + 2)
3

. (7)

Equation (7) should allow calculation of the spectral characteristics of spheroidal nanoparticles of
the mesophase [14], which meet the condition d << λ, but can still be described by the complex dielectric
permittivity ε(ν). In order to confirm this, as well as to obtain expressions for other particle shapes,
in Ref. [12], we deduced an equation for the effective dielectric permittivity, εcomp(ν), of a two-component
medium containing spheroidal particles of different isotropic materials, a and B. Using a generalisation
of the familiar Maxwell–Garnett expression [15,16] based on the Lorentz–Lorentz model and using
expressions for the local field factor via a local field tensor from [14], we obtained a general expression
for different nanoparticle shapes, with different form factors L and different filling factors f (at f << 1)

ε
comp
2 (ν) = fεmic

2 (ν) = fεbulk
2 (ν)θmD(ν), (8)

where θmD(ν) =

∣∣∣∣∣∣∣1 +
∣∣∣ε(ν) − εh

∣∣∣
mεh

∣∣∣∣∣∣∣
−2

, (9)

and m = 1, 2 and 3 corresponds to the form factor L = 1, 1/2 and 1/3, for 1D, 2D and 3D confinement,
respectively. This, in turn, corresponds to particle shapes of a prolate spheroid, oblate spheroid and
sphere, respectively. At intermediate particle shapes, the value of m can be varied in the range from 1
to 3.

This paper will describe calculations of the spectral optical micro-characteristics of a number of
alkali metals, as well as Al, Be, Ga, In, Sn, Mg, Si and Ag for comparison. Results will be presented for
1D, 2D and 3D size confinement, together with a comparison of results with alternative theoretical
descriptions and experimental data available in the literature. The metals considered were selected
since their bulk plasmon resonance is located far from the interband transitions, so they won’t affect
the shape and peak position of the bulk plasma oscillations at ωp. This is not the case in, for example,
noble metals, where this effect is quite noticeable (see, for example, [13] and a short discussion at the
end of this paper).

2. Results of Model Calculations

In order to easily compare the peak positions of the calculated dielectric function with the bulk
and surface plasma frequencies (ωp and ωs) known from the literature, all calculations were done
in units of energy (eV), i.e., ω = }$, where $ is the cyclic frequency and } is the reduced Planck’s
constant. Calculations of the spectra εmic

2 (ω) were performed for 1D, εmic
2 (ω1D), 2D, εmic

2 (ω2D) and 3D,
εmic

2 (ω3D), size confinement using Equations (8) and (9) at f = 0.01 and εh = 1. Values for (n(ω) and
k(ω)) of the bulk metal were taken from various references, viz. from Ref. [17] for Al and Si, from
Ref. [18] for Li, Na, K and Be, from Ref. [19] for Rb, Cs and In, from Ref. [20] for Mg, from Ref. [21] for
Ga and from Ref. [22] for Sn. For Ag, the optical constants were taken from Ref. [23].

Spectra εmic
2 (ω3D), εmic

2 (ω2D) and εmic
2 (ω1D) calculated for Na, Rb and Cs, as well as for Sn, Si and

Ag, are shown in Figures 1 and 2, respectively. From the figures, the peak positions of the spectra
calculated for 1D, 2D and 3D dielectric confinement are significantly different for most of the simple
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metals considered. In order to compare the results obtained with alternative theoretical calculations
and with experimental data from the literature, we consider all three cases in separate sections below.
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Figure 1. Calculated spectra εmic
2 (ω) for 1D, 2D and 3D confinement for (a) Na, (b) Cs and (c) Rb.

