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Abstract: Extant literature suggests that xenophobic bullying is intensified by isolated national or
global events; however, the analysis of such occurrences is methodologically limited to the use of
self-reported data. Examining disclosures of racist bullying episodes enables us to contextualize
various perspectives that are shared online and generate insights on how COVID-19 has exacerbated
the issue. Moreover, understanding the rationale and characteristics present in xenophobic bullying
may have important implications for our social wellbeing, mental health, and inclusiveness as a global
community both in the short and long term. This study employs a mixed-method approach using
Big Data techniques as well as qualitative analysis of xenophobic bullying disclosures on Twitter
following the spread of COVID-19. The data suggests that about half of the sample represented
xenophobic bullying. The qualitative analysis also found that 64% of xenophobic bullying-related
tweets referred to occasions that perpetuated racist stereotypes. Relatedly, the rationale for almost
75% of xenophobic bullying incidents was due to being Chinese or Asian. The findings of this study,
coupled with anti-hate reports from around the world, are used to suggest multipronged policy
interventions and considerations of how social media sites such as Twitter can be used to curb the
spread of misinformation and xenophobic bullying.

Keywords: xenophobic bullying; Twitter; COVID-19; social wellbeing; machine learning; qualitative
analysis; misinformation

1. Introduction

The 2014 uniform definition for bullying identifies the behavior as an observed or
perceived imbalance of power that is repeated or highly likely to be repeated. The definition
also noted that bullying might inflict harm or distress on the target, including physical,
psychological, social, or educational harm [1]. While most research on bullying addresses
in-school or classroom behaviors [2,3], research on xenophobic bullying is limited but
draws a wider focus by examining xenophobic bullying in broader contexts and circum-
stances [4]. The general parameters within which xenophobia is defined in the bullying
literature consist of treatment resulting from the fear of a foreigner [5] or the ‘other’ [6].
The use of the word ‘fear’ is normalized for all segments of societal populations; therefore,
research on xenophobic bullying stems beyond school-related bullying and addresses
behavior in varying age groups [7]. In order to distinguish xenophobic bullying from other
similar behaviors such as the prejudicial treatment of racialized people and/or discrimina-
tion, xenophobic bullying is largely classified as an emotional reaction aimed at specific
individuals that are seen as a threat to the norms and values of the collective society [4,8].

The increase in xenophobic bullying is attributed to the occurrences of isolated or
global events, which can foster an opinionated conversation online [9]. The worldwide
outbreak of the COVID-19 virus is said to be among one of the most disruptive events
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to be recorded in modern history [10]. The first cases were identified in early January
2020 in Wuhan, China and the rapid spread of the virus worldwide led health officials to
declare COVID-19 a pandemic on 11 March 2020. In addition to the obvious physical health
concerns, the spread of COVID-19, much like previously recorded pandemics, exacerbated
concerns of social and societal wellbeing [11]. The pandemic also ensued mass hysteria and
panic with regard to its origin and spread. Having believed to have originated from China,
most countries and online platforms saw a significant increase in xenophobic behavior, in
particular, strong anti-Chinese and anti-Asian sentiment, which resulted in instances of
anger, violence, and threats directed towards Asian communities and diaspora [12].

This study focuses on the first three months of the COVID-19 pandemic and, using
Big Data, explores xenophobic bullying experiences shared on Twitter. The examination
of the rhetoric within the first few months of the pandemic is particularly important and
noteworthy since issues such as misinformation and fearmongering are most apparent
during that time [13]. Other similar studies also opted to examine relevant data from
the early months of the pandemic, noting that, as time progresses, negative connotations
and xenophobic attitudes are likely to manifest in various ways, thereby reaffirming the
importance of addressing such behaviors at the start of the pandemic [13,14]. Accordingly,
using natural language processing, machine learning, and qualitative content analysis, the
results from this study aim to generate insights into how the first weeks and months of
the global COVID-19 pandemic fueled and exacerbated xenophobic bullying, particularly
toward those of Asian descent or perceived to be of Asian descent. In contrast to the
majority of studies that examined COVID-19-related xenophobic bullying, this study does
not utilize solicited self-reported data; rather, by utilizing a methodological approach that
addresses the limitations of self-reported data, it provides an interdisciplinary and novel
approach that examines unprompted and unsolicited disclosures of COVID-19-related
xenophobic bullying on Twitter.

Twitter is a microblogging and social networking site that allows users to communicate
through 280 character posts known as “tweets.” Tweets can also include websites or
hashtags, a metadata tag prefaced by the symbol #, which allows for easy indexing or
cross-referencing. Twitter has approximately 396.5 million users worldwide, supports
33 languages, and over 70% of its user base is outside of the United States [15]. The
worldwide scope of Twitter means that this study is also not limited to one geographic
location and can tap into xenophobic bullying experiences shared from around the globe.
Relatedly, according to Wachs et al. [16], online conversations with negative connotations
towards a class of people also tend to deteriorate inclusivity while instigating negative
social behaviors such as episodic racial bullying or alienating individuals or groups of
people. This study utilizes Twitter to identify COVID-19-related “bullying traces”. Xu
et al. [17] and Bellmore et al. [18] note that bullying participants utilize online platforms
to share or respond to bullying experiences and these “bullying traces” allow us to gather
various perspectives about both offline and online bullying episodes. The study allows
us to expand our understanding of COVID-19-related xenophobic bullying traces and
points to ways that methodologies such as natural language processing (NPL) and machine
learning (ML) can be utilized to improve the online detection of abusive and xenophobic
bullying content, especially as it relates to the pandemic. Moreover, understanding the
rationale and characteristics present in xenophobic bullying from the beginning of the
pandemic may have important implications for our social wellbeing, mental health, and
inclusiveness as a global community both in the short and long term. As this pandemic
continues to affect us worldwide, the findings from this study may help to address, prevent,
or mitigate continuing xenophobic bullying as a result of COVID-19.