In Figure 1b, the result of calculations using Equation (11) is shown by the dashed curve 3, while
dashed curve 2 corresponds to the calculated Im[1/(ε(ω) + 1)] function and the dashed curve 1 to the
Im[1/ε(ω)] function. Note that the dashed curves are normalized using different factors for convenience
of presentation. In (c), the dotted lines correspond to the frequency dependent local field factor θmD(ω),
calculated using Equation (9) at m = 1, 2 and 3.
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Figure 2. Calculated spectra εmic
2 (ω) for 1D, 2D and 3D confinements for (a) Sn, (b) Si and (c) Ag.

2.1. Three-Dimensional Dielectric Confinement

Calculations were performed for 3D confinement of alkali metal and Al nanoparticles embedded
in various media with a dielectric constant of εh. Examples of the results obtained are shown in
Figure 3. In addition, in Figure 3b, the spectral dependencies of the local field factor θ3D(ω) calculated
with Equation (9) at m = 3 are also plotted by dashed lines as an example for Na metal particles in
various solid matrices. The frequencies of the maxima of the spectra obtained are summarized in
Table 2. Note that for these calculations the values of εh given in column XI for alkali halides were
taken from Ref. [24]. These calculations were performed in order to compare the results obtained from
our model with experimental data and calculations using alternative models available in the literature
for alkali metal solid colloids.
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Figure 3. Calculated spectra εmic
2 (ω) for (a) 2D confinement, shown for solid colloids Na + NaI, K + KF

and Rb + RbF, (b) for 3D confinement, shown by solid lines for solid colloids Na + NaCl, Na + NaBr
and Na + NaI corresponding to different εh values. The dotted lines correspond to θ3D(ω) functions,
calculated using Equation (9). (c) shows the results of calculations of εmic

2 (ω) for 1D, 2D and 3D
confinements for Al metal particles in air, at εh = 1 (red, blue and green lines) and for 3D confinement
for Al particles in an Al2O3 solid matrix at εh = 3.72 (olive line).

Experimental data on colloidal solutions of alkali metal particles are difficult to obtain in practice,
due to their aggressive behavior in water or organic liquid solutions. This problem can be overcome if
one considers data on these metal systems in so-called colloid centres (or metallic centres) of alkali
metals, in particular, small alkali metal particles in alkali halide crystals [25]. The colloid absorption
bands can be observed in additively coloured alkali halides using thermal and optical coagulations [24].

The optical properties of solid colloids of alkali metals were intensively investigated in the 1960s
and 70s. It is known that the position of the colloid band of metal particles can be calculated using Mie’s
theory [26] for the absorption of light by metal spheres [25–28]. Mie’s theory relates this absorption
band to the macroscopic optical constants of the alkali metals and the dielectric constant of the host
medium, εh. These calculations were first performed by Savostianova for a Na + NaCl colloid [27] in
1930 and later for other alkali metal colloid centres in Refs. [26,28–35].

For spheroidal metal particles [36], the frequency of the localized surface plasma oscillations can
be determined from the simple equation:

ωl = ωp/

√
1 + (

l + 1
l
εh), (10)

where l is varied from 1 to∞ and εh is the dielectric constant of the surrounding medium, with l = 1
for spherical particles and for l = ∞ for the needle-like particles. For metal colloid particles in an
alkali halide, calculations based on Equation (10) and experimental data obtained in Refs. [26,28–33]
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from Electron–Energy–Loss Spectroscopy (EELS) and optical measurements were summarized in two
review articles, see Refs. [31,35]. Some of the data obtained in previous studies are listed along with
our calculations in Table 2, columns V–VIII.

We note that reasonably good agreement is seen in Table 2 between our calculations for 3D
confinement and data from the literature for most of the solid colloids. However, some deviations from
the experimental results and calculations made for spherical particles are noticeable, specifically for K
and Rb. Results obtained for these colloids are nearly equal to those calculated for l =∞, or for 2D
confinement from our model, which corresponds to the surface plasma oscillations of oblate spheroids
(or needle-like particles) according to Tonks [33]. These results indicate that K and Rb metals coagulate
into oblate spheroid-like metal nanoparticles [30,33].

Finally, the calculations performed here using the dispersive local field approach (Equations (8)
and (9)), were compared with the results of Mie calculations performed by us for these metals using
the same optical constants n(ω) and k(ω) used for calculations of εmic

2 (ωmD) functions. These results
are summarized in Table 1, columns from X to XIII. The peak position of the spectra εmic

2 (ω3D) and
spectra obtained using the Mie equation for the absorption coefficient K(ω) [27]:

K(ω) = 18
(
ω
c

)
πε

3
2
h V

 ε2(ω)

[ε1(ω) + 2εh]
2 + [ε2(ω)]

2

, (11)

where V = (4π/3)R3 is the volume of the spherical particle, c is the velocity of light and εh is the dielectric
constant of the surrounding medium, are listed in columns XIII and XII, respectively. According to
Mie’s Equation (11), if ε2(ω) is relatively small, a resonance condition is obtained at ε1(ω) = −2εh.
When εh = 1, we have Fröhlich’s condition, i.e., Re(ε(ωF)) = −2, where ωF is the so-called Fröhlich
frequency [13]. In Equation (9), if we replace m = 3, f = 1 and substitute θ3D(ω) to Equation (8),
the function obtained εmic

2 (ω3D) is given by

εmic
2 = 9

 ε2(ω)

[ε1(ω) + 2εh]
2 + [ε2(ω)]

2

, (12)

which practically coincides with Equation (11) for K(ω), at least for the peak position. This is also seen
in Table 1 by comparing columns XII and XIII as well as from Figure 1b. The peak position of both
these functions are also in good agreement with the Fröhlich frequency, ωF, listed in column XI and
the position of the localized surface plasmon on the spherical particle, defined as ωp/

√
3 and listed in

column X [27]. These results were partially confirmed earlier for noble metal spherical nanoparticles in
Refs. [11,13,37] and further confirmed with experimental data obtained for spherical nanoparticles of
noble metals in colloidal solutions, as well as by experimental data for the solid colloids mentioned
earlier. The small deviation seen for the value ωp/

√
3 could be due to the fact that EELS experimental

data for the ωp value were used. This varies depending on the source, especially for alkali metals,
since they oxidise rapidly when exposed to air during measurements. Note that the experimental
EELS data in Table 1 are taken from Refs. [38–42].
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Table 1. Calculated and experimental peak positions of ε2
mic(ωmD) spectra calculated for 1D (m = 1), 2D (m = 2) and 3D (m = 3) confinement and experimental data for

the bulk (ωp) and surface (ωs) plasmons.

Metal ε∞ 1D—ωp, eV 2D—ωS = ωp/
√

2, eV 3D—ωF= ωp/
√

3, eV

EELS
ωp, eV ωp at ε1(ω) = 0 ε2

mic(ω1D) =
Im[1/ε(ω)]

Exper.
EELS ωp/

√
2 ωS at ε1(ω) = −1 ε2

mic(ω2D) =
Im[1/ε + 1]

ωp/
√

3 ωF at ε1(ω) = −2 Mie Eq.(11) ε2
mic(ω3D) =

Im[1/ε(ω)]