2. Literature Review
2.1. Xenophobia and Racist Bullying

The earliest forms of xenophobic behaviors can be observed in the interactions between
those of various faiths before the start of the 19th century. More particularly, historical



Int. J. Environ. Res. Public Health 2022, 19, 4824 3 of 19

accounts of the time illustrate the fear and emotional reactions of Roman Catholics in their
treatment of individuals of the Jewish faith, see [4]; however, followed by globalization
and widespread migrations of tribes and people, xenophobic bullying and sentiment are
not limited to religious differences [5,8]. Rather, according to more recent literature, xeno-
phobia and xenophobic bullying, in particular, can be observed in many social settings
such as schools and workplaces [19,20]. Moreover, with the progression of social media
technologies, xenophobic bullying is now increasingly common and concerning for practi-
tioners and policymakers [21]. Online xenophobic bullying mobilizes the victimization of
individuals and groups beyond the confines of physical space and into the everyday lives
of individuals on the world wide web [22]. Among some of the most common forms of
xenophobic bullying is race-based bullying. In other words, victimizing someone based
on their racial or ethnic identity. Like other forms of xenophobic bullying, the decision to
bully a certain group or individual stems from a social identity perspective, according to
which racially diverse individuals are seen as part of a salient ‘out-group’ [19].

While it is possible that not all individuals belonging to the perceived ‘out-group’ face
stigmatization, the extant literature on xenophobic bullying in particular states that such
individuals are far more likely to be bullied based on their belongingness to a certain racial
or ethnic identity [22,23]. For example, a study on workplace bullying illustrated that em-
ployees that are foreign-born or immigrating from dissimilar countries are four times more
likely to experience workplace bullying within the Swedish workforce [24]. Other studies
with similar results indicated that racial or ethnic minorities in various workplace settings
are seen as targets of workplace stress, thereby far more likely to be bullied in comparison
to those belonging to or ascribing to the race of the majority [23,25]. Studies examining
xenophobic bullying in schools also found similar results. Racial identities and gender
identities continue to be a point of victimization for young adolescents, especially in middle
school and secondary school [2]. Serious short-term and long-term consequences such as
suicidal ideation and attempts, depression and other psychosocial health issues, and social
isolation are commonly associated with xenophobic bullying in schools [3]. Furthermore,
with the progression of social media technologies, practitioners and policymakers cited an
increase in xenophobic bullying, often stemming from online platforms and resulting in
further victimization of individuals in-person in schools [20].

2.2. Xenophobia and Racist Bullying Related to COVID-19

Global or newsworthy events accompanied by negative connotations towards a group
or individuals can serve as a catalyst and exacerbate bullying both online and in person.
The detrimental impacts of anti-Asian sentiment alongside the spread of the global COVID-
19 pandemic presented individuals of Asian descent or those perceived to be of Asian
descent with unique and unprecedented challenges. In addition to countless reports of
physical assaults, anti-Asian sentiment also resulted in widespread xenophobic bullying,
targeting not only individuals but also their culture, businesses, and overall livelihood [26].
Moreover, anti-Asian hate is not limited to one geographic location. The United States-
based Stop AAPI Hate coalition received reports of 10,370 hate incidents against Asian
American and Pacific Islanders (AAPI) between 19 March 2020 and 30 September 2021 [27].
Similarly, the United Kingdom-based organization End Violence and Racism against East
and Southeast Asian Communities (EVR) reported that hate crimes against East and
Southeast Asians in the United Kingdom rose by almost 50% in the last two years [28].
The Russian-based organization SOVA also reported an increase in attacks against those of
Asian descent (SOVA).

Likewise, a study by Cheng [29] also illustrated how xenophobic perceptions held
by those in the United States resulted in generational damages to the physical and mental
health and wellbeing of Asian-Americans. The normalization of the use of terms such
as ‘Wuhan flu’ or the ‘Chinese virus’, alongside other racial slurs by public figures such
as heads of state and government officials, resulting from xenophobic bullying caused
undeniable damage to the livelihood of Asian-Americans [13,30]. Individual and com-
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munal acceptance of and adherence to xenophobic bullying and propaganda resulted in
the abandonment and boycott of Chinese businesses and communities, especially those
located in areas commonly known as Asian-ethnic enclaves [29,31]. Other studies also
cited significant increases in hate crimes directed towards Chinese communities, such
as vandalism and the destruction of property see [32]. Cases of physical assault and/or
bullying of Asian-Americans in commonly shared places such as public transport busses,
grocery stores, and public sidewalks were also reported [33,34].

In addition to in-person instances of xenophobic bullying, there was and continues
to be a significant increase in xenophobic bullying on online platforms [35]. Although
the spread of hateful rhetoric and misinformation about the pandemic is not limited to
online platforms, some studies suggested that the resultant online xenophobic bullying of
individuals and communities has further jeopardized the health and wellbeing of affected
individuals [36,37]. Additionally, online platforms were also pivotal in the spread of
misinformation on the virus itself, which has led to an increase in anti-Asian rhetoric
and xenophobic bullying [10]. For example, a study by Yang [38] examined the role of
misinformation spread online. The author found that misinformation about Chinese culture,
such as eating habits and cleanliness, began to surface as the spread of COVID-19 gained
global momentum [38]. Such negative connotations wrongly associated with the Chinese
culture on worldwide online platforms played an undeniable role in fueling anti-Asian
rhetoric, which consequently led to widespread xenophobic bullying online [39].

2.3. The Current Study

The current study takes an interdisciplinary approach to examine a pressing and
timely social issue; it examines bullying discourse on Twitter while emphasizing the rise
of race-based bullying as a result of COVID-19. A few studies suggest that high-profile
bullying incidents worldwide lead to an increase in bullying-related Twitter posts [17,40,41].
These posts come not just from those reporting the high-profile cases or defending the
victims but also from current and former victims who tweeted to self-disclose their own
online and offline bullying experiences. These disclosures are important since they indicate
that while platforms such as Twitter may be conduits for bullying behavior, they also serve
as therapeutic and cathartic means to interact, support, and share with others.