I II III IV V VI VII VIII IX X XI XII XIII

Li 1.02 7.1 a

8.2 c 6.7 7 4.7 a

4.28 d 5.04 4.64 4.83 4.1 3.5 3.65 3.56

Na 1.06 5.7 a

5.4 c 6 5.92 3.98 d 4.04 4 3.97 3.3 3.3 3.3 3.29

K 1.06 3.8 c 3.9 3.87 2.73 d 2.6 2.85 2.84 2.15 2.3 2.29 2.28

Rb 1 3.41 a 3.36 3.34 2.46 d 2.43 2.5 2.52 1.99 2.02 2.04 2.03

Cs 1 2.9 a 3.07 3.08 1.99 d 2.43 2.2 2.2 1.98 1.8 1.81 1.81

Al 1.11 15.0 a

15.3 b 15.1 15.04 10.3 d

10.3 b 10.8 11 10.9 8.8 8.9 8.87 8.94

Be 1.02 18.7 a

18.4 b 17.5 18.1 11.9 b 13.1 12.2 12.5 10.7 9.9 10.55 10.4

Mg 1.01 10.3 a

10.6 b 10.8 10.7 7.38 d

7.1 b 7.5 8.3 8.27 6.12 6.3 6.3 6.3

Ga 1.0 13.8 a 14.1 14.07 10.2 e 9.8 10.1 10.2 8.03 8.3 8.33 8.4

In 1.0 11.4 a

11.3 c 11.44 11.43 8.7 e 8.13 9.0 8.92 6.6 7.4 7.52 7.4

Sn 1.203 13.7 a

14.3 b 13.0 13.2 10.5 b 9.5 9.0 9.2 7.6 7.3 7.7 7.54

Si 16.7 a

17.0 c 16.3 16.7 11 a 12 11.7 11.8 9.8 9.8 10 9.97

a—Ref. [38], b—Ref. [39], c—Ref. [40], d—Ref. [41], e—Ref. [42].



Materials 2020, 13, 631 10 of 15

Table 2. Peak positions (eV) of optical and energy loss spectra for small metal particle (at a << λ) colloids.

Solid
Colloids ωmax(eV) of ε2

mic(ω) Spectra, Calculations
ωl, eV

Opt. Transm.
ωl, eV
[30,31]

ωl,
eV
[35]

ωl, eV
EELS exp. [29]

ε∞
[24]

[30] 3D 2D 1D
[25,33]. Calculat. Exp. Exp. 1st

peak
ωs

2nd peak
ωp

εh
Exp. Calc l = 1; l =∞

I II III IV V VI VII VIII IX X XI

Na+NaCl 2.28 3.01 5.9
2.23 2.43

2.39 2.2 2.2 2.48
2.35
[26] 2.2

Na+NaBr 2.25 2.95 5.9 2.1 2.25; 2.95 2.11 2.2 5.7 2.65

Na+NaI 2.15 2.86 5.9 2.15; 2.85 2.07 2.3 5.7 2.96

K+KF 1.8 2.33 3.8 1.89 1.8; 2.25 2.3 3.4 1.89

K+KCl 1.67 2.17 3.8 1.7; 1.72 1.7; 2.09
+ 1.6 1.7 2.32

K+KBr 1.64 2.13 3.8 1.61; 1.65 1.63; 2.05
+ 1.46 1.68 2.44

K+KI 1.58 2.06 3.8 1.4; 1.55 1.55; 1.99
+ 1.4 1.54–1.46 2.66

Rb+RbF 1.6 2.05 3.4 1.54; 1.98
+ 2.1 3.4 1.94

Rb+RbI 1.42 1.84 3.36 1.36; 1.79
+ 1.52-1.35 2.63

CsBr 1.2 1.6 3.08 1.12; 4.05
+ 1.18 2.83

LiF 2.1 2.75 6.9 2.76-2.54 2.04

LiH
2.1 2.75 6.9 1.91

[33] 2.4; 3.21
+ 3.6

2.02 2.66 6.9 2.3; 3.1 + 3.94

Al+Al2O3
8.9 10.9 15.03 8.8; 10.8 10.3

[39,41]
15.3

[38,39]
1

5.3 15.03 5.14 3.72

+ Data calculated in this work.