This study utilizes Twitter to identify COVID-19-related “bullying traces” [17,18]. The
study focuses on the first three months of the COVID-19 outbreak, and we hypothesize
that from the start of the pandemic, there was an immediate increase in xenophobic con-
tent, including hateful speech towards specific ethnic groups, especially Chinese people,
since COVID-19 is believed to have originated from Wuhan, China. The study is a novel
contribution to the literature as it utilizes a non-traditional source of data to examine
COVID-19-related xenophobic bullying. A majority of previous studies and reports examin-
ing xenophobic bullying during COVID-19 rely on solicited and self-reported accounts such
as surveys and interviews. While this has expanded our understanding of the prevalence
and scope of pandemic-related xenophobic bullying, this approach is subject to the limita-
tions present in all self-reported data, which may reduce the reliability and validity of the
results. This can include response bias such as social desirability bias where participants
provide a socially acceptable answer rather than the truth, limitations due to differing
interpretations or comprehension of the questions, and concerns related to recall where
participants are not able to accurately recall past behaviors [42,43]. Scholars contended that
self-reported data related to bullying behaviors may be particularly susceptible to these
limitations since not all bullies may admit to their negative behaviors [44], and there may be
challenges with recall in retrospective studies that ask participants to think back to bullying
events going back more than a year [45]. Additionally, there may also be issues due to
sampling bias and variations in bullying definitions and participant understanding [46].

The current study addresses these limitations through the use of Big Data. The public
nature of Twitter allows us to gather data on xenophobic bullying experiences that are
unprompted and unsolicited. Moreover, the study allows us to tap into bullying experiences
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in real-time from individuals around the world using a random sampling strategy. The
global nature of the COVID-19 pandemic would suggest that Twitter users from all around
the world would utilize the platform to perpetuate, disclose, and share their personal or
known xenophobic bullying episodes. Before the pandemic, 330 million monthly active
users worldwide were using Twitter. Given that the pandemic shut the world down and
forced countries around the world to employ social distancing and lockdown measures,
one could argue that social media became an even more important source of information,
communication, and socialization. Using human-coded tweets and machine learning
algorithms, this study looks to examine the role of the tweet author, the form of bullying
mentioned in the tweet, and why the Twitter user posted about the bullying behavior.
Furthermore, the qualitative content analysis provides a more nuanced look at the type of
xenophobic bullying behaviors being referenced, the characteristics of the bullies and the
victims, and the rationale for the xenophobic bullying.

3. Methods
3.1. Data Collection

The data used in the study was gathered via Twitter’s streaming Application Program
Interface (API), which represents a free data retrieval system where users can identify a list
of keywords and tweets that match the keywords are retrieved. The data for the current
study includes tweets from 3 January 2020, when China first officially notified the World
Health Organization (WHO) of the COVID-19 outbreak, until 31 March 2020, two and
half weeks after the WHO declared COVID-19 a pandemic and most countries around
the world had entered into lockdowns and seen a significant rise in the number of cases
and deaths. Tweets were collected with the primary keywords “bullied, bully, bullying,
cyberbullied, cyberbully, and cyberbullying” for the study time period. These tweets were then
additionally filtered with the following secondary keywords: “corona, COVID, COVID-19,
COVID19, coronavirus, sarscov2, SARS-CoV-2, covididiot, covidiot, virus” to limit the tweets
to COVID-19-related bullying incidents. Only tweets that matched both a primary and
secondary keyword were retained. Then, re-tweets, tweets with more than six hashtags,
non-English tweets, and tweets that only included a website were removed to clean the
dataset and remove spam accounts. After the keyword filtering and data cleanup, 65,887
tweets were retained and served as the tweets utilized for the current study. Following
this, tweets were tokenized, and each token was tagged using NLTK’s part-of-speech (POS)
tagger to identify the lexical category of the tweet [47]. Then, hashtags were converted
to a single token, URLs and user mentions were replaced with placeholders, and each
token was subsequently lemmatized based on their POS tag through NLTK’s WordNet
Lemmatizer [48]. Next, the tweets were transformed into a TF-IDF matrix [49] using
unigrams (one token) and bigrams (two consecutive tokens), and the TF-IDF matrix was
utilized for the supervised machine learning model discussed below.

3.2. Identifying Bullying Traces

Following this, the tweets were classified as a “bullying trace” if the tweet author par-
ticipated in or mentioned a discreet bullying episode. Similar to previous studies [18,40,41],
tweets were taken at face value rather than abiding by traditional definitions of bully-
ing, which often include repetition, imbalance of power, and intent [50]. The focus was
on the tweet author’s identification and interpretation of a COVID-19-related bullying
episode. Thus, any reference to a COVID-19-related bullying episode that was personally
experienced or being shared by the tweet author was considered a bullying trace. Tweets
were not considered a bullying trace if it was a news headline that was simply copied and
pasted without any additional original content, tweets that referred to a bullying episode
that may happen in the future, tweets that shared an opinion about bullying instead of
an actual discrete episode, and tweets that sounded like bullying but was not defined
explicitly as bullying by the tweet author. Once the tweets from all days were concatenated
together, 5000 tweets were randomly selected without replacement for annotation. Using



Int. J. Environ. Res. Public Health 2022, 19, 4824 6 of 19

this random sampling strategy, every tweet had an equal probability of being chosen, and
any given tweet could not be chosen twice. Then, the 5000 randomly selected tweets were
labeled independently by two coders. Following the criteria noted above, seven tweets
were marked as “not applicable” as they did not have anything to do with COVID-19-
related bullying. Another 3009 tweets, or 60.26% of the labeled tweets, were identified as
non-bullying traces based on the exclusion criteria above. Based on 1000 of the 4993 tweets
(this excludes the tweets marked as not applicable), an interrater agreement or Cohen’s
kappa of κ = 0.74 was calculated, and of the 4993 labeled tweets, 1984 or 39.74% were
classified as COVID-19-related bullying traces.

To classify the tweets, the study utilized validated and frequently utilized standard
machine learning and natural language processing methods, including logistic regression
and support vector machines (SVM) [17,51]. Eighty percent of the human coded tweets
were used as the training dataset to fit the model, while 20% of the tweets were held back
and used as the test dataset to validate and test the final model [52]. Each model was
trained using stratified 12-fold cross-validation, and parameter tuning was conducted to
find the best performing model. A combination of the average accuracy and average F-1
score on the test set was used to choose the final model for each classification task. The
performance of the final models based on the test dataset is highlighted in Table 1.

Table 1. Confusion matrix showing agreement and disagreement between human coding and
machine learning models.

Human Coded Machine Learning Predictions
(* Using Test Dataset)

Accuracy
Naïve
Model

Accuracy
Machine

Learning Model

F1-Score
Machine

Learning Model

Bullying Trace
(N = 1498) Yes No

60% 75% 74%Yes 317 278

No 101 802

Tweet Author
(N = 395) Accuser Defender Other Reporter Victim

30% 56% 50%

Accuser 75 7 0 39 0

Defender 37 0 0 30 0

Other 3 0 0 18 0

Reporter 27 0 0 123 0

Victim 1 0 0 13 15

Form of
Bullying
(N = 397)

Cyber General Physical Verbal Xenophobia

7% 79% 76%
Cyberbullying 0 27 0 0 1

General 0 198 0 0 11

Physical 0 1 0 0 0

Verbal 0 1 0 0 1

Xenophobia 0 41 0 0 116

Reason for
Posting

(N = 397)
Accusation Cyberbullying Denial Report Self-

disclosure

65% 67% 65%
Accusation 133 0 0 41 2

Cyberbullying 10 0 0 4 1

Denial 3 0 0 5 0

Report 40 0 0 122 3

Self-disclosure 2 0 0 19 12

3.3. Characteristics of COVID-19-Related Bullying Traces

Once the tweets were identified as COVID-related bullying and non-bullying traces,
the tweets were further coded to examine three research questions: (1) Who was posting
about the COVID-related bullying episode? (2) What form of bullying was being mentioned
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or used in the tweet? Additionally, (3) Why was the Twitter user posting about the COVID-
related bullying episode on Twitter? The two independent coders labeled the 1984 tweets
that were identified as COVID-19-related bullying traces to be used as part of the machine
learning models to examine the three questions noted above.

The role of the tweet author was classified using bullying roles identified by Salmi-
valli [53], Xu et al. [17], and Bellmore et al. [18]. An author was identified as a ‘victim’ if
they tweeted about an episode where they were being bullied or were bullied in the past.
A ‘defender’ was someone who stood up against a bully in the tweet. A ‘reporter’ shared
information about a COVID-19-related bullying episode but was not involved, including
as a bystander. An ‘accuser’ accused someone of bullying; however, it was not clear if they
were a victim, defender, or had another role. Three additional roles were also coded, an
‘assistant’ who did not initiate the bullying behavior but assisted the bully, a ‘reinforcer’ who
encouraged the bullying behavior but was not directly involved, and a ‘bystander’ was
someone who witnessed or was present but was not involved in the bullying behavior. The
number of assistants, reinforcers, and bystanders for the current study was very small, so
they were combined into one group referred to as the ‘other’.

Several forms of bullying were also classified. Similar to the bullying traces, this was
also taken at face value and the explicit information provided by the Twitter user. Tweets
where the user defined any physical actions used to bully or hurt someone were labeled
as physical bullying. Verbal bullying was classified if the use of words such as insults,
teasing, taunting, etc., was used in the bullying incident, and cyber bullying was instances
where the bully used digital tools, technology, or online platforms to engage in bullying.
Bullying traces that did not mention a specific form of bullying, or if a general reference
to “bullying” was made, were labeled as general bullying. Finally, bullying behavior
that was explicitly stated as being based on a fear of, hatred towards, or discrimination
towards a group of people or individuals from specific geographic locations was labeled as
xenophobic bullying.

The reasons for posting about the COVID-19-related bullying episode were based on a
previous study by Bellmore et al. [18]. This included an accusation where the Twitter user
was accusing someone of engaging in bullying. In a report, the tweet author described a
bullying episode they knew about. A self-disclosure post was where the author revealed
themselves as the bully, victim, defender, assistant, or another role. In a denial post, the
author denied participating in a bullying episode and a cyberbullying post represented a
direct attack from a bully on a victim.

3.4. Qualitative Content Analysis

To gain a deeper understanding of the characteristics of xenophobic bullying, a qualita-
tive content analysis was conducted on bullying traces categorized as xenophobic bullying.
Content analysis allows researchers to quantify and analyze the presence and meaning of
certain words, themes, and concepts within qualitative data. To begin, the study authors
used a directed content analysis approach and reviewed the tweets classified as xenophobic
bullying to identify key categories and create an initial coding scheme. During this process,
several key themes were identified, including the relationship of the tweet author to the
victim and/or the categorization of the victim, the relationship of the tweet author to
the bully and/or the categorization of the bully, the type of xenophobic behaviors being
referenced, and the rationale for the xenophobic behavior(s).