2.2. Two-Dimensional Dielectric Confinement

Calculations of εmic
2 (ω2D) for 2D confinement, using m = 2 and εh = 1 in Equation (9), are shown

in Figures 1–3 for selected metals and the peak positions of these spectra for all of the metals studied
are summarized in Table 1, columns VI–IX. Data on the peak position, ω2D, were compared with the
results of simple estimations for the surface plasmon resonance using the equation ωs = ωp/(1 + εh)1/2

(or ωs = ωp/
√

2 at εh = 1) [43] as well as with the peak position of functions describing these surface
oscillations using Ritchie’s equation—Im(1/ε + 1) (see Ref. [44]). Using a thermodynamic approach and
Bloch’s equation, Ritchie [44] introduced the energy-loss functions—Im[1/ε(ω)] and Im[1/(ε(ω) + 1)]
via real ε1(ω) and imaginary ε2(ω) parts of the complex dielectric permittivity function ε(ω) of the bulk
metal. These two equations describe the probability that fast electrons crossing the material will suffer
energy losses due to volume- and surface-collective electron oscillations, respectively. Ritchie predicted
that the surface (or lowered) plasma loss will happen at ωp/

√
2 for a thin metallic film, where ωp is

obtained from EELS experiments to determine the volume plasma frequency. Two types of energy
losses at the plasma frequency, or volume plasma frequency, and, at a lower frequency, the surface
plasmon frequency, were initially observed for many metals using EELS [38–42]. Later, it was predicted
by Ferrell [45] that plasma oscillations can also be observed using other optical techniques, such as
transmission, reflection, emission, etc., under specific experimental conditions, the next section has
more details on this. The function Im[1/ε(ω)], corresponding to bulk plasma oscillations, will also be
discussed in the next section.

It can be shown that the probability of transition between the vibrational energy levels described
in our approach by the function B(ω2D) ≈ εmic

2 (ω2D) = 4ε2(ω)/
[
(ε1(ω) + 1)2 + (ε2(ω))

2
]

up to
a constant factor coincides with the function Im[1/(ε(ω) + 1)], introduced in [44]. Therefore, the
maxima for these two functions will be the same; see, for example, the data shown for Cs in Figure 1b.
Therefore, these values are listed in Table 1 in one column only, viz column IX. Data obtained for
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ω2D were also compared with data from EELS and other experiments, as shown in Table 3 for some
metals. Note that Table 3 was created based on a Table published in an excellent review article by
Steinmann, (Ref. [46]). We have updated Steinmann’s Table with specific figures available for the metals
investigated here and also with the addition of recent data from EELS and other optical experiments.
Again, we see excellent correspondence between the spectral data and data obtained from simple
calculations and experiments for all the metals studied here for 2D confinement, or for surface plasmon
resonance, by comparing the results presented in Tables 1 and 3.

Table 3. Experimental data obtained from EELS and optical measurements for bulk and surface
plasmons for simple metals.

Plasmon
Type N Effect References From

[46]

Optical Spectra,
Peak

Position, eV
EELS Data Bulk Surface (SPR) Calculation

ωl, eV

Radiative 1 Plasma
radiation

Ag:
[34,35,36,37,38,39]

Al: [43,44,45]

Ag: 3.54–3.75
Al: 15.2–15.5 15.3 [39,42] 10.3 [39,42] 15.9 [39]

Radiative 2

Optical
plasma

Resonance
in

transmission

Ag: [40,59,60,89]
K: [12,61,72]

Al: [62,63,66,67]
Mg: [86]

Ag: 3.75–3.8
K: 3.54–3.82
Al: 14.8–14.9

Mg: 10.1

3.8 [40]
10.5 *; 10.6 [39] 7.1 [39] 10.9; 7.7 [39]

Radiative 3

Optical
plasma

Resonance
in

reflection

Al: [90,91] Al: 15.3

Radiative 4

Optical
plasma

Resonance
in

photoemission

K–Cs: [70,71,72]
Al:

[66,67,73,91,92]

K–3.7; Na–5.9;
Rb–3.1; Cs–2.87;
Al: 14.85–14.9

Li—9.5; Na—5.4
[40];

K—3.8 [40];
Cs—2.9 [41];
Rb—3.41 [38]

Na—3.8
[40];

Rb—2.46
[42];