Following this, using the initial coding scheme, two of the study authors independently
coded 25 randomly selected tweets for each category, and the labeled tweets were compared
to examine the level of agreement. The coding categories were discussed at length, and
new codes were added to ensure that the codes reflected all the themes within the tweets.
After this recontextualization phase, a codebook with all of the categories and codes was
finalized for the categorization phase [54]. To increase the reliability, two additional rounds
of coding were conducted with 25 new randomly selected tweets for each category and
round until the two study authors reached a level of agreement of 80% or higher. See Table 2
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for the final list of categories and codes that were derived during the categorization process.
Then, using the final coding scheme, a qualitative content analysis was conducted on a set
of new 300 randomly selected bullying traces categorized as xenophobic bullying using the
qualitative software program Dedoose [55]. The 300 tweets represent approximately 7% of
the xenophobic bullying tweets. Given the exploratory nature and the random sampling
utilized in the qualitative portion of the study, we believe this to be a sufficient sample size.
Moreover, prior studies that used similar methodologies analyzed samples that represent
as little as 1% of the total sample [41,56]. After the content analysis, all the coded tweets
were reviewed to ensure agreement with the coding. The 300 tweets served as the final
content analysis sample, and the results are highlighted below.

Table 2. Qualitative categories and codes.

Qualitative Category Codes

Who are the xenophobic bullying victims?

• A group of people
• Someone known or the tweet

author themselves
• General/unnamed individual

Who are the bullies engaging in xenophobic
bullying or those perpetuating xenophobic
bullying behavior?

• Someone personally known
• General/unnamed person
• Former United States President

Donald Trump
• U.S. government official (non-Trump)
• China/Chinese government
• Group of people–race not specified
• Group of people–race specified

What type of xenophobic behaviors were
referenced in the tweets?

• Perpetuating racist stereotypes
• Physical attacks
• Cyberbullying
• Multiple forms of bullying
• Unknown–not enough information

What was the rationale for the
xenophobic behavior?

• Being bullied for being Chinese
• Being bullied for being Asian
• Former U.S. President Trump or other

governmental leaders reinforcing
xenophobic behaviors

• Having Coronavirus or perceived to have
it = being bullied

4. Results

This study aimed to examine COVID-19-related xenophobic bullying Twitter posts
to analyze “bullying traces” or online responses to bullying. We hypothesized that the
COVID-19 pandemic would lead to an increase in xenophobic content, and this would
be reflected in the bullying experiences shared by Twitter users online. Results of the
machine learning models are discussed first, followed by the results of the qualitative
content analysis.

4.1. Machine Learning Results

Who was posting about the COVID-related racist bullying episodes?
The tweets labeled by the human coders found that the most common tweet author

was a reporter (38.03%), followed by an accuser (30.58%), defender (19.71%), victim (7.25%),
and other (5.43%). The machine learning model achieved 56% accuracy. Compared to the
accuracy of a naïve model that predicts the most frequent class, this represented an increase
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in skill. Similar to the human coded tweets, machine learning also found reporters to be
the most common tweet author (61.92%), followed by accusers (28.32%), defenders (6.64%),
victims (2.94%), and others (0.19%).

What form of bullying was being mentioned or used in the tweet?
The human coders found that general bullying (52.60%) was the most common form of

bullying mentioned, which was followed by xenophobic bullying (39.68%). Cyberbullying
was mentioned in 6.967% of tweets, and only a handful of tweets mentioned verbal bullying
(0.61%) and physical bullying (0.15%). The machine learning model accuracy was 79%
which represented a large increase in skill compared to the accuracy of the naïve model.
The machine learning model predicted an almost equal distribution between xenophobic
bullying (50.01%) and general bullying (49.47%) in the tweets. Cyberbullying represented
less than one percent (0.52%), and there were no physical or verbal bullying tweets pre-
dicted. Both the human-coded tweets and the machine learning analysis supported our
hypothesis as 40–50% of tweets mentioned xenophobic forms of bullying. Moreover, the
most relevant keywords in identifying a COVID-19-related bullying trace in the machine
learning model were the words “Chinese”, “China”, and “Asian”.

Why was the Twitter user posting about the COVID-related bullying episode on Twitter?
The human coded tweets found that accusations (44.47%) were the most common

reason for posting, which was followed closely by reports (41.54%). A smaller number
of tweets were posted to self-disclose (8.23%), cyberbully (3.79%), and deny involvement
(1.97%). A 67% classifier accuracy was achieved by the machine learning model, which
represented an improvement over the naïve model. The machine learning model predicted
slightly more reports (53.46%) followed by accusations (42.74%). Similar to the human
coded models, there were very few self-disclosures (3.54%), cyberbullying (0.17%), and
denial tweets (0.09%). See Table 3 for a comparison of human coded versus machine
learning predicted classifications.

Table 3. Comparison of human-coded and machine learning predicted COVID-19-related
bullying tweets.

Human Coded Tweets Machine Learning Tweets

Count Percentage Count Percentage

Bullying Trace
Yes 1984 39.74% 6974 27.38%
No 3009 60.26% 18,493 72.62%

Tweet Author
Accuser 603 30.58% 1975 28.32%

Defender 369 18.71% 463 6.64%
Other 107 5.43% 13 0.19%

Reporter 750 38.03% 4318 61.92%
Victim 143 7.25% 205 2.94%

Form of
Bullying

Cyberbullying 138 6.97% 36 0.52%
General 1042 52.60% 3450 49.47%
Physical 3 0.15% 0 0.00%
Verbal 12 0.61% 0 0.00%

Xenophobia 786 39.68% 3488 50.01%
Reason for

Posting
Accusation 881 44.47% 2981 42.74%

Cyberbullying 75 3.79% 12 0.17%
Denial 39 1.97% 6 0.09%
Report 823 41.54% 3728 53.46%

Self-disclosure 163 8.23% 247 3.54%
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4.2. Qualitative Content Analysis Results

Who are the xenophobic bullying victims?
The qualitative content analysis found that three-quarters (75%) of the victims referred

to in the tweets represented a group of people. Corresponding to the most relevant
keywords associated with identifying a COVID-19-related bullying trace in the machine
learning analysis, the qualitative analysis also found that most often, the group of victims
referred to people who were Chinese or Asian. For example, “It is racist. Using such divisive
language is unacceptable and dangerous. We already have stories of young Asian kids taunted
and bullied in school, Asians assaulted and blamed for covid19. He is whistling to his base and
it’s reckless”. Another 15% were general, unnamed individuals, for instance, “a kid is being
bullied by his classmates here. kids telling him “go away corona virus, here comes corona virus”!
An additional 10% of tweets referred to a victim that was personally known to the tweet
author or the tweet author themselves. For example, “shut up you racist i literally get bullied
in school and people say i have the c virus because i’m asian, so gross!!! god people like you
literally makes me want me to die”. See Figure 1 for more details on the xenophobic bullying
victim characteristics.
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Figure 1. Xenophobic bullying victim characteristics.

Who are the bullies engaging in xenophobic bullying or those perpetuating xenopho-
bic bullying behaviors?

The tweets were examined to assess who was identified as the bully or who was being
identified as perpetuating xenophobic bullying behaviors. A majority (44%) of the tweets
did not specify a bully and were referring to a general, unnamed person. For example,
“my 6yo daughter got bullied at ymca daycare and we are not even chinese. i’ve never even been to
china, not to mention her. They say “i’m not playing with you because you have coronavirus” and

“i hate chinese people”. Almost a quarter (24%) pointed to the rhetoric of former United States
President Donald Trump and how it was perpetuating xenophobic bullying behaviors in
tweets such as “@realdonaldtrump stop, just stop!! your careless remarks are hurting the many
children that are adopted from china. my granddaughter is being bullied just because she is Chinese”.
Within 19% of tweets, the bullies were identified as a group of people whose race was not
specified, for example, “asian kids are being bullied right now because their classmates think they
have coronavirus, despite never going to china. think about what your words are saying and the
impact it may have”. A small percentage (4%) classified China or the Chinese government as
the bully. Another 3% identified a group of people with their race specified as the bully, for
example, “i know i dont usually tweet personal stuff here but i just have to let this out. my cousin
is literally getting bullied at school bc of this and white kids literally don’t want to sit with him and
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act like they’re gonna die when he coughed”. Another 3% also identified the rhetoric of a US
government official other than the former US President or an unnamed government official
as perpetuating xenophobic bullying in tweets such as “it would be nice if some US politicians
would stop calling it Wuhan virus or China virus. Many Chinese overseas are being bullied for this”.
Finally, 3% of tweets referred to someone personally known as the xenophobic bullying
perpetrator. See Figure 2 for the xenophobic bullying characteristics.
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Figure 2. Xenophobic bully characteristics.

What type of xenophobic behaviors were referenced in the tweets?
A majority of the tweets (64%) indicate that the bullies were perpetuating racist

stereotypes. For example, “i’ve already heard from three people who have been bullied because of
their race in the last week. stand up to racism! it’s COVID or coronavoris, not chinese or wuhan
virus. take care of people who are being attacked”. In total, 21% of the tweets did not have
enough information to ascertain the type of xenophobic behavior. A further 13% of tweets
referred to multiple forms of bullying, for example “there are more attacks against asians
because of this! corona virus related crimes has become a regular term. elderly people are getting
physically hurt by others and kids are being bullied at school worldwide”! A small percentage of
tweets referred to cyberbullying (1%) and physical bullying (1%). See Figure 3 for the types
of xenophobic behaviors.

What was the rationale for the xenophobic behavior?
Two main reasons for the xenophobic behaviors were identified from the tweets. The

first was being bullied due to being Chinese (37.33%), as seen in tweets such as “one of
my daughter’s best friends, who is also chinese, has been bullied at her school about #coronavirus.
for crying out loud, they’re only 10 years old!!! other kids must be getting these ideas from their
parents. this disease is no excuse for #racism”. The second was being bullied due to being
Asian (37.33%), for example, “I‘ve just heard from a friend her daughter got bullied in uk at
school for being (half) asian, her classmates made a song about her and the corona. her daughter is
devastated”. Another 16% of tweets suggested that former U.S. President Trump or other
government leaders were reinforcing xenophobic behaviors due to the use of xenophobic
and stigmatizing terminology. In total, 8.33% of tweets were more general, suggesting that
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having the Coronavirus or being perceived to have it meant being bullied; for example, “a
school teacher witnessed a bunch of 7 year olds bullying and yelling “corona virus” at a Chinese
boy for coughing. For this, I blame the parents. The worldwide sinophobia rn . . . not looking
forward to the world my future kids will be born into”. Lastly, 7.66% of tweets did not have
enough information to indicate a rationale for xenophobic behaviors. See Figure 4 for the
xenophobic behavior rationale.
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5. Discussion

An examination of the first months of the COVID-19 pandemic sets the stage and
helps us understand the roots of xenophobic bullying related to this worldwide event. It
also allows us to consider the implications for our social wellbeing, mental health, and
inclusiveness as a global community both in the short and long term. We hypothesized
that the start of the pandemic would lead to an increase in xenophobic content, and the
results support this hypothesis by illustrating how the first weeks and months of COVID-19
fueled and exacerbated xenophobic bullying, particularly towards those of Asian descent
or perceived to be of Asian descent. The machine learning analysis found that a majority
of tweet authors were reporters and accusers who were posting to accuse and report
COVID-19-related bullying incidents. Although about half of the tweets did not directly
mention xenophobic bullying and referred to bullying in more general terms, about 50%
of tweets specifically referenced xenophobic bullying incidents. The qualitative analysis
also found that 64% of xenophobic tweets referred to instances that perpetuated racist
stereotypes, and the rationale for the behavior for almost 75% of xenophobic bullying
incidents was due to the victim(s) being Chinese or Asian. Another reoccurring theme
found in the qualitative analysis was the role that world leaders, in particular, former
United States President Donald Trump, played in instigating and further exacerbating
the spread of anti-Asian rhetoric. As seen in the example tweets, many tweet authors
were pointing to the harm caused by the mainstream use of terms such as “China virus”,
“Chinese virus”, “Kung flu”, or the “Wuhan virus”.