Cs—1.99
[42]

Li—8.0; 5.7 [39];
Li—8.1;

Na—6.0 [40];
K—4.4;

Rb—4.0 [42];
Cs—3.6 [40]

Radiative 5

Plasma
radiation
excited by

light

Ag:
[75,76,77,78,83]

K: [79,87]

Ag: 3.77–3.8
K: 3.76

Ag—DEF, this
work

3.5, 3.7, 3.78

Non-Radiative 6
Frustrated

total
Reflection

Ag: [99] Ag: 3.6

Non-Radiative 7

Radiative
decay of

tangential
Surface

plasmon

Ag:
[27,28,29,50,51,53,93]

Al: [53,100]

Ag: 3.49–3.82
Al: 9.7 (2D) 15 [40] 10.3 [41]

* Data from Schmüser, P.Z. Physik 1964, 180, 105.

2.3. One-Dimensional Dielectric Confinement

The functions εmic
2 (ω1D) for 1D confinement, calculated for metals using m = 1 and εh = 1 in

Equation (9), are shown in Figures 1–3 for selected metals. The peak positions of these functions
are summarized in column V of Table 1. In this case, the function B(ω1D) ≈ εmic

2 (ω1D) =

ε2(ω)/
[
(ε1(ω))

2 + (ε2(ω))
2
]

and corresponds to the function Im[1/ε(ω)] introduced by Ritchie in
1957 [44] and earlier by Fröhlich [47] and then by Wilson [48] for describing the energy loss function
due to induced volume collective electron oscillations. Peak positions for both functions (εmic

2 (ω1D)

and Im[1/ε(ω)]), as well as the frequency corresponding to ε1(ω) = 0, are listed in columns V and IV,
respectively. In Table 1, column III, experimental results obtained from EELS measurements are shown.

Spectral frequencies corresponding to 1D confinement εmic
2 (ω1D), when Reε(ν) = 0 [47,48] are near

the plasma frequencies of the metals, measured using EELS initially [38–42] and listed in columns
III–IV of Table 1. In addition, the frequencies of the spectra εmic

2 (ω1D) subject to the conditions needed
for the appearance of the absorption bands of longitudinal oscillations of free electrons ω1D, match the
frequency of the longitudinal mode ωLO determined using the dynamic theory of lattice vibrations,
as demonstrated in Ref. [37].



Materials 2020, 13, 631 12 of 15

These results suggest that resonance absorption at the longitudinal vibration frequency can be
detected in a thin metal layer with a thickness h << λ, when the influence of medium polarization in the
oscillation direction is not present. This agrees with results published in [49], where the appearance of
absorption at the oscillation frequency LO is due to conditions within a thin dielectric film at an oblique
incidence of the probe beam. For metals, this corresponds to Ferrel’s modes, which are theoretically
predicted in [45] and can be seen in optical experiments using spectroscopic ellipsometry [50], as well
as transmission and reflection [51–55] methods at an oblique incidence of p-polarized light within
a thin film.

As mentioned earlier, a selection of simple metals was used in this study to exclude the effect of
interband transitions on the peak of the spectrum εmic

2 (ν1D) in particular. For simple metals, interband
transitions occur far from free electron oscillations and don’t affect either the shape or the peak position
of the longitudinal phonon (or the bulk plasma peak ωp) as shown in Figures 1–3. However, for noble
metals, closely spaced interband transitions do have an influence on the plasma peak. For example, for
silver and gold, Drude calculations ofωp using the equationωp = (e2Ne/ε0mc)1/2, give values around 9 eV.
However, in Refs. [52,53], the LO mode at ~3.8 eV was seen in p-polarized reflection and transmission
spectra from thin silver films when measured at an oblique angle of incidence. Calculation of silver
spectra, εmic

2 (νmD), using optical constants from Ref. [23], for 1D, 2D and 3D confinement are shown in
Figure 1c and demonstrate peak positions at 3.5 eV (for ωF), at 3.7 eV (for ωS) and at 3.78eV (for ωp).
These values are in good agreement with measurements from Refs. [55,56] for ωp as well as forωF and
ωS as seen from Table 3.