Our past can define our future and the start of the pandemic, and the results found in
this study have implications for the broader Asian communities and diaspora worldwide.
Similar to this study, Das et al.’s [14] analysis of Twitter data also found that during the
first six months of the pandemic, there was an increase in cyberbullying. Likewise, another
report found a 900% increase in hate speech on Twitter directed towards China and the
Chinese and a 200% increase in traffic to hate sites and specific posts against Asians [57]. The
same report also highlighted racist abuse against Asians and the blame placed on people of
Asian origin for the spread of the COVID-19 virus. Unfortunately, despite knowing more
about the COVID-19 virus, its’ timeline, and progression, the anger and blame directed
towards Asians or those perceived to be Asians found in our results continues to this
day. Statistics from the U.S. Federal Bureau of Investigations (FBI) reported that in 2020,
the majority of hate crime victims were targeted due to their race, ethnicity, or ancestry,
and there was a 73 percent increase in anti-Asian hate crimes [58]. Responding to the
detrimental rise in anti-Asian racism and xenophobia, in May 2021, U.S. President Biden
signed the COVID-19 Hate Crimes Act into law. The law emphasized the increase in
violence against Asian Americans and gave state and local jurisdictions funds to conduct
crime-reduction programs, allowed the Department of Justice to expedite the review of
hate crimes related to COVID-19, and made reporting resources available online in multiple
languages [59]. According to Vejmelka and Matkovic [60], the delay in censoring hateful
content and xenophobic bullying resulted in irreparable damage to the overall solidarity
of online communities. Moreover, the lack of protective measures to curb behaviors such
as those highlighted in our findings from the early months of the pandemic has led to the
ostracization of individuals and communities while furthering the victimization they may
have already faced during in-person encounters [34].

On another note, research on traditional forms of bullying, such as school bullying
during the COVID-19 pandemic, suggests that there may be a “silver lining”, with studies
from the United States and Canada showing a reduction in bullying rates [61,62]. However,
the rise in xenophobic bullying suggests that this is not the case for all youth. A survey
conducted by Jueng et al. [63] found that 81.5% of Asian American youth reported being
bullied or verbally harassed, and one in four faced shunning or social isolation due to
the pandemic. Many of the tweets in the current study reflected this reality, noting the
discrimination and harassment faced by Asian youth or those perceived to be Asian. Almost
all schools moved to online learning at the start of the pandemic; however, once schools
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began to re-open, school districts across the United States began to notice a trend among
Asian American youth. According to U.S federal data, one year after the pandemic in
March 2021, more than 60% of Asian American youth opted for continued virtual learning,
compared to only 19% of white youth [64]. The Washington Post also reported that many
communities in places such as New York City, Chicago, and Fairfax County, Virginia, saw
the lowest return rates of Asian American youth to in-person learning, with many families
making this choice due to the fear that their child would experience race-based bullying at
school [65]. Relatedly, even as the pandemic progressed, a report by the Rand Corporation
found higher rates of hesitancy to send kids back to school for the 2021–2022 school year
among families of color, including among Asian families [66]. While remote learning has
its advantages, there could also be negative consequences and challenges for extended
online learning. This is especially true for youth who are linguistically isolated if English
is their second language and their parents or guardians do not speak sufficient English,
they have limited access to a computer or internet, they have a learning disability, or if they
are living in poverty and cannot access educational resources [67]. Alarmingly, a recent
systematic review of studies from 11 countries worldwide also found that school closures
and lockdowns related to COVID-19 were linked to adverse mental and physical health
problems for children and adolescents [68]. As a society, considerations of how extended
remote learning and how the increased rates of race-based bullying can impact Asian youth
also need to be a serious priority.

The COVID-19 pandemic led to a dramatic rise in anti-Asian xenophobia and bias,
and we must address the hate and harm that this has caused. As we wrap up year two of
the COVID-19 pandemic and enter year three, people are experiencing pandemic rage, an
emotional reaction to feelings of anger, frustration, and helplessness related to tensions
caused by the pandemic [69]. Furthermore, anger was found to contribute to the spread
of COVID-19 misinformation, with conservatives more likely to consider false claims to
be “scientifically credible” [70]. Based on this study’s findings and the progression of anti-
Asian hate throughout the pandemic, it is clear that multipronged targeted interventions are
needed. Mainstream media and journalism outlets worldwide must consider the negative
impact of misinformation and normalize stigmatizing terms such as “China virus” and
“Wuhan flu,” especially when employed by world leaders and public figures. Relatedly,
social media outlets such as Facebook, YouTube, and Twitter serve as regular news sources
for many [71], thus also playing a key role in combating misinformation. Chou, Gaysnsky,
and Vanderpool [72] recommend that these efforts need to go beyond just fact-checking and
should include efforts to enhance the general public’s health and science literacy, highlight
the tactics used by those who spread misinformation, verify the accounts of credible experts
and organizations, and encourage cognitive reflection where the public improves their
ability to discern the credibility of information that they read and/or share.

Additionally, as pointed out by Logie and Turan [73], to mitigate the stigma associated
with COVID-19, we must address social inequities, including racism and xenophobia.
These racial biases are often rooted in fear of the ‘other’ [6] or the ‘out-group’ [19] and were
apparent in the tweets captured for this study, where users shared instances of individuals
perpetuating racist stereotypes and using racial slurs against those who are Asians or those
perceived to be Asian. Accordingly, cultural sensitivity and interventions to educate the
general public are vital in breaking the racialization effect of COVID-19. This can include
education on appropriate language. For example, in the United States, Congresswoman
Judy Chu, who serves as the chair of the Congressional Asian Pacific Asian Caucus, released
a toolkit to guide and encourage her fellow lawmakers to use culturally sensitive language
when discussing China’s role in the pandemic [74]. Similar efforts could be enacted within
other social institutions, including schools and workplaces, as those were identified in this
study and previous studies as venues where xenophobic bullying takes place. Community
resources to combat xenophobia and race-based bullying, both for the victims of race-based
bullying and allies, are also needed. The American Psychological Association contends
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that it is imperative to provide mental health advocacy in the form of psychoeducational
workshops, therapy, and support groups to Asian communities [75].