Finally, we would like to note that Figure 3b actually confirms the assumption made earlier by
Doyle in [25] that the colloid band resonant peak is greatly influenced by the spectral dependence
of the Reε(ω) function for metal. As a result, the peak of absorption occurs where the internal field
factor is a maximum and, therefore, the colloid band may be considered to be a frequency dependent
local field phenomenon. Furthermore, Figure 1c shows an example of comparison of εmic

2 (ωmD) and
θmD(ω) functions for Rb for all types of confinement, i.e., 1D, 2D and 3D. a similar correspondence
between these two functions is demonstrated for all three resonances at ωF, ωs and ωp. This leads to
the conclusion that all three resonance bands can be regarded as a dispersive local field phenomenon
under these conditions.

In conclusion, we note that several different approaches were suggested for the description of
oscillations of bulk, surface and localised surface plasmons on spherical metal particles. We can split
these approaches into macroscopic and microscopic approaches using electrodynamic, thermodynamic
and hydrodynamic equations. It appears that the first theoretical description of the so-called
“transition radiation” was presented by Frank and Ginsburg in 1946 [56] based on a macroscopic
electrodynamic approach and further developed and demonstrated experimentally using optical
experiments (see, for example, [57–59]). This phenomenon was later described as plasma oscillations
based on a thermodynamic approach using Bloch’s equations by Ritchie [44]. Alternative approaches,
such as microscopic methods based on Maxwell–Garnett effective medium theory and a dipole
approximation [25,60,61], as well as Ferrell’s approach based on hydrodynamics using Laplace’s
equation [46], were also explored.

The dispersive local field approach used here is also based on a microscopic dipole approximation
and allows a simple equation to describe all three cases discussed, using one simple equation and
a different form factor for differing confinement, in Equation (9). This approach illustrates the possibility
of using a molecular approach for composite systems including liquids and solutions, solid dielectrics
or crystals as well as metallic systems.

3. Conclusions

Tables 1 and 2 show that the peak frequencies of the εmic
2 (ω3D) spectra for 3D confinement,

corresponding to absorption by spherical metal micro-regions with dimensions d << λ, are seen close
to the Fröhlich frequency, ωF, at Reε(ωF) = −2. These frequencies are also closely associated with the
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absorption frequencies of spherical nanoparticles with a diameter of ~4–40 nm obtained using Mie
theory [27] and also correspond to the spectral dependence of the probability of the energy loss function
Im[1/(ε(ω) + 2)] due to the localised surface plasmon oscillations of spherical particles introduced
in [44,62]. Frequency maxima of the spectral function, calculated for oblate spheroidal particles,
εmic

2 (ω2D) for 2D confinement are observed at ε1(ω) = −1 and correspond to the spectral dependence of
the probability of the energy loss function Im[1/(ε(ω) + 1)] due to induced surface-collective electron
oscillations or to the surface plasmon as introduced in [44] and discussed in many theoretical papers,
for example [63–66]. Furthermore, spectral frequencies corresponding to one-dimensional confinement
εmic

2 (ν1D) at which the value of Reε(ν) = 0 are near the plasma frequencies of the metals observed
using EELS and various optical experiments. These frequencies coincide with the peak of the function
Im[1/ε(ω)] introduced to describe the plasma energy loss function in [44,47,48]. Finally, we believe that
this study on the effect of the local field on plasmons in simple metals may have significance in the area
of Surface Enhanced Raman Spectroscopy (SERS). Strong coupling between plasmons and molecular
excitons, specifically dye excitons, during SERS measurements using noble metal nanoparticles, has
been observed recently, and this is being actively investigated. More details are available online in an
excellent review [67].
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