Furthermore, promoting equity and inclusiveness requires allyship, and this can
be built through dialogue and advocacy. The current study highlights how platforms
such as Twitter are being used to bring awareness to and confront anti-Asian hate and
bullying by reporters and accusers. The use of trending hashtags (i.e., #StopAsianHate
and #StopAAPIHate), re-tweets, and celebrity statements can all serve as a powerful tool
to rally against xenophobia. For instance, in 2021, Korean pop group BTS released a
statement on Twitter denouncing anti-Asian discrimination and hate crimes, and it was
the most re-tweeted post on the platform in 2021 [76]. The global nature and real-time
feature of Twitter allow for worldwide advocacy efforts to open up a dialogue between
everyday users, celebrities, elected representatives, and organizations. In addition, studies
point to digital platforms as being key tools to help promote, mobilize, and create a larger
footprint for social movements [77,78]. The methodologies utilized in this study, including
natural language processing (NPL) and machine learning (ML), suggest that researchers,
policymakers, and practitioners can gain a broader understanding of xenophobic bullying
worldwide by looking to sources beyond the traditional forms of self-reporting.

6. Limitations and Future Research

This study was able to provide insight into the first days and months of the pandemic
and helped us understand the roots of COVID-19-related xenophobic bullying. However,
the study also faced some limitations. The human coding for the machine learning process
and the qualitative analysis all relied on interpreting the tweets at face value. The study
analysis did not rely on traditional definitions of bullying behaviors, roles, and characteris-
tics but rather assigned meaning based on the explicit content presented in the tweet. The
study was also missing potentially relevant demographic information such as age, gender,
racial background, and socio-economic status of the Twitter users. Without additional
background context and tweet author information, the intent of the tweet and key bullying
concepts may not have been fully captured. Relatedly, utilizing human coding runs the
risk of potential bias based on the researcher’s own background and experiences; thus,
we placed importance on obtaining a high level of interrater agreement for the machine
learning coding, and all qualitatively coded tweets were reviewed for agreement. The cap-
tured tweets were also limited to the keywords identified by the study authors. While this
captured a breadth of tweets related to COVID-19 xenophobic bullying, it did not include
all disclosures or instances of xenophobic bullying. For instance, not all users will disclose
and describe their xenophobic bullying experiences with the term “bullying” and instead
could define it with terms such as “harassment,” “trolling,” “abuse”, or “mistreatment.”
Given the scope of possible synonyms to describe similar experiences, future studies should
explore ways to expand the keyword selection to capture a broader range of xenophobic
bullying disclosures. This study was also limited to tweets written in English. Since Twitter
support 33 languages, if country-specific or language-specific explorations of xenophobic
bullying are of interest, researchers can also select keywords that reflect specific cultures or
languages and utilize methodologies similar to this study.

From the machine learning modeling perspective, we also found that ground truth
affects model performance. Big Data can provide larger sources of data compared to self-
reported data, but it is also unstructured; therefore, having a clear definition of categories
has an impact on what researchers aim to predict. Consequently, prior knowledge and
data collected from self-reported data are crucial to informing Big Data analysis. Some
of the machine learning models had a higher level of accuracy than others; thus, future
studies should build improved classifiers by refining the categories analyzed in this study.
Moreover, larger training size datasets can improve model performance. At the time of
the data collection for this study, Twitter’s streaming API imposed a data limitation on
how many tweets could be retrieved each day. In 2021, Twitter announced the launch of
the Academic Research Product track, which will allow researchers free access to the full
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history of public conversation related to identified keywords [79]. This should allow future
researchers to increase their sample size and explore more advanced ML models to capture
the complexity of human language. In addition, word-embedding techniques based on
deep neural networks can also extract semantic knowledge that the methods used in the
current study cannot. Future researchers can also explore how additional features such as
Twitter users’ account details could be explored to improve model performance. Lastly,
the study relied solely on public tweets for the analysis. The inability to capture data from
private accounts suggests that we may not have a full picture of the online disclosures
regarding xenophobic bullying.

7. Conclusions

Over the years, an abundance of literature on bullying was amassed; however, a
paucity of research remains on the topic of xenophobic bullying even though extant liter-
ature indicates a rise in such behaviors in physical and virtual social spaces, particularly
in the presence of a noteworthy event. This study examined COVID-19-related tweets
to analyze the disclosure of xenophobic bullying episodes. In contrast with the use of
self-reported data, the use of multiple and interdisciplinary methods of analysis enabled
us to examine unprompted and unsolicited disclosures of COVID-19-related xenophobic
bullying on Twitter. The methodological design of this study allowed us to reconstruct and
contextualize the experiences of a global community from various perspectives. The study
points to ways that social scientists can use Big Data to complement the strengths and
address the gaps in self-reported data. It also affords researchers three unique advantages:
access to larger volumes with bigger sample sizes, data variety by being able to gather data
from individuals worldwide, and data velocity, the speed at which data can be generated
and gathered in real-time. The findings of this study, alongside the limited literature that
has examined xenophobic behaviors related to COVID-19, can be advanced by researchers
and policymakers to generate new insights and explore multipronged targeted interven-
tions. Additionally, the results point to how social media sites such as Twitter can be used
to address, prevent, or mitigate continuing xenophobic bullying as a result of COVID-19 as
this pandemic continues to impact us worldwide.
